Mathematical Forum

Vol. XIV, 2001-2002.
pp 27-32

ON GENERALIZATION OF BANACH'S FIXED POINT THEOREM IN UNIFORM SPACES

B. SINGH
F-24, University campus, Vikram University, UJJAIN-456010 (M.P.) India

R. K. SHARMA
B.S.N. Govt. of P. G. College, Shajapur - 465001 (M.P.) India

Abstract

: The purpose of this paper is to prove some common fixed point theorems for weak-compatible maps of type (A) which generalize the Banach's fixed point theorem in Uniform space by taking a control function ϕ. Key words : Uniform sapces, weak compatible maps of type (A), fixed point. AMS Subject classification : Primary 54H25, Secondary 47H10. 1. Introduction : In a complete metric space X Banach's classical fixed point theorem guarantees the existance of a unique fixed point for a self map T of X if it is satisfies, $$
d(T x, T y) \leq k d(x, y), 0 \leq k \leq 1, x, y \in X "
$$

Browder [2] generalized the above theorem by taking a control function ϕ while Jungck [3] extended the same theorem for two commuting maps in a complete metric space.

An equivalent to the concepts of compatible and compatible maps of type (A), under some conditions Pathak-Kang-Beak [8, 9] introduced the concept of weak compatible maps of type (A) in Menger and 2-metric spaces. This concept is more general than that of weak commutativity studied by Sessa [11]. Compatibility and Compatibility of type (A) of maps was first introduced by Jungck [4] and Jungck-Murthy-Cho [5] respectively.

In this paper we deduce definition of weak compatible maps of type (A), which analogous to in [8,9] and use it to generalize the Banach's fixed point theorem in Uniform space for four maps by taking a control function ϕ as under.

2. Preliminaries : A uniform space is a generalization of a metric space. Throughout the discussion (X, U) stands for Hausdorff Uniform space. For the terminology and basic properties of Uniform spaces the reader is refered to Acharya [1], Sharma [12], Mishra [7] and Rhoades [10].

Definition 2.1 : Let (X, U) be a Hausdorff Uniform space and P be a fixed family of pseudometrics p on X which generates the uniformity U. Following Kelley ([6] chapter 6), we define
(a) $V_{(p, r)}=\{(x, y): x, y \in X, p(x, y)<r, r>0\}$
(b) $\mathrm{G}=\left\{\mathrm{V}: \mathrm{V}=\bigcap_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{V}_{\left(p_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}\right)} ; \mathrm{p}_{\mathrm{i}} \in \mathrm{P}, \mathrm{r}_{\mathrm{i}}>0, \mathrm{i}=1,2, \ldots, \mathrm{n}\right\}$.
(c) For $\alpha>0$,

$$
\alpha V=\left\{\bigcap_{i=1}^{n} V_{\left(p_{i} r_{i}\right)} ; p_{i} \in P, r_{i}>0, i=1,2, \ldots, n\right\}
$$

Definition 2.2 : Two self maps S and T of X are said to be weakcompatible of type (A) if
$\lim _{n \rightarrow \infty} p\left(S T x_{n}, \operatorname{TTx}_{n}\right) \leq \lim _{n \rightarrow \infty} p\left(T S x_{n}, T T x_{n}\right)$,
and $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{p}\left(\mathrm{TSx}_{\mathrm{n}}, S S x_{\mathrm{n}}\right) \leq \lim _{\mathrm{n} \rightarrow \infty} \mathrm{p}\left(\mathrm{STx}_{\mathrm{n}}, S S x_{\mathrm{n}}\right)$,
whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=y$ for some y in X .
3. Common fixed point theorems : Before giving our main results we mention the following lemmas which are required in the sequal.

Lemma 3.1 [1]: Let p be any pseudometric on X and $\alpha, \beta>0$. If (x, y) $\in \alpha V_{\left(p, r_{1}\right)} O \alpha V_{\left(p, r_{2}\right)}$, then $p(x, y) \leq \alpha r_{1}+\alpha r_{2}$.

Lemma $3.2[1]$: Let V be any member of G , then there is a pseudometric p on X such tht $V=V_{(p, 1)}$.

