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SOME PROPERTIES OF MATRIX TRANSFORMATION
OF REAL SEQUENCES

Chandana Dutta

Introduction

Suppose that {un } is a real sequence and T= (a*n) be an infinite matrix
q'ith real constants. Let us consider

t. = I-u-nun
n=l

nhere it is assumed that the right hand series is convergent for all m-1,2,........

Then {t,o } defines the T:-transform of the sequence {ur} . The sequence {un}
is said to be T-summable to s if tn t ends to s as n tends to . A matrix T=(a*, )
is regular [1] if and only if

la*nl<-

ii) lim &*, = 0 for every n
m-)@

iii) lirn I &*n = 1.
m-+* n=l

If a*n =0 for every n> m, the matrix is called triangular matrix. The
:ratrix T reduces to Cesaro matrix if and a*n = 1/m, n < m and a*n = 0, n) m.

Consider the sequences {un} and define differences of different orders

€
' n=l
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Aan=an-&m+l

Lz an= A(Aar) = an - 2an*y * tn +2

A' un = A( 6r-r an) = an - 
t", un*, +rcran*2- "" + (-1)r an*,' n> 2'

A sequence {un} is said to be convex of order k-2 if Auu*'0 for all n and k

> 3 and it is simply convex if A2 un ) 0 for ali n'

A sequence {un} is said to be of bounded variatiott ifthe series

j, , uk - uk+r ! is convergent

Inthepresentpaperwestudywhetherregularmatrixtransformation
preserves convexity and bounded variation property of a sequence'

TheOrem: l Cesaro matrix carries convex sequence and also convex Sequence

of order r'2(r > 3) to a sequence of same nature'

proof : Let {xn} be aconvex sequence. Then A2 xn >0 forall n = 1,2,.......The

transformed sequence is given bY

1n sZn=' Xk
n k=l

Now, 42 zn =zn-Zzn+l

lnl
=- L Xr.

n k=l K

21 1

-(_-----) Xr+t * ---;-xnr.2
n+l n+2 n+2

for all n=1,2...

* zn+z

2n+11
n+1

E x,, * ----
k=l o 

n+2

n+.1

Exk
?,_ I[-l

ln2n
=(- - ---+---)I xk

n n+l n+2 k=l

-
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M k=l 
xk - n(n+3) xn*, n(n+l) xn*2i

whereM=n(n+l)(n+2)

= l/M{Z(x,- 2xr+ xr)+ 6(xr- Zx, + x)+ ...+ n(n+ I (xn _ 2xn*r+ xn*z)}.
t
l

= ,i: { 2! L2 x, + 3t Lz xz* ..... glii, 
A2 xn}M(n

Hence A'rn ,0 fotalln=I,2......since A2xr>0 for all n=1,2......So' convexity remains preserved under cesaro matrix transformation . we shallnow investigate he same for A .r, , 0 i". 
"ff 

n and for some r(r > 3).
Lr zn = zn - r\ zn+r * rcrzn+z..... + ( l), zn*,

lnt
n t]r ^u - tcr -- ,:, Xk * r.^ -- .E xo .... + (-l)r.K=t 2 n+2 k=l

_rl 
t", 

(-t), n ," ,^

=t; - ;;-,* . i;;ld,** *t- ill-,* i, .-.r',- ,

xn+r * ,.. *l-t]-l o-,-
n+r rr?l

xt - Pt xn+t * Pzxn+2.... + (-l) p. xn*,

I n+r

,*. ,3, ^u

ri

n(n+l)....... r'n+r)

t!
E

k=l

Pn., =

= lllt4

where
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Therefore, L' ,nr 0 as Ar *, ) 0 for all n'

Thus the theorem follows.

Note:Weconstructaregularmatrixwhichcannottransformaconvex
sequence to aconvex sequencelxn) where xl= 1, 

|n+-z --= 
{n(n+l)}/2 n = 0'

1,2^.....Thisisclearlyu"on "*sequence.considerthefollowingregularmatrix

[=

ItcanbeeasilyshownthatA-transformofthesequence{xn}isnot
convex.

Theorem : 2 Infinite matrix transformation of Cesaro type of order 1

preserves bounded variation of a sequence'

Toprovethistheoremweneedthefollowingtheoremt2].ASequence
a-{ar} is of bounded variation if and only if it can be written as a =b-c where

6=1Ui) and c {cn} are non -negative and non-increasing sequences'

Proof:Let{xn}beasequenceofboundedvariation.Thenitcanbe
expressed an xn= un- un where {ur} and v{vn} are non:legative and non -

increasing sequences. Itiow the transformed sequence {zr} is given by

lln ll, o

o rti 't,
00'1,
o tl, o

0

0
tl,
,1,

0

0
0

0

0

0
0

0

ln
zn= - ,L- xk for all n = l' 2

n k=I

1nl
Hence zn= - t (up-vo)= -

nk=l n

nln
i uk- - ,E_ ur-u'k-v'n(saY)
k=l n k=l

Since un )un+l so un - un+l 20 and also ui - un+l > 0' l< i < n for all n'

-:r@@-4=
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ln 1 n+l
u'n-u'n*, = - E uk - --- E uk-' n k+l n+l k=l

llnlln
-(- ----) r uk----u'n+l = '------ r (uk - un+l)>0'Thus{u'n}

n n+l k=l n+l n(n+l) k=l

is monotonic non-increasing sequence. Similar result holds for {u'n} . so, zn

u'n - r', where {u'r}and [v'n] are two monotonic non- increasing sequences

. Hence {zn} is of bounded variation.
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