Mathematical Forum Vol. XIV, 2001-2002

pp 17-26

BETWEEN FUZZY CLOSED SETS AND FUZZY g-CLOSED SETS

R. K. SARAF

Govt. Kamla Nehru Girls College, Damoh (M.P.) Pin - 470661, India ABSTRACT :

Veera Kumar [15] introduced the concept of g^* -closed sets in General Topology. In this paper we introduce a new class of sets namely Fg^* - closed sets, which is properly placed in between the class of fuzzy closed sets and the class of fuzzy g-closed sets. Applying these sets we introduce and study Fg^* -continuity, Fg^* -open mapping and Fg^* -irresolute mappings.

KEYWORDS : Fuzzy g-closed sets ; Fg*-closed sets ; Fg*-continuous ; and Fgc-irresolute mappings.

1995 AMS subject classification code : Primary 54A40 ; Secondary 54C99.

1. INTRODUCTION AND PRELIMINARIES.

S. S. Thakur and R. Malviya introduced the clas of fuzzy g-closed sets, a super class of closed sets in 1995. Balasubramanian and sundaram [3] also studied the same concept in 1997. In the present paper we introuce a new class of sets (using new techniques), called Fg^{*}-closed sets. Which is properly placed in between the class of fuzzy closed sets and the class of Fg-closed sets. We also showed that this new class is proeprly contained in the class of F α g-closed sets, the class of Fgs-closed sets, the class of Fgp-closed sets, fuzzy preclosedness, fuzzy α -closedness, Fsp-closedness Fsg-closedness, Fsp-closedness, Fsp-closedness, Fsp-closedness, Fsg-closedness, Fsp-closedness, Fsg-closedness, Fsg-c

Throughout this paper (X, τ) , (Y, σ) and (Z,τ) (or simply X, Y and Z) represent nonempty fuzzy topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a fuzzy subset A and X, Cl (A) and nt (A) denote the closure and interior of A respectively. To reduce the size of the paper most of the proofs and omited.

DEFINITION 1.1 : A fuzzy subset A of X is called fuzzy preopen [4] (resp. fuzzy semiopen [2]. fuzzy α -open [4], Fsp - open [13], if A \leq Int (Cl(A)) (resp. A \leq Cl (int(A), A \leq Int (Cl (Int (A)), A \leq Cl (Int (Cl(A))). And their complements are respectively called fuzzy preclosed (resp. fuzzy semiclosed. fuzzy α -closed, Fsp-closed) if Cl (Int(A)) \leq A (resp. Int (Cl(A) \leq A. Cl (Int(Cl(A))) \leq A. Int (Cl (Int(A))) \leq A).

The intersection of all fuzzy semiclosed (resp. fuzzy preclosed, Fsp-closed and fuzy α -closed) sets containing A of X is called the fuzzy semiclosure (resp. fuzzy preclosure, Fsp-closure and fuzzy α -closure) of A and is denoted by sCl (A) (resp. pCl (A), spCl (A) and α Cl(A)).

DEFINITION 1.2 : A fuzzy subset A of X is called :

(a) Fg-closed [13] (Frg - closed [7]) if Cl (A) \leq B whenever A \leq B and B is fuzzy open (fuzzy regular open) in X.

(b) Fsg-closed [1] (Fgs-closed [12] if sCl (A) \leq B whenever A \leq B and B is fuzzy semiopen (fuzzy open) in X.

(c) Fg α -closed [6] (F α g-closed [11] if α Cl (A) \leq B whenever A \leq B and B is fuzzy α -open (fuzzy open) in X.

(d) Fgsp-closed [10] if sp Cl (A) \leq B whenever A \leq B and B is fuzzy open in X.

(e) Fgpr-closed [8] if pCl (A) \leq B whenever A \leq B and B is fuzzy regular open in X.

