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ABSTRACT :

The purpose of this paper is to prove some common fixed point theorems
for weak-compatible maps of type (A) which generalize rhe Banach's fixed point
theorem in Uniform space by taking a control function Q.
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I. Introduction : ln a complete metric space X Banach's classical fixed
point theorem guarantees the existance of a unique fixed point for a self map T
of X if it is satisfies,

d (Tx, Ty) S k d (x, y),S< k < l" x, y € X "'.

Browder [2] generalized the above theorem by taking a controi funcrion Q u,hile
Jungck [3] extended the same theorem for two commuting maps in a complete
metric space.

An equivalent to the concepts of compatible and comparible maps of type
(A), under some conditions Pathak-Kang-Beak [8, 9] inrroduced the concepr of
weali compatible maps of type (A) in Menger and 2-metric spaces. This concept
is more -eeneral than that of weak commutativity studied by Sessa Ill].
Compatibility and Comparibiliry of type {A) of maps was first introduced by
Jungck [4] and Jungck-Murthy-Cho [5] respectively.

In this paper we deduce definition of weak comparible maps of type (A),
which analogous to in [8, 9] and use it to generalize the Banach's fixed point
theorem in uniform space for four maps by taking a control function qb as

under.
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2. Preliminaries .' A uniform space is a generalization of a metric space.

Throughout the discussion (X, U) stands for Hausdorff Uniform space. For the

terminology and basic properties of Uniform spaces the reader is refered to

Acharya Ul, Shanna [ 12], Mishra [7] and Rhoades [10].

Definition 2.1 : Let (X, U) be a Hausdorff Uniform space and P be a

fixed famiiy of pseudometrics p on X which generates the uniformity U.

Foliowing Kelley ( [6] chapter 6), rve define

(a) v(p,r) = { (x, y) : x,y€ X, p (x,y) <r, r>0 }

n
(b) G={V:V= ^ 

U(0,r,;ipi€ P,ti ,0,i= 1,2,...,n }.
i=l

(c) Fora>0,
n

aV = { ^ 
V(p. r.) lPi€ P, r; > 0, i = 1,2,...,n }.

i=i 'I I'

Definition 2.2 : Two self maps S and T of X are said to be weak-

compatible of type (A) il
limn--,* p (STx,, TTx,) S limn-*p(TSxn, TTxn),

ard limr--e* p(TSx", SSx") S liml--e* p(STxn, SSxn),

whenever {xn i is a sequence in X such that limn--;*Sxn - limn-*Txn = y for

some y in X.

3. Common fixed point theorems " Before giving our main

results we mention the following lemmas which are required in the sequal-

Lemma 3.1 [ll : Let p be any pseudometric on X and c, P > 0- if (x, y)
. o V(p,r,) O s V(p,.r) , then p(x'y) < Gr1* ctr2.

I*mma 3.2 t\: Let V be any member of G, then there is a pseudometric

p on X such tht V = V(0,,).

This p is called Minkorvski's pseudometric of V.

Lemmu 3.3 .' Let A, B, S and T be self mappings of X satisfying :

(3.3.1) A (X)c T(X);B(x)q S(x)'

(3.3.2) fo, u,[V e G, o>0;x, ye x, (Sx,Ty) e crV implies

(Ax, By) € O (s) V where 0 : [0, *; + [0, *) is non-decreasing coniinuous on

the right and for k > o, ! qn61 . *.
I

I

I
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(3.3.3) Let x6 e X be arbitrary, then in virtue of (3.3.1) there exists xl, x2 €

X such that Ax6 = Txl, Bxl - Sx2 and so on' Inductively we can define a

sequence {yni in X such that

Y2n = TXzn+t = AXzn and yrn*, = Sx2n*2 = BX2n*l ; n = 0' l'2'3' "''
Then the sequence {y"} it a Cauchy sequence in X.

Proof : Ler v e G be arbitrary p be Minkowski's pseudometric of v. For

x, ye X' setp (Sx,Ty)=..Fore>0, we havep (Sx,Ty) e (r+e)V'

From (3.3.2), (Ax, By) e Q(r+e)V. Using lemma 3.1 and 3-2, we get

p(Ax, By) < Q(r+e).

Since e is arbitrary, we have

(3.3.4) P(Ax, BY) < O(P(Sx' TY)).

Now for sequence {yn} defined in (3.3.3). Using (3.3'4)' we have

P(Y:n, Y:n+l) s O(p(yzn-r, y2n)) and P Ozn+t, !2n+2) s O(p(yzn' Y2n+t))'

In general,

p(yn, Yn+r) s 0(p(vn-t, Yn)) S 02 (p(yn-2, Yn-t)) S "' < Qn (p(yo, yi))'

Now for any two positive integer n, m(>n), we have

p(yn, ym) S p(yn, yn+r) + p(yn+r, yn+2) + ... + P(ym-t, ym),

s (Qn + qn+1 .u ... + 0m-1) p(yo, Yr),
m-i

= I 01 (p(vo, Yr)).

Since for k , 0, ; On(k) < *, we cao find a positive integer ng such that for
I

m>n2n6,
m-l

p,,Oltnivo, yl)) < t. Therefore (yn, ym) e v when m > n 2 ng'

Hence {yn } is a Cauchy sequence in X-

Lemma 3.4 : Let A, B, S and T be self maps of X satisfying (3.3.2)'

(3.3.3) and

(3.4.1) A(X) u B(X) g S(x) 
^ 

T(x)-

Then the conclusion of lemma 3.3 holds.

