SOME PROPERTIES OF MATRIX TRANSFORMATION OF REAL SEQUENCES

Chandana Dutta

Introduction

Suppose that $\left\{u_{n}\right\}$ is a real sequence and $T=\left(a_{m n}\right)$ be an infinite matrix with real constants. Let us consider

$$
\mathrm{t}_{\mathrm{m}}=\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{mn}} \mathrm{u}_{\mathrm{n}}
$$

where it is assumed that the right hand series is convergent for all $\mathrm{m}-1,2, \ldots$ Then $\left\{t_{m}\right\}$ defines the T-transform of the sequence $\left\{u_{n}\right\}$. The sequence $\left\{u_{n}\right\}$ is said to be T -summable to s if $\mathrm{t}_{\mathrm{n}} \mathrm{t}$ ends to s as n tends to . A matrix $\mathrm{T}=\left(\mathrm{a}_{\mathrm{mn}}\right)$ is regular [1] if and only if

$$
\text { i) } \sup \sum_{n=1}^{\infty}\left|a_{m n}\right|<\infty
$$

ii) $\lim \quad a_{m n}=0$ for every n
$\mathrm{m} \rightarrow \infty$
iii) $\lim _{m \rightarrow \infty} \sum_{n=1}^{\infty} a_{m n}=1$.

If $a_{m n}=0$ for every $n>m$, the matrix is called triangular matrix. The matrix T reduces to Cesaro matrix if and $a_{m n}=1 / m, n \leq m$ and $a_{m n}=0, n>m$.

Consider the sequences $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ and define differences of different orders as follows

$$
\begin{aligned}
\Delta a_{n} & =a_{n}-a_{m+1} \\
\Delta^{2} a_{n} & =\Delta\left(\Delta a_{n}\right)=a_{n}-2 a_{n+1}+a_{n+2}
\end{aligned}
$$

$$
\Delta^{r}{ }_{\text {an }}=\Delta\left(\Delta^{r-1} a_{n}\right)=a_{n}-r^{r} c_{1} a_{n+1}+{ }^{r} c_{2} a_{n+2}-\ldots .+(-1)^{r} a_{n+r}, r \geq 2
$$

A sequence $\left\{u_{n}\right\}$ is said to be convex of order $k-2$ if $\Delta^{k} u_{n}>0$ for all n and k ≥ 3 and it is simply convex if $\Delta^{2} u_{n}>0$ for all n.

A sequence $\left\{u_{n}\right\}$ is said to be of bounded variation if the series

$$
\sum_{k=1}^{\infty}\left|u_{k}-u_{k+1}\right| \text { is convergent }
$$

In the present paper we study whether regular matrix transformation preserves convexity and bounded variation property of a sequence.

Theorem: 1 Cesaro matrix carries convex sequence and also convex sequence of order $r-2(r \geq 3)$ to a sequence of same nature.

Proof : Let $\left\{x_{n}\right\}$ be a convex sequence. Then $\Delta^{2} x n>0$ for all $n=1,2, \ldots \ldots$. The transformed sequence is given by

$$
z_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k} \quad \text { for all } n=1,2 \ldots
$$

Now, $\Delta^{2} \mathrm{z}_{\mathrm{n}}=\mathrm{z}_{\mathrm{n}}-2 \mathrm{z}_{\mathrm{n}+1}+\mathrm{z}_{\mathrm{n}+2}$

$$
\begin{aligned}
& =-\sum_{k=1}^{n} x_{k}-\frac{2}{n+1} \sum_{k=1}^{n+1} x_{k}+\cdots \sum_{n+2}^{n+1} x_{k=1}^{n} \\
= & \left(\frac{1}{n}-\frac{2}{n+1}+\cdots\right) \sum_{k=1}^{n} x_{k}-\left(\frac{2}{n+1}-\frac{1}{n+2}\right) x_{n+1}+\frac{1}{n+2} x_{n+2}
\end{aligned}
$$

$$
=\frac{1}{M}\left\{2 \sum_{k=1}^{n} x_{k}-n(n+3) x_{n+1} n(n+1) x_{n+2}\right\}
$$

$$
\begin{aligned}
& \text { where } M=n(n+1)(n+2) \\
& =1 / M\left\{2\left(x_{1}-2 x_{2}+x_{3}\right)+6\left(x_{2}-2 x_{3}+x_{4}\right)+\ldots+n\left(n+1\left(x_{n}-2 x_{n+1}+x_{n+2}\right)\right\}\right. \\
& =\frac{1}{M}\left\{2!\Delta^{2} x_{1}+3!\Delta^{2} x_{2}+\ldots+\frac{(n+1)!}{(n-1)!} \Delta^{2} x_{n}\right\}
\end{aligned}
$$

Hence $\Delta^{2} z_{n}>0$ for all $n=1,2 \ldots \ldots$ since $\Delta^{2} x_{n}>0$ for all $n=1,2 \ldots \ldots$.
So, convexity remains preserved under Cesaro matrix transformation. We shall now investigate he same for $\Delta{ }^{r} x_{n}>0$ for all n and for some $r(r \geq 3)$.