DEFINITION 1.3: A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is called :

(a) Fuzzy semicontinuous [2] (resp. fuzzy precontinuous [4], fuzzy α continuous [14], Fsp-continuous [13], Fg-continuous [12], F α g-continuous [11] Fgs-continuous [1], Fgsp-continuous [10], Frg-continuous [7], Fgprcontinuous [8]) if f⁻¹ (A) is fuzzy semiclosed (resp. fuzzy preclosed, fuzzy α closed. Fsp-closed, Fg-closed, F α g-closed, Fgs-closed, Fgsp-closed, Frg-closed, fgpr-closed) set of X. for every fuzzy closed closed set A of Y.

(b) Fgc-irresolute [13] if f^{-1} (A) is Fg-closed, set of X for every Fg-closed set A of Y.

(c) Fg-closed [9] if f (A) is Fg-closed in Y for every fuzzy closed set A of X.

DEFINITION 1.4: [5] A fuzzy subset A is said to be quasi-coincident with a fuzzy set B in X denoted by AqB if there is a point $x \in X$ such that A(x) + B(x) > 1, the negation of this statement is written as $\langle AqB \rangle$. $A \le B$ iff (Aq (1-B)). Two fuzzy sets A and B of (X, τ) are Q-separated iff Cl (A) $\cap B = 0$ $= Cl (B) \cap A$.

2. Fg* - CLOSED SETS

DEFINITION 2.1: A fuzzy subset A of X is called Fg*-closed if $Cl(A) \le H$ whenever $A \le H$ and H is Fg-open in X.

REMARK 2.1: Every fuzzy closed set is Fg^* - closed and every Fg^* -closed set is Fg-closed but the converse may not be true in general. For,

EXAMPLE 2.1 : Let X = { a, b } and A and B are defined as : A(a) = 0.3, A(b) = 0.2 ; B(a) = 0.5, B(b)_ = 0.7 ; H(a) = 0.7, H(b) = 0.6 ; E (a) = 0.3, E (b) = 0.3. And let τ_1 = { 0, B, 1. }, τ_2 = { 0, H, 1 } are fuzzy topology on X then A (resp. E) is Fg*-closed (resp. Fg-closed) but not fuzzy closed (resp. Fg*-closed) set in (X, τ_1) (resp. (X, τ_2)).

The following Remark shows that the class of Fg*-closed set is properly contained in the class of F α g-closed sets the class of Fgs-cosed sets, the class of Fgsp-closed sets, the class of Fgsp-closed sets, and in the class of frg-closed sets.

REMARK 2.2: Every Fg*-closed set is an F α g-closed set and hence Fgsclosed, Fgsp-closed, Fgpr-closed set and Frg-closed set but not conversely. The set E in Example 2.1 is F α g-closed, Fgs-closed, Fgpr-closed and Frg-closed but not Fg*-closed.

REMARK 2.3 : Fg*-closedness is independent of fuzzy α -closedness, fuzzy semiclosedness, fuzzy preclosed, Fsp-closedness, Fsg-closedness, and Fg α -closedness. For

EXAMPLE 2.2 : Let X = { a, b }. A and B are fuzzy sets in X defined as : A(a) = 0.3, A (b) = 0.7 ; B(a) = 0.7, B(b) = 0.3. Let t = { 0, A, 1 } be fuzzy topology on X. Then B is Fg*-closed but not the following sets : Fsp-closed, fuzzy α -closed, fuzzy preclosed, Fsg-closed and fuzzy semiclosed. The set E defined in Example 2.1 is fuzzy α -closed and hence fuzzy semiclosed, fuzzy preclosed, Fg α -closed, Fg α -closed and Fsp-closed in (X, τ_2). But it is not Fg*closed in (X, τ_2). Thus we have the following diagram of implication.

THEOREM 2.1 : Let X be a fuzzy topological space and A is a fuzzy subset of X. Then A is Fg*-closed iff $](AqH) \rightarrow](Cl(A)qH)$ for every Fg-closed set H of X.

PROOF : Let H be Fg-closed subset of X, and (AqH) then by Definition 1.4, $A \le 1 - H$ and 1 - H is Fg-open in X. So Cl (A) $\le 1 - H$. Hence, (Cl(A)qH).

