CYCLIC SQUARE ROOT OF GRAPHS

P.M. Avhed* and T.T. Raghunathan**

Abstract

A graph G is said to have a cyclic square root if there exists a graph H which is cyclic and is such that $H^2 = G$ (upto isomorphism). A set of necessary and sufficient conditions for the existence of cyclic square roots for graphs is given. These conditions are in terms of cliques. An applications to 4-regular graphs is given.

Introduction

By a graph we mean a connected graph without loops and multiple edges. We follow the notations and terminology of Harary (1). The square of a graph G, written as G^2 , is obtained by adding to G edges which join pairs of vertices of G at a distance 2 apart. A graph H is to be a square root of a graph G if $H^2 = G$ (up to isomorphism). Mukhopadhyay [3] presented a solution to the problem of characterising graphs having at least one square root graph. In this paper we obtain a set of necessary and sufficient conditions for the existence of a square root which is a cycle. We call such square roots as cyclic square roots..;

If G is a graph with at least three vertices, then a clique of G. A 3-clique is a clique on three vertices. If X is a finite set, then |X| will denote the number of elements of X . If a is a vertex of a graph G then the neighbourhood Va of a is $\{a\}$ U $\{b \in V(G) \mid ab \in E(G)\}$. If S is a non-empty subset of V(G) then the induced subgraph of G by S, written G < S >, is the maximal subgraph of G with vertex set S. If we square a 3-cycle we get a 3-cycle and squaring the 4-cycles and 5- cycles yield the complete graphs on 4 and 5 vertices respectively. We therefore consider graphs with at least 6 vertices.

Proposition: Let G be a non - complete graph which is the square of some cycle H, where $|V(H)| = |V(G)| \ge 6$. for

 $a \in V(H) = V(G)$, let V_a denote the neighbourhood of a in H and $K_a = G < V_a >$; Then the following hold.

- (i) K_a is a 3-clique in G, for each $a \in V(H)$
- (ii) $V(K_a) \cap V(K_b) = \{a,b\}$ if and only if a is adjacent to b in H.
- (iii)a is adjacent to c and c is adjacent to b in H if and only if $V(K_a) \cap V(K_b) = \{c\}$
- (iv) $V(K_a) \cap V(K_b) = 0$ if and only if every path from a to b in H is of length ≥ 3 .
- (v) For each 3- clique in G there exist exactly two other 3- cliques each intersecting with it in exactly two vertices of G

Proof:

(i)Let $u, v \in V(K_a) = V_a$. The distance $d(u,v) \le 2$ in H. Therefore $uv \in E(H^2) = E(G)$ and $u,v \in V(K_a)$. Hence k_a is complete. Now $a \in V(H)$ and H is a cycle. Therefore $|V(K_a)| = 3$. That K_a is maximal, follows from the fact that $|v(H)| \ge 6$.

Proofs of (ii),(iii) and (iv) are routine. We prove(v).

For $u_i \in V(H)$, by (i) $K_i = G < V_i >$ is a 3- clique where V_i is the neighbourhood of U_i in H. But H is a cycle. Therefore there exist u_i and U_k in V(H) such that u_i is adjacent to uj and U_k in H. Thus by (ii) $V(K_i) \cap V(K_j)$ contains exactly two vertices and $V(K_i) \cap V(K_k)$ also contains exactly two vertices. Therefore there exist two cliques K_i and K_k which intersect with K_i in exactly two vertices. Now suppose there exist a third clique different from K_i and K_k , say K_i such that $V(K_i) \cap V(K_i)$ contains exactly two vertices. Then u_i is also adjacent to u_i different from uj and u_k , that is, the degree of u_i is 3 or more in H, which is a contradiction, since H is a cycle. Therefore K_i meets two cliques in exactly two vertices.

Theorem 1: A non-complete graph G on p vertices $u_{1}, u_{2}, \dots, u_{p}$ has a cyclic

square root H if and only if there exists a collection of p 3-cliques K_1 , K_2 , K_p such that:

- (a) $U_i \in V(K_i)$ for every i.
- (b) $P \\ U E(K_i) = E(G).$
- (C) No two K, s intersect in more than two vertices.
- (d) For each K_i there exist exactly two other K_j and K_k such that K_i meets each of K_i and K_k in exactly two vertices.
- (e) $u_i \in V(K_i)$ if and only if $u_i \in V(K_i)$ for every i and j.