$$
\begin{aligned}
& \Delta^{r} z_{n}=z_{n}-r_{c_{1}} z_{n+1}+r_{c_{2}} z_{n+2} \ldots . .+(-1)^{r} z_{n+r} \\
& =\frac{1}{n} \sum_{k=1}^{n} x_{k}-r_{c_{1}}^{1}-\cdots \sum_{k=1}^{n+1} x_{k}+r_{c_{2}} \sum_{n+2}^{1} \sum_{k=1}^{n+2} x_{k} \cdots+(-1)^{r} . \underset{n+r}{1} \sum_{k=1}^{n+r} x_{k} \\
& =\left[\frac{1}{n}-\frac{c_{1}}{n+1}+\ldots .+\frac{(-1)^{r}}{n+r}\right] \sum_{k=1}^{n} x_{k}+\left[\frac{r}{c_{1}} \frac{r}{n+1}+\frac{c_{2}}{n+2} \ldots+\frac{(-1)^{r}}{n+r}\right] \\
& x_{n+1}+\ldots+\frac{(-1)^{r}}{n+r} x_{n+r} \\
& =\frac{n!}{n(n+1) \ldots \ldots(n+r)} \sum_{k=1}^{n} x_{k}-\rho_{1} x_{n+1}+\rho_{2} x_{n+2} \ldots+(-1)^{r} \rho_{r} x_{n+r}
\end{aligned}
$$

where $\rho_{m}=\sum_{i=m}^{r} \frac{{ }^{r} c_{i}(-1)^{i+m}}{n+1}, 1 \leq m \leq r$

$$
=1 / M\left\{r!\Delta^{r} x_{1}+(r+1)!\Delta^{r} \cdot x_{2}+\ldots .+\frac{(n+r-1)!}{(n-1)!} \Delta^{r} x_{n}\right\}
$$

Therefore, $\Delta^{r} z_{n}>0$ as $\Delta^{r} x_{n}>0$ for all n.

Thus the theorem follows.
Note: We construct a regular matrix which can not transform a convex sequence to a convex sequence $\left\{x_{n}\right\}$ where $x_{1}=1, x_{n+2}=\{n(n+1)\} / 2 n=0$, $1,2 \ldots$.This is clearly a convex sequence. Consider the following regular matrix

It can be easily shown that A-transform of the sequence $\left\{x_{n}\right\}$ is not convex.

Theorem : 2 Infinite matrix transformation of Cesaro type of order 1 preserves bounded variation of a sequence.

To prove this theorem we need the following theorem [2]. A sequence $a=\left\{a_{n}\right\}$ is of bounded variation if and only if it can be written as $a=b-c$ where $b=\left\{b_{n}\right\}$ and $c\left\{c_{n}\right\}$ are non-negative and non-increasing sequences.

Proof: Let $\left\{x_{n}\right\}$ be a sequence of bounded variation. Then it can be expressed an $x_{n}=u_{n}-v_{n}$ where $\left\{u_{n}\right\}$ and $v\left\{V_{n}\right\}$ are non-negative and non increasing sequences. Now the transformed sequence $\left\{z_{n}\right\}$ is given by

$$
z_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k} \text { for all } n=1,2
$$

Hence

$$
z_{n}=\frac{1}{n} \sum_{k=1}^{n}\left(u_{k}-v_{k}\right)=-\frac{1}{n} \sum_{k=1}^{n} u_{k}-\frac{1}{n} \sum_{k=1}^{n} v_{k}=u_{k}^{\prime}-v_{n}^{\prime}(\text { say })
$$

Since $u_{n} \geq u_{n+1}$ so $u_{n}-u_{n+1} \geq 0$ and also $u_{i}-u_{n+1} \geq 0,1 \leq i \leq n$ for all n. Therefore,

$$
\begin{aligned}
& \mathbf{u}_{n}^{\prime}-\mathbf{u}_{n+1}^{\prime}=\frac{1}{n} \sum_{k+1}^{n} u_{k}-\frac{1}{n+1} \sum_{k=1}^{n+1} u_{k} \\
& =\left(\begin{array}{cc}
1 & 1 \\
\hdashline-\cdots+1
\end{array}\right) \sum_{k=1}^{n} u_{k} \frac{1}{n+1} \mathbf{u}_{n+1}^{\prime}=\underset{n(n+1)}{--\cdots} \sum_{k=1}^{n}\left(u_{k}-u_{n+1}\right) \geq 0 \text {. Thus }\left\{u^{\prime} n\right\}
\end{aligned}
$$

is monotonic non-increasing sequence. Similar result holds for $\left\{\mathbf{u}_{\mathrm{n}}^{\prime}\right\}$. so, z_{n} $u_{n}^{\prime}-v_{n}^{\prime}$ where $\left\{u_{n}^{\prime}\right\}$ and $\left\{v_{n}^{\prime}\right\}$ are two monotonic non- increasing sequences . Hence $\left\{z_{n}\right\}$ is of bounded variation.

Acknowledgement : I am grateful to Dr. D.K Ganguly, Department of Pure Mathematics, University of Calcutta for his kind help in preparing this paper.

REFERENCES

1. Cooke, R.G. Infinite matrices and sequence spaces, MAC Millan Co. Ltd., London (1950).
2. Zygmund, A. Trigonometric Series, Cambridge, 1968,34.