SUFFICIENCY : Let B be a Fg-open set of X, such that $A \leq B$. Then, (Aq(1-B)) and (1-B) is Fg-closed in X. By hypothesis (Cl(A))q(1-B). Therefore, $Cl(A) \leq B$. Hence A is Fg*-closed.

THEOREM 2.2 : Let A be Fg* - closed set in x and x_{α} be a fuzzy point of X such that $x_{\alpha} qCl(A)$ then $cl(x_{\alpha})qA$.

REMARK 2.3 : Theorem 3.14 of Veera Kumar [15] (A is g*-closed in topological space X iff Cl(A) - A does not contain any non-empty g-closed sets.) is no longer valid in fuzzy topological spaces. For, the fuzzy set A in the fuzzy topological space (X, τ_1) in Example 2.1 is Fg* - closed but the fuzzy set 1 – B is a non zero Fg*-closed subset of cl(A)—A = $Cl(A) \cap (1-A)$.

THEOREM 2.3 : If A and B are fg*-closed in a fuzzy topological space X then $A \cup B$ is Fg*-closed.

REMARK 2.4 : The intersection of any two Fg*-closed sets in X may not be Fg*-closed For,

EXAMPLE 2.3: Let X = { x_1, x_2, x_3 }. Define $f_1, f_2, f_3 : X \rightarrow [0, 1]$ as follows : $f_1 = 0, f_2 = 1$,

 $f_3(x) = \begin{cases} 0 & \text{If } x = x_2, x_3; \\ 1 & x = x_1 \end{cases}$

clearly $\tau = \{ f_1, f_2, f_3 \}$ is a fuzzy topology on X. Define A₁ and A₂ as : A₁ (x) $\begin{cases} 0 \text{ if } x = x_3 ; \\ 1, \text{ if } x = x_1 x_2 \end{cases}$

$$A_2(x) = \begin{cases} 0 \text{ if } x = x_2; \\ 1 \text{ if } x = x_1, x_3 \end{cases}$$

Then A_1 and A_2 are Fg^* - closed in X but $A_1 \cap A_2$ is not Fg^* - closed.

THEOREM 2.4 : If A is both Fg-open and Fg*-closed then A is fuzy closed **THEOREM 2.5** : If A is Fg^* - closed in X, such that $A \le B \le Cl$ (A). Then B is also a Fg* - closed in X.

DEFINITION 2.2 : A fuzzy subset A of X is Called Fg* - open iff 1-A is Fg* - closed, that is If $B \le Int (A)$, whenvever $B \le A$ where B is Fg-closed in X. The family of all Fg* - closed (resp. Fg* - open) set of a fuzzy topological space X will be denoted by $(Fg^*C(X) \text{ (resp. } Fg^* O(X)).$

REMARK 2.5: Every fuzzy open set is Fg^* - open and every Fg^* -open set is Fg-open but the converse may not be true in general.

THEOREM 2.6: Let A and B be Q-separated Fg^* - open subsets of a fuzzy toplogical space X, then $A \cup B$ is Fg^* -open

PROOF: Let H be a Fg-open subset of $A \cup B$. Then $H \cap Cl(A) \le (A \cup B)$ $\cap Cl(A) = (A \cap Cl(A)) \cup (B \cap Cl(A)) \le Int(A)$. Similarly $H \cap Cl(B) \le Int(B)$. (B). Now $H = H \cap (A \cup B) \le (H \cap Cl(A)) \cup (H \cap Cl(B)) \le Int(A) \cup Int(B) \le (A \cup B)$. Hence $A \cup B$ is Fg* - open.

THEOREM 2.7 : Let A and B are two Fg*- closed sets in fuzzy topological space X and suppose that 1 - A and 1 - B are Q-separted, then $A \cap B$ is Fg*-closed.

THEOREM 2.8 : Let A be Fg*-open subset of X and Int (A) $\leq B \leq A$ then B is fg*-open.