This p is called Minkowski's pseudometric of V.
Lemma 3.3 : Let A, B, S and T be self mappings of X satisfying:
(3.3.1) $A(X) \subseteq T(X) ; B(X) \subseteq S(X)$.
(3.3.2) For any $V \in G, \alpha>0 ; x, y \in X,(S x, T y) \in \alpha V$ implies
($\mathrm{Ax}, \mathrm{By}) \in \phi(\alpha) \mathrm{V}$ where $\phi:[0, \propto) \rightarrow[0, \propto)$ is non-decreasing continuous on the right and for $k>0, \sum_{1}^{\infty} \phi^{n}(k)<\infty$.
(3.3.3) Let $x_{0} \in X$ be arbitrary, then in virtue of (3.3.1) there exists $x_{1}, x_{2} \in$ X such that $A x_{0}=T x_{1}, B x_{1}=S x_{2}$ and so on. Inductively we can define a sequence $\left\{y_{n}\right\}$ in X such that
$\mathrm{y}_{2 \mathrm{n}}=\mathrm{Tx}_{2 \mathrm{n}+1}=\mathrm{Ax}_{2 \mathrm{n}}$ and $\mathrm{y}_{2 \mathrm{n}+1}=\mathrm{Sx}_{2 \mathrm{n}+2}=\mathrm{Bx}_{2 \mathrm{n}+1} ; \mathrm{n}=0,1,2,3, \ldots$.
Then the sequence $\left\{y_{n}\right\}$ is a Cauchy sequence in X.
Proof : Let $\mathrm{V} \in \mathrm{G}$ be arbitrary p be Minkowski's pseudometric of V . For $x, y \in X$, set $p(S x, T y)=r$. For $\varepsilon>0$, we have $p(S x, T y) \in(r+\varepsilon) V$. From (3.3.2), $(A x, B y) \in \phi(r+\varepsilon) V$. Using lemma 3.1 and 3.2 , we get

$$
\mathrm{p}(\mathrm{Ax}, \mathrm{By})<\phi(\mathrm{r}+\varepsilon) .
$$

Since ε is arbitrary, we have
$p(A x, B y) \leq \phi(p(S x, T y))$.
Now for sequence $\left\{y_{n}\right\}$ defined in (3.3.3). Using (3.3.4), we have $p\left(y_{2 n}, y_{2 n+1}\right) \leq \phi\left(p\left(y_{2 n-1}, y_{2 n}\right)\right)$ and $p\left(y_{2 n+1}, y_{2 n+2}\right) \leq \phi\left(p\left(y_{2 n}, y_{2 n+1}\right)\right)$.

In general,
$p\left(y_{n}, y_{n+1}\right) \leq \phi\left(p\left(y_{n-1}, y_{n}\right)\right) \leq \phi^{2}\left(p\left(y_{n-2}, y_{n-1}\right)\right) \leq \ldots \leq \phi^{n}\left(p\left(y_{0}, y_{1}\right)\right)$.
Now for any two positive integer $n, m(>n)$, we have

$$
\begin{aligned}
p\left(y_{n}, y_{m}\right) & \leq p\left(y_{n}, y_{n+1}\right)+p\left(y_{n+1}, y_{n+2}\right)+\ldots+p\left(y_{m-1}, y_{m}\right), \\
& \leq\left(\phi^{n}+\phi^{n+1}+\ldots+\phi^{m-1}\right) p\left(y_{0}, y_{1}\right), \\
& =\sum_{i=1}^{m-1} \phi^{1}\left(p\left(y_{0}, y_{1}\right)\right) .
\end{aligned}
$$

Since for $k>0, \sum_{1}^{\infty} \phi^{n}(k)<\infty$, we can find a positive integer n_{0} such that for $\mathrm{m}>\mathrm{n} \geq \mathrm{n}_{0}$,

$$
\sum_{i=1}^{m-1} \phi^{1}\left(p\left(y_{0}, y_{1}\right)\right)<1 \text {. Therefore }\left(y_{n}, y_{m}\right) \in V \text { when } m>n \geq n_{0}
$$

Hence $\left\{y_{n}\right\}$ is a Cauchy sequence in X.
Lemma 3.4 : Let A, B, S and T be self maps of X satisfying (3.3.2), (3.3.3) and

$$
\begin{equation*}
A(X) \cup B(X) \subseteq S(X) \cap T(X) \tag{3.4.1}
\end{equation*}
$$

Then the conclusion of lemma 3.3 holds.
Proof: Since in vertue of (3.4.1) we can define a sequence $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ in X as in (3.3.3) and the proof is same as the proof of lemma 3.3.

Lemma 3.5 : Let A, B, S and T be self maps of X satisfying (3.3.2), (3.3.3), (3.4.1) and
(3.5.1) $S(X) \cap T(X)$ is sequentially complete subspace of X.

Then (A, S) and (B, T) have coincidence points in X.
Proof: From lemma 3.4, $\left\{y_{n}\right\}$ is a Cauchy sequence in $S(X) \cap T(X)$. By completeness of $S(X) \cap T(X),\left\{y_{n}\right\}$, consequently the subsequences $\left\{A x_{2 n}\right\}$, $\left\{S x_{2 n+2}\right\},\left\{\mathrm{Bx}_{2 \mathrm{n}+1}\right\}$ and $\left\{\mathrm{Tx}_{2 \mathrm{n}+1}\right\}$ also, converges to some z in $\mathrm{S}(\mathrm{X}) \cap T(X)$. Hence there exists points u, v in X such that $S u=z$ and $T v=z$.