Proof : Since in vernre of (3.4.1) we can define a sequence {yn} in X as in

(3.3.3) and the proof is same as the proof of lemma 3.3-

I*mma 3.5 .' Let A, B, S and T be self maps of X satisfying (3.3.2),

(3.3.3), (3.4.1) and
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(3.5.1) S(X) n T(X) is sequentially compiete subspace of X.

Then (A, S) and (B, T) have coincidence points in X.

Proof : From lemma 3.4, iyn) is a Cauchy sequence in S(X) n T(X). By
completeness of S(X) n T(X), {yn}, consequently the subsequences {Ax2n},
{Sx2n+2}, iBxzn*r} and i?xrnn1} aiso, conver-ses to some z in S(X) n T(X).

Hence there exists points u, v in X such that Su = z anci Tv = 7.

Using (3.3.4), we have

p(Au, Bxrn*,) S $(p(Su, Tx2n+r)),

letting n -+ @, we get p (Au, z) S Q(p(z,z)). Since for k > 0, q <, !t

follows that 0(k) < k. Therefore p(Au, z) < p{z,z) yields Au = z = Su.

Similarly,

P(Axrn, Bv) S Q(p(Sx:n, Tv)),

letting n --1 e, we get p(2, Bv) S Q(p(z,z) yields Bv = z = Tv.

Lemma 3.6 : Let S and T be self, weak compatibie maps of type (A) of
X. If Su = Tu for some u in X then STu = SSu = TTu = TSu"

Proof: Let {xni be a sequence in X defined by xn = u; n = 1,2,3,....
Then we have limn_e*Sxn - limn-*Txn = Su. By weak compatibility of type
(A), we have p(STu, TSu) = limn- * p(STxn, fixn) S limp--s*p(TSxn.
TTxn) = 0, which implies that STu = TSu. Hence STu = SSu = TTu = TSu.

Theorem 3.1 : Let A, B, S and T be self mappings of sequentially
complete X satisfying (3.3.1), (3.3.2), (3.3.3) and

(3.1.1) One of A, B, S and T is continuous.

(3.1.2) (A, S) and (B,T) are the pairs of weak compatible maps of type (A).

Then A, B, S and T have a unique common fixed point in X.
Proof .'From lemma 3.3, {yn} is a Cauchy sequence in X. By

completeness of X, {yn}, consequently the subsequences {Ax2n}, {SxZn},
{Bx2n+l } and {Tx2r,.1 } also, converges to some z in X.

I-et S be continuous then SAx2n, SSx2n -r Sz and rhe pair (A, S) is weak

compatible of type (A), we have

Iimr-,*p(ASxrn, SSxrr)SIimne*p(SAx2n, SSx2n) = 0 yields ASx2n-+ Sz.

Using (3.3.4), we have

p(ASx2n, BxZn+t) < Q(p(SSx2n, Tx2n+l)),

Ietting n -y e, w€ get p(Sz, z) S Q(p(Sz, z)) < p(Sz, |) lields Sz = z.

i *",0,
I

I
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Further, p(Az, Bx2n..f ) S Q(p(Sz, Txrn*1)),

lening n + <, we get p (Az, z)<Q@Q3)) <p@,2) yields Az =z=Sz.
Now since A(X) gtfi), there exists a point u in X such that z = Az = Tu"

Using (3.3.4), we have

p(2, Bu) - p(Az, Bu) < $(p(Sz, Tu)) - $(p(z,z)) yields z = Bu.

Therefore Bu=Tu and the pair (8, T) is weak compatible maps of type {A)
then from lemma 3.6, BTU = BBU =TTu = TBu, i"e. Bz = Tz.

Wsing (3.3.4), we have

p(2, Bz) = p (Az, Bz) < Q (p(Sz, Tz) = Q(p(z,Bz)) < p(2, Bz) yields z = Bz.

Thus Az = Bz = Sz = Tz =zi.e. z is the common fixed point of A, B, S and T.

Norv for uniqueness of z, let z1 be another common fixed point of A, B, S

and T then from (3.3.4), we have

p(2, z i - p(Az, Bz i ) < $(p(Sz, Tz1)) = Q(p(z,zr)) < p(z,zi yields z = z 1.

This completes the proof.

Without making use of continuity of maps we prove our next result-

Tlteorem 3.2 : Let A, B, S and T be self maps of X satisfying (3.3.2),

(3.3.3), (3.4.1) (3.5.1) and (3.1.2).

Then A, B, S and T have a unique common fixed point in X.

Proof : Using conditions (3.3.2), (3.3.3), (3.4.1) and (3.5.1), from lemma
3.1-3"6, there exists point z, u,v in X such thac

z=Au=Su,z=Bv=Tvand
SAu = SSu = AAu = ASu, BTy = BBv =fiv = TBv or Sz = Az, Bz =Tz.

Using (3.3.4), we have

p(Az, Bx2nar) < Q(p(Sz, TxZn+r)),

letting n -+ €. we get

p(Az, z) S q(p(Az, z)) <p(Az, z) yields z= Az= Sz.

Similarly, p(Axzn, Bz) S Q(p(SxZn,Tz)),

ietting n -+ c, lve get

p(z,Bz) S 0(p(2, Bz) <p(2, Bz) yields z=Bz=Tz.
Hence as in the proof of the theorem 3.1, z is the unique common fixed point of
A, B, S and T. This completes the proof.

Remark. If we take A = B, S = T = identity map and 0(c) = ok, k = 1, 0 < g
< 1 in our results then we get the result of Acharya Ul.
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