THEOREM 2.9 : Let (Y, τ_y) be a fuzzy subspace of a fuzzy topological spece (X, τ) and A be fuzzy set in Y. If A is Fg^{*} - closed in X, then A is Fg^{*} - closed in Y.

DEFINITION 2.3: Let A be a fuzzy sub set in a fuzzy toplogical space X and $x\beta$ is a fuzzy point of X. A is called g^* - neighbourhood (resp. g^* -Q-neighbourhood) of $x\beta$ if thee exists a Fg*-open set B in X such that $x\beta \in B \leq A$ (resp. $x\beta q B \leq A$).

THEOREM 2.10 : A fuzzy set A is Fg*-open in X iff for each fuzzy point x_{β} of A, A is a g*-neighbourhood of x_{β} .

Fg* - CONTINUOUS MAPPING

DEFINITION 3.1 : A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is called Fg*continuous if $f^{-1}(A)$ is Fg*-closed in X for every fuzzy closed set A of Y.

REMARK 3.1 : Every fuzzy continuous mapping is Fg*-continuous and every Fg*-continuous mapping is Fg-continuous, hence $F\alpha g$ -continuous, Frg-continuous, Fgs-continuous, Fgs-continuous. But the converse may not be true in general. For

EXAMPLE 3.1 : Let X = { a, b } and Y = { x, y }. Fuzzy subset A and B are defined as : A { a) = 0.5, A (b) = 0.7; B (x) = 0.7, B (y) = 0.8 Let $\tau = \{ 0, A, 1 \}$ and $\sigma = \{ 0, B, 1 \}$ be fuzzy topology in X and Y respectively. Then the mapping f : (X, τ) \rightarrow (Y, σ) defined as f(a) = x and f(b) = y is fg* - cntinuous but not fuzzy continuous.

EXAMPLE 3.2: Let X = { a, b } and Y = { x, y }. fuzzy sets A and B are defined as A (a) = 0.7, A (b) = 0.6; B (x) = 0.7, B (y) = 0.7. Let $\tau = \{0, A, 1\}$ and $\sigma = \{0, B, 1\}$ be fuzzy topology in X and Y respectively. Then the

mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ defined as f(a) = x and f(b) = y is Fg - continuous and hence Fag-continuous, Fgs - continuous, Fgsp - continuous, Frg continuous and Fgpr - continuous but not Fg* - continuous.

REMARK 3.2: The composition of two Fg^* - continuous mappings may not be Fg^* - continuous For,

EXAMPLE 3.3: Let X = { a, b }, Y = {x, y} and Z = { p, q }. Fuzzy sets A, B ane H are drfined as : A (a) = 0.5, A (b) = 0.7; B (x) = 0.3, B (y) = 0.2; H (p) = 0.6, H (q) = 0.4. Let $\tau = \{0, A, 1\} \sigma = \{0, B, 1\}$ and $\Gamma = \{0, H, 1\}$ be fuzzy topologies on X, Y and Z respectively. Let the mapping f : (X, τ) \rightarrow (Y, σ) be defined by f (a) = x f(b) = y. and the mapping g : (Y, σ) \rightarrow (Z, Γ) be defined by g (x) = p, g(y) = q. Then f and g are Fg* - continuous but g of : (X, τ) \rightarrow (Z, Γ) is not Fg* - continuous.

REMARK 3.3 : Fg*-continuity is independent from fuzzy semicontinuity, Fsp-continuity, fuzzy precontinuity and fuzzy α -continuity. For, the mapping f defined in Example 3.3, is Fg*-continuous but neither Fsp-continuous and fuzzy semicontinuous nor Fuzzy α -continuous and fuzzy precontinuous. The mapping f in Example 3.2, is fuzzy α -continuous hence fuzzy semicontinuous, fuzzy precontinuous and also Fsp-continuous but not Fg*-continuous.

THEOREM 3.1 : A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is Fg*-continuous iff the inverse image of every fuzzy open set of Y is Fg*-open in X.