Proof: Suppose G has a cyclic square root H. For each $u_i \in V(H)$, let V_i be the neighbourhood of u_i in H and $K_i=G < V_i >$. From proposition (i) each K_i is a 3-clique in G. Thus we have a collection of p 3-cliques in G. Now we have to show that at conditions (a) -(e) are satisfied. (a) is immediate from the definition of V_i (e) follows the fact that u_i is in the neighbourhood of u_i if and only if u_i is in the neighbourhood of ui in H. (c) and (d) follow from (ii),(iii), (iv) and (v) of proposition.

To prove (b): let u_i $u_j \in E$ (G)= $E(H^2)$. Therefore $d(u_i,u_j) \le 2$ in H. Hence there exists $u_k \in V(H)$ such that u_i u_k u_j is a path in H. That is u_i $u_j \in E(K_k)$. Hence

$$E(G) \le \bigcup_{i=1}^{P} (K_i)$$
. The reverse inclusion is obvious.

Conversely, we define the graph H as.

 $\begin{array}{l} V(H)=V(G)=\{u_1,u_2,.....u_p\} \text{ and } \\ E(H)\;\{u_iu_j\in E(G)\,/\,V(K_i)\cap V(K_j)=\{u_i,u_j\}\} \text{ We show that } \\ E(H^2)=E(G). \text{ Let } u_i\;u_j\in E(H^2). \text{ If } d(u_i,u_j)=1 \text{ in } H \text{ then } u_iu_j\in E(H)\leq E(G) \text{ .} \\ \text{Otherwise, there exists } u_k\in V(H) \text{ such that } u_iu_j\;u_k\;u_j \text{ is a path in } H. \text{ Therefore } \\ u_iu_j\;V(K_k) \text{ and since } Kk \text{ is complete, } u_iu_j\in E(K_k) \text{ for some } k. \text{ By (b) } u_i,\;u_j\in E(K_k$

E(G). Thus E(H²) \leq E(G). Again let $u_i u_j \in$ E(G). From (b), (c) and (e)V(K_i) \cap V(K_k) = { u_i , u_k } and V(K_j) \cap V(K_k) = { u_i , u_k }. Hence $u_i u_k \in$ E(H) and $u_j u_k \in$ E(H). That is $u_i u_k u_j$ is a path in H. Therefore $u_i u_j \in$ E(H²), which proves that

 $E(G) \le E(H^2)$. Thus $E(G) = E(H^2)$. Also |V(H)| = p and clearly H is connected. By (d) degree of each vertex of H is two. Hence H is a cycle and $H^2 = G$.

Remark. A procedure for finding all the cliques in a graph is known [2]. As a result, our Theorem gives a procedure for finding a cyclic square root of a 4- regular graph in which every clique is a 3- clique.

We illustrate the Theorem by an example.

Figure

A graph G and all its 3- cliques k_1 - k_6 are shown in figure. It is easily seen that the conditions of Theorem are satisfied by k_1 to k_6 . The cycle H is a cyclic square root of G

Application:

Following theorem is an application of our Theorem 1.

Theorem 2: Any two 4- regular graphs with the same number of vertices having cyclic square roots are isomorphic.

Proof: Let G_1 be a 4- regular graph on p vertices u_1, u_2, \ldots, u_p having cyclic square root c_1 say G_2 be a 4- regular graph on p vertices v_1, v_2, \ldots, v_p having cyclic square root c_2 say. We can assume without loss that mapping $f: V(C_1) \rightarrow V(C_2)$ defined by $f(u_1) = v_1$ for each i is an isomorphism of c_1 onto c_2 . We show that f preserves the adjacency and non-adjacency as a mapping of G_1 onto G_2 . Let therefore u_1 and u_2 in G_1 . If u_1 and u_2 are adjacent in c_1 then $f(u_1)$ and $f(u_2)$ are obviously adjacent in G_2 . Suppose $f(u_1, u_2) = 0$ in $f(u_2)$ and $f(u_3)$ are adjacent in $f(u_3)$ are adjacent in $f(u_3)$ are symmetry, f preserves non-adjacency as well.

REFERENCES

- 1. F.Harry, Graph Theory, Narosa Publishing House, New Delhi, (1988).
- 2. F.Harary, and I.C. Ross, A procedure for clique Detection using the Group Matrix, Sociometry, 20 (1957)
- 3. Mukhopadhyay, A. The Square Root of a Graph, J. Comb. Th. 2 (19611).290 295.

^{*} Deptt. of Mathematics, P.V.P College, Pravaranagar, 413 713, Maharastra, **Deptt of Mathematics, University of Poona, Pune-411 007, Maharastra