Using (3.3.4), we have

$$
p\left(A u, B x_{2 n+1}\right) \leq \phi\left(p\left(S u, T x_{2 n+1}\right)\right)
$$

letting $n \rightarrow \infty$, we get $p(A u, z) \leq \phi(p(z, z))$. Since for $k>0, \sum_{1}^{\infty} \phi^{n}(k)<\infty$, it follows that $\phi(k)<k$. Therefore $p(A u, z)<p(z, z)$ yields $A u=z=S u$. Similarly,

$$
P\left(A x_{2 n}, B v\right) \leq \phi\left(p\left(S x_{2 n}, T v\right)\right)
$$

letting $n \rightarrow \infty$, we get $p(z, B v) \leq \phi(p(z, z)$ yields $B v=z=T v$.
Lemma 3.6 : Let S and T be self, weak compatible maps of type (A) of X. If $\mathrm{Su}=\mathrm{Tu}$ for some u in X then $\mathrm{STu}=\mathrm{SSu}=\mathrm{TT} u=\mathrm{TSu}$.

Proof: Let $\left\{x_{n}\right\}$ be a sequence in X defined by $x_{n}=u ; n=1,2,3, \ldots$. Then we have $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=S u$. By weak compatibility of type (A), we have $p(S T u, T S u)=\lim _{n \rightarrow \infty} p\left(S T x_{n}, \operatorname{TTx}_{n}\right) \leq \lim _{n \rightarrow \infty p}\left(T S x_{n}\right.$, $\left.T T x_{n}\right)=0$, which implies that $\mathrm{STu}=\mathrm{TSu}$. Hence $\mathrm{STu}=\mathrm{SSu}=\mathrm{TTu}=\mathrm{TSu}$.

Theorem 3.1 : Let $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T be self mappings of sequentially complete X satisfying (3.3.1), (3.3.2), (3.3.3) and
(3.1.1) One of A, B, S and T is continuous.
(3.1.2) (A, S) and (B, T) are the pairs of weak compatible maps of type (A).

Then $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T have a unique common fixed point in X .
Proof : From lemma 3.3, $\left\{y_{n}\right\}$ is a Cauchy sequence in X. By completeness of $X,\left\{y_{n}\right\}$, consequently the subsequences $\left\{A x_{2 n}\right\},\left\{S_{2 n}\right\}$, $\left\{B x_{2 n+1}\right\}$ and $\left\{T_{2 n+1}\right\}$ also, converges to some z in X.

Let S be continuous then $S A x_{2 n}, S S x_{2 n} \rightarrow S z$ and the pair (A, S) is weak compatible of type (A), we have
$\lim _{n \rightarrow \infty} p\left(A S x_{2 n}, S S x_{2 n}\right) \leq \lim _{n \rightarrow \infty} p\left(S A x_{2 n}, S S x_{2 n}\right)=0$ yields $A S x_{2 n} \rightarrow S z$.
Using (3.3.4), we have

$$
p\left(A S x_{2 n}, B x_{2 n+1}\right) \leq \phi\left(p\left(S S x_{2 n}, T x_{2 n+1}\right)\right)
$$

letting $n \rightarrow \infty$, we get $p(S z, z) \leq \phi(p(S z, z))<p(S z, z)$ yields $S z=z$.

Further,

$$
\mathrm{p}\left(\mathrm{Az}, \mathrm{Bx} \mathrm{x}_{2 \mathrm{n}+1}\right) \leq \phi\left(\mathrm{p}\left(\mathrm{Sz}, T \mathrm{x}_{2 \mathrm{n}+1}\right)\right)
$$

letting $\mathrm{n} \rightarrow \infty$, we get $\mathrm{p}(\mathrm{Az}, \mathrm{z}) \leq \phi(\mathrm{p}(\mathrm{z}, \mathrm{z}))<\mathrm{p}(\mathrm{z}, \mathrm{z})$ yields $\mathrm{Az}=\mathrm{z}=\mathrm{Sz}$.
Now since $A(X) \subseteq T(X)$, there exists a point u in X such that $z=A z=T u$.
Using (3.3.4), we have
$p(z, B u)=p(A z, B u) \leq \phi(p(S z, T u))=\phi(p(z, z))$ yields $z=B u$.
Therefore $\mathrm{Bu}=\mathrm{Tu}$ and the pair $(\mathrm{B}, \mathrm{T}$) is weak compatible maps of type (A) then from lemma 3.6, $\mathrm{BTu}=\mathrm{BBu}=\mathrm{TTu}=\mathrm{TBu}$, i.e. $\mathrm{Bz}=\mathrm{Tz}$.