THEOREM 3.2 : Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a mapping from a fuzzy topological space X to a fuzzy topological space Y. Then the following statements are equivalent :

(a) f is Fg*-continuous

(b) For every fuzzy closed set A in Y, $f^{-1}(A) \in Fg^*C(X)$

(c) for every fuzzy point x_{β} in X and every fuzzy open set A such that $f(x_{\beta}) \in A$ there is a fuzzy set $B \in Fg^* O(X)$ such that $x_{\beta} \in B$ and $f(B) \leq A$.

(d) for every fuzzy point x_{β} of X and every neighbourhood A of $f(x_{\beta})$, $f^{-1}(A)$ is g*-neighbourhood of x_{β} .

(e) For every fuzzy point $x\beta$ of X and every neighbourhood A of $f(x\beta)$, there is a g*-neighbourhood H of $x\beta$ such that $f(H) \leq A$.

(f) For every fuzzy point $x\beta$ and every fuzzy open set A of X such that f $(x\beta)qA$, there is a fuzzy set $B \in Fg^* O(X)$ such that $x\beta qB$ and $f(B) \le A$.

(g) for every fuzzy point x_{β} of X and every Q-neighbourhood A of f (x_{β}), $f^{-1}(A)$ is a g*-Q-neighbourhood of x_{β} .

(h) for every fuzzy point $x\beta$ of X and every Q-neighbourhood A of f (x β) there is a g*-Q-neighbourhood H of x β such that f (H) $\leq A$

PROOF : (a) $\prec \rightarrow$ (b) ; (a) $\prec \rightarrow$ (c) ; (a) \leftrightarrow (f) : obvious.

(c) \rightarrow (d) : Let $x\beta$ be a fuzzy point of X and A be a neighbourhood of $f(x\beta)$. Then there is a fuzzy open set B such that $f(x\beta) \le B \le A$. Now $f^{-1}(B) \in Fg^*$ O(X) and $x\beta \in f^{-1}(B) \le f^{-1}(A)$. Thus $f^{-1}(A)$ is a g*-neighbourhood of $x\beta$ in X.

(d) \leftrightarrow (e) : Let $x\beta$ be a fuzzy point of X and A be a neighbourhood of $f(x\beta)$. Then $H = f^{-1}(A)$ is a g*-neighbourhood of $x\beta$ and $f(H) = f(f^{-1}(A)) \leq A$.

(e) \leftrightarrow (c) : Let $x\beta$ be a fuzzy point of X and A be a fuzzy open set such that $f(x\beta) \in A$. Then A is a neighbourhood of $f(x\beta)$. So there is g*-neighbourhood H of $x\beta$ in X such that $x\beta \in H$ and $f(H) \leq A$. Hence there is a fuzzy set $B \leq Fg^*O(X)$ such that $x\beta \in B \leq H$ and so $f(B) \leq f(H) \leq A$.

 $(f) \rightarrow (g) \rightarrow (h) \rightarrow (f)$ obvious.

THEOREM 3.3 : If $f : (X, \tau) \to (Y, \sigma)$ be Fg^{*} - continuous and $g : (Y, \sigma) \to (Z, \Gamma)$ is fuzzy continuous, then gof : $(X, \tau) \to (Z, \Gamma)$ is Fg^{*}-continuous.

4. Fg* - CLOSED MAPPINGS

DEFINITION 4.1: A mapping $f : (X, \tau) \rightarrow (Y,\sigma)$ is called Fg*-closed (resp Fg*-open) if for every fuzzy closed (resp. fuzzy open) Set A of X the image f (A) is Fg*-closed (resp. Fg*-open) in Y.

REMARK 4.1: Every fuzzy closed (resp. fuzzy open) mapping is Fg*-closed (resp. Fg*-open) and every Fg*-closed (resp. Fg*-open) mapping is Fg-closed (resp. Fg-open) but the converse may not be true in general. May leave to the reader.

THEOREM 4.1: (i) A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is Fg*-open iff for any fuzzy subset A of Y and any fuzzy closed set H in X containing $f^{-1}(A)$, there exists a Fg*-closed subset B of Y containing A such that $f^{-1}(B) \leq H$.

(ii) A mapping $f : (X, \tau) \to (Y, \sigma)$ is Fg*-closed iff for any fuzzy subset A of Y and any fuzzy open set E in X containing f^{-1} (A), there exists a Fg*-open set B of Y such that $A \leq B$ and f^{-1} (B) $\leq E$.

PROOF: (i) Necessity : Suppose $f : (X, \tau) \rightarrow (Y, \sigma)$ is Fg*-open mapping. Let A be any fuzzy subset of Y and H is an arbitrary closed set of X containg $f^{-1}(A)$. We put B = Y - f(X-H). Then by because of f is Fg*-open mapping, B is Fg*-closed in Y. Since $f^{-1}(A) \leq H$ it follows from straight forward calculation that $A \leq B$. Now $f^{-1}(B) = X - f^{-1}(f(X - H)) \leq H$ completes the proof of this Part.

SUFFICIENCY : Suppose E is fuzzy open set of X. Then $f^{-1}(Y-f(E)) \le X - E$ and X - E is fuzzy closed. By hypothesis, there exists a Fg*-closed subset B of Y containing Y - f(E) such that $f^{-1}(B) \le X - E$. Therefore $E \le X - f^{-1}(B)$.

Hence $Y-B \le f(E) \le f(X-f^{-1}(B)) \le Y - B$, which implies f(E) = Y - B. since Y - B is Fg^* - open, f(E) is Fg-open and thus f is Fg*-open mapping.

(ii) Obvious.

THEOREM 4.2: If A is Fg*-closed set in (X, τ) and if $f: (X, \tau) \rightarrow (Y, \sigma)$ is fuzzy gc-irresolute and Fg*-closed then f(A) is Fg*-closed in Y.

PROOF : If $f(A) \leq H$ where H is Fg - open in Y, then $A \leq f^{-1}$ (H) and hence, Cl(A) $\leq f^{-1}$ (H) since A is Fg*-closed. Thus f (Cl)(A)) \leq H and f (Cl)(A)) is a Fg* - closed set. Then Cl (f (Cl(A))) \leq H, it follows that Cl (f(A)) \leq Cl (f(Cl (A))) \leq H. Thus Cl (f(A)) \leq H and f(A) is Fg*-closed.

THEOREM 4.3 : If A is Fg* - open in X and if $f : (X, \tau) \rightarrow (Y,\tau)$ is bijective fuzzy gc-irresolute and Fg* - closed. Then f(A) is Fg* - open in (Y, τ) **THEOREM 4.4** : If $f : (X, \tau) \rightarrow (Y, \sigma)$ is bijective Fg* - continuous and fuzzy pre generalized open (i.e. f image of Fg-open set of X is Fg-open in Y) and if B is Fg* - closed subset of Y, then $f^{-1}(B)$ is Fg* - closed in X.

COROLLARY 4.1: If $f: (X \tau) \rightarrow (Y, \sigma)$ is bijective Fg^{*} - continuous and fuzzy pre generalized open. Then the inverse image $f^{-1}(A)$ of each Fg^{*} - open subset A of Y is Fg^{*} - open in X.

THEOREM 4.5 : If $f: (X, \tau) \rightarrow (Y, \sigma)$ is Fg^{*} - closed and fuzzy pre gclosed and if H is Fg^{*} - open (or Fg^{*} - closed). Subset of Y, then f^{-1} (H) is Fg^{*} - open (or Fg^{*} - closed) in X.

PROOF: Let H be a Fg* - open set in Y. Let $E \le f^{-1}$ (H) where E is fgclosed in X. Therefore $f(E) \le H$ holds. Since f(E) is Fg-closed and H is Fg* open In Y, $f(E) \le Int$ (H)). Hence $E \le f^{-1}$ (Int (H)). Since f is Fg* - continuous and Int (G) is fuzzy open in Y, $E \le Int$ (f^{-1} (Int (H))) $\le Int$ (f^{-1} (H)). Therefore f^{-1} (H) is Fg* - open in X. Other part is obvious by taking complement.