Wsing (3.3.4), we have
$p(\mathrm{Z}, \mathrm{Bz})=\mathrm{p}(\mathrm{Az}, \mathrm{Bz}) \leq \phi(\mathrm{p}(\mathrm{Sz}, \mathrm{Tz})=\phi(\mathrm{p}(\mathrm{z}, \mathrm{Bz}))<\mathrm{p}(\mathrm{z}, \mathrm{Bz})$ yields $\mathrm{z}=\mathrm{Bz}$.
Thus $A z=B z=S z=T z=z$ i.e. z is the common fixed point of A, B, S and T.
Now for uniqueness of z, let z_{1} be another common fixed point of A, B, S and T then from (3.3.4), we have
$p\left(z, z_{1}\right)=p\left(A z, B z_{1}\right) \leq \phi\left(p\left(S z, T z_{1}\right)\right)=\phi\left(p\left(z, z_{1}\right)\right)<p\left(z, z_{1}\right)$ yields $z=z_{1}$.
This completes the proof.
Without making use of continuity of maps we prove our next result.
Theorem 3.2 : Let A, B, S and T be self maps of X satisfying (3.3.2), (3.3.3), (3.4.1) (3.5.1) and (3.1.2).

Then A, B, S and T have a unique common fixed point in X.
Proof: Using conditions (3.3.2), (3.3.3), (3.4.1) and (3.5.1), from lemma 3.4-3.6, there exists point z, u, v in X such that
$z=A u=S u, z=B v=T v$ and
$\mathrm{SAu}=\mathrm{SSu}=\mathrm{AAu}=\mathrm{ASu}, \mathrm{BTv}=\mathrm{BBv}=\mathrm{TTv}=\mathrm{TBv}$ or $\mathrm{Sz}=\mathrm{Az}, \mathrm{Bz}=\mathrm{Tz}$.
Using (3.3.4), we have

$$
p\left(A z, B x_{2 n+1}\right) \leq \phi\left(p\left(S z, T x_{2 n+1}\right)\right)
$$

letting $\mathrm{n} \rightarrow \infty$, we get
$p(A z, z) \leq \phi(p(A z, z))<p(A z, z)$ yields $z=A z=S z$.
Similarly, $p\left(A x_{2 n}, B z\right) \leq \phi\left(p\left(S x_{2 n}, T z\right)\right)$,
letting $\mathrm{n} \rightarrow \infty$, we get
$p(z, B z) \leq \phi(p(z, B z)<p(z, B z)$ yields $z=B z=T z$.
Hence as in the proof of the theorem 3.1, z is the unique common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T. This completes the proof.
Remark. If we take $\mathrm{A}=\mathrm{B}, \mathrm{S}=\mathrm{T}=$ identity map and $\phi(\alpha)=\alpha \mathrm{k}, \mathrm{k}=1,0<\alpha$ <1 in our results then we get the result of Acharya [1].

Acknowledgement : The second author thanks UGC and Department of Higher Ed. of M.P. Govt. (India) for giving an opportunity to work as TRF.

REFERENCES

[1] Acharya, S.P. (1974) ; Some results on fixed points in Uniform spaces. Yokohoma Math. J. 22, 105-116.
[2] Browder, E.F. (1968) ; On the convergence of successive approximation for no-linear functional equations. In-dog Math. 30, 27.
[3] Jungck, G. (1976) ; Commuting mappings and fixed points. Amer. Math. Monthly, 83, 261-263.
[4] Jungck, G. (1986) ; Compatible mappings and common fixed points. Inter. J. Math. and Math. Sci 9(4), 771-779.
[5] Jungck, G. Murthy, P.P. and Cho, Y.J. (1993) ; Compatible mappings of type (A) and common fixed points. Math Japonica, 38(2), 381-390.
[6] Kelley, J. L. (1955) ; General topology. D. Van Nostrand Co.
[7] Mishra, S. N. (1979) ; On sequence of maps and fixed points in Uniform spaces - II. Indian J. Pure and Appl. Math. 10, 699-703.
[8] Pathak, H.K. Kang, S.M. and Baek, J.H (1995) ; Weak compatible mappings of type (A) and common fixed points in Menger spaces. Comm. Korean Math. Soc. 10(1), 63-67.
[9] Pathak, H.K. Kang, S.M. and Baek, J.H. (1995) ; Weak compatible mappings of type (A) and common fixed points. Kyungpook Math. J. 35(2), 345-359.
[10] Rhoades, B.E. (1979) ; Fixed point theorems in Uniform spaces. Publ. L' Inst. Math. 25, 153-156.
[11] Sessa, S (1982) ; On weak commutativity conditions in fixed point consideration. Publ. Inst. Math. 32(46), 175-180.
[12] Sharma, B.K. (1990) ; Fixed point theorems in Uniform spaces. Bull. Call. Math. Soc. 82, 533-536.