THEOREM 4.6 : (i) If $f : (X, \tau) \to (Y, \sigma)$ is Fuzzy open (resp. fuzzy closed), and $g : (Y, \sigma) \to (Z, \Gamma)$ is Fg^{*} - open (resp. Fg^{*} - closed), then g of : $(X, \tau) \to (Z, \Gamma)$ is Fg^{*} - open (resp. Fg^{*} - closed)

(ii) Let $f : (X, \tau) \to (Y, \sigma)$ be Fg^{*} - closed and $g : (Y, \sigma) \to (Z, \Gamma)$ be Fg^{*} - closed and Fuzzy gc-irresolute then g of : $(X, \tau) \to (Z, \Gamma)$ is Fg^{*} - closed.

(iii) If $f: (X, \tau) \to (Y, \sigma)$ is Fg^{*} - open and $g: (Y, \Gamma) \to (Z, \Gamma)$ is bijective Fg^{*} - closed and Fuzzy gc-irresolute then g of : $(X, \tau) \to (Z, \Gamma)$ is Fg^{*} - open.

THEOREM 4.7 : Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \Gamma)$ be two mappings and let g of : $(X, \tau) \to (Z, \Gamma)$ is Fg^{*} - closed (resp Fg^{*}-open). Then,

(i) If f is surjective and continuous then g is Fg* - closed (resp. Fg*-open)

(ii) If g is bijective, Fg^* - continuous and fuzzy pre generalized open, then f is Fg^* - closed (resp. Fg^* - open).

COROLLARY 4.2 : If $f : (X, \tau) \to (Y, \sigma)$ is Fg^{*} - closed and fuzzy pre g - closed and g : $(Y, \sigma) \to (Z, \Gamma)$ is Fg^{*} - continuous, then g of : $(X, \tau) \to (Z, \Gamma)$ is Fg^{*} - continuous.

THEOREM 4.8 : For any bijective, Fg^* - continuous and fuzzy pregeneralized open mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ and any Fg^* - continuous mapping $g : (Y, \sigma) \rightarrow (Z, \Gamma)$, the composition gof : $(X, \tau) \rightarrow (Z, \Gamma)$ is Fg^* - continuous.

25

5. Fg* - IRRESOLUTE MAPPINGS

DEFINITION 5.1 : A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is called Fg^{*} - irresolute if f^{-1} (A) is Fg^{*} - closed in X for every Fg^{*} - closed set of Y.

THEOREM 5.1 : Every Fg* - irresolute mapping is Fg* - continuous.

The following examples supports that the converse of the above theorem is not true in general

EXAMPLE 5.1 : The mapping f defined in Example 4.4 of [3] is Fg^{*}- continuous but not Fg^* - irresolute.

THEOREM 5.2: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \Gamma)$ be any two mapings. Then,

(a) g of : $(X, \tau) \rightarrow (Z, \Gamma)$ is Fg^{*} - irresolute if both f and g are Fg^{*} - irresolute (b) g of : $(X, \tau) \rightarrow (Z, \Gamma)$ is Fg^{*} - continuous if g is Fg^{*} continuous and f is Fg^{*} - irresolute.

THEOREM 5.3: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a Fg^{*} - continuous If (X, τ) is T^{*}_{1/2} (a space in which every Fg^{*} - closed set is fuzzy closed), then f is fuzzy continuous.

THEOREM 5.4: Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a fuzzy gc - irresolute and fuzzy closed mapping. Then f(A) is a Fg* - closed set of Y for every Fg* - closed set A of X.

PROOF: Let A be a Fg* - closed set of X. Let H be a Fg-open set of Y such that $f(A) \leq H$.

Since f is fuzzy gc - irresolute f^{-1} (H) is a Fg-open set of X. Since $A \le f^{-1}$ (H) and A is a Fg^{*} - closed set of X, Cl (A) $\le f^{-1}$ (H). Then f (Cl) (A)) $\le f$ (f^{-1} (H)) \le H. Since f is fuzzy closed, f (Cl (A)) = Cl (f (Cl (A))). This implies Cl (f (A)) \le cl (f (Cl (A))) \le f (Cl (A)) H. Therefore f(A) is a Fg^{*} - closed set of Y.

THEOREM 5.5: Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be onto, Fg^{*} - irresolute and fuzzy closed. If (X, τ) is fuzzy $T^*_{1/2}$, then (Y, σ) is also a fuzzy $T^*_{1/2}$ space.

THEOREM 5.6: Let (X, τ) and (Y, σ) be fuzzy topological spaces and f: $(X, \tau) \rightarrow (Y, \sigma)$. Then the following conditions are equivalent:

(a) f is Fg* - irresolute

(b) For every fuzzy point x_β of X and for every $A \in Fg^* O(Y)$ containing $f(x_\beta)$ there exists a jifuzzy set $B \in Fg^* O(X)$ such that $x_\beta \in B \le f^{-1}(A)$

(c) For every fuzzy point x_{β} of X and for every $A \in Fg^* O(Y)$ containing $f(x_{\beta})$ there exists a fuzzy set $B \in Fg^* O(X)$ such that $x_{\beta} \in B$ and $f(B) \leq A$.

(d) For every fuzzy point x_{β} of X and for every $A \in Fg^* O(Y)$ Satisfying $f(x_{\beta})$ qA, There exists a fuzzy set $B \in Fg^* O(X)$, such that $x_{\beta} qB \le f^{-1}$ (A).

(e) For every fuzzy point $x\beta$ of X and for every $A \in Fg^* O(Y)$ satisfying f (x β) q A, there exists a fuzzy set $B \in Fg^* O(Y)$ such that $x\beta$ qB and f (B) $\leq A$.

(f) For every $B \in Fg^* C(Y)$, $f^{-1}(A) \in Fg^* C(X)$.

REFERENCES

[1]. K. M. Abd. El-Hakeim, Generalized semi-continuous mappings in Fuzzy topolotgical spaces; J. Fuzzy Math 7 (1999) 577-589.

[2] K. K. Azad. ; On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity ; J. Math Anal. Appl. 82 (1981) 14-32

[3] G. Balasubramaniam and P. Sundaram ; On some genealization of fuzzy continuous functions ; Fuzzy Sets and Systems 86 (1997) 93-100

[4] Bin Sahna ; On fuzzy strongly semicontinuity and fuzzy precontinuity ; Fuzzy sets and systems 44 (1991) 303-308.

[5] P. M. Pu and Y. M. Liu. : Fuzzy topology I, Neighbourhood structure of a fuzzy point and more - smith convergence ; J. Math. Anal Appl. 76 (1980) 571-599

[6] R. K. Saraf and Seema Mishra ; Fgα - closed sets ; Jour. Tripura Math. Soc 2 (2000) 27-32

[7] R. K. Saraf ; On Frg - closed sets ; (Jour. Tri. Math. Soc. (2003) (To, Appear)

[8] R. K. Saraf : Results Via Fgpr - closed sets ; Vigyana Parishad Anusandhan Patrika (2002) (51-59).

[9] R. K. Saraf. A. Malviya and S. K. Gupta : Fuzzy generalized open Mapping ; Bull. Cal. Math. soc. 90 (1-6) (1998) 435-440.

[10] R. K. Saraf and M. Khanna ; Fuzzy generalized semipreclosed sets ; Jour. Rti-Math. Soc. 3 (2001) 59-68

[11] R. K. Saraf. M. Caldas and Seema Mishra ; Results Via Fg α - closed and F α g-closed sets (Submitted)

[12] S. S. Thakur and R. Malviya ; fuzzy gc - irresolute mappings ; Proc. Math. Soc. BHU II (1995) 184-186

[13] S. S. Thakur and S. Singh ; Fuzzy semipre - open sets and semiprecontinuity ; Fuzzy sets and systems (1998) 383-391

[14] M. K. R. S. Veera Kumar ; Between closed sets and g - closed sets ; Mem. Fac. Sci KOCHI UNIV. (MATH) 21 (2000) 1-19.