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ABSTRACT

Second-order time-dependent nonlinear differential system modeling
damped oscillatory process is considered. The method is an extension of
modified Krylov-Bogoliubov-Mitropolskii [1, 2, 7] method.

1. INTRODUCTION

Perturbation solution of a second-order time-dependent nonlinear system
is found based on the modified Krylov-Bogoliubov-Mitropolskii (KBM)
[1,2,7] method. The method was extended by Popov [3] to a damped
nonlinear system (non-autonomous) and later some authors e.g., Mendelson
[4], Bojadziev [5] and Murty [6] rediscovered the Popov’s resuits. Shamsul
[7] and Shamsul et al [8] further investigated nonlinear systems with strong
damping effect and almost critical damping effect based on a critically
damped solution [9]. In these cases Popov‘s [3] or Mendelson"s [4] solution
was unable to give desired results. Bojadziev [5] actually extended Popov's
[3] solution in some biological and biochemical systems. Bojadziev [10]
studied a damped forced nonlinear system. Arya and Bojadzeiv [11] also
studied some time-dependent nonlinear systems. However, their solution
(obtained in [11] gives desired results only for some significant damping
forces much smaller than the critrical damping force. The aim of this paper
is to find an approximate solution of a time-dependent nonlinear system in
which a strong linear damping force acts.

2. THE METHOD

Consider a weakly nonlinear system governed by thé second-order
differential equation



54 M. SHAMSUL ALAM, M. BELLAL HOSSAIN AND S. S. SHANTA VOL. XIV

%+ 2k % + 02x = —f(x, X) + €Q(1), (1)
where over-dots denote differentiation with respect to ¢, € is a small
parameter, k > 0, ® >0, f is a nonlinear function and Q is an external
forcing term. Usually, Q is periodic ; but Arya and Bojadziev‘s [10]
considered a general case of the forcing term that Q is bounded.
When € = 0, (1) has two eigen-values, namely, -k % iwg,
mg = - - k-. Therefore. the unperturbed solution of (1) is
x(1,0) = age™ cos (Lot + @g), )
where -ag and @g are two arbitrary constants.
We seek a solution of (1) that reduces to (2) as the limit € — 0. We
start with the solution )
x(1,€) = exp (=kt + &) cos(wot + @) + euy () +e2wp() + €3 ..., (3)
where a(t) and @(t), sausfy the first order differential equations
a=€eA1()+ & A + g3 ...,

G=¢€B () +€By () +8€3 ..., @
Confining only to the first few terms, 1, 2, ... m, in the series
expansions of (3) and (4), we evaluate the functions uy, us, ... ; Ay, Az,

... and By, Ba, ... such that a(t) and @(t) appearing in (3) and (4) satisfy the
given differential equation (1) with an accuracy of g™+, Theoretically, the
solution can be obtained up to the accuracy of any order of approximation.
However, owing to the rapidly growing algebraic complexity for the
derivation of the formulae, the solution is in general confined to a low
order, usually the first [6]. In order to determine these functions, it was early
imposed by Krylov, Bogoliubov and Mitropolskii [1,2] that the functions
uj, up, ... do not contain first harmonic terms and later this assumption
was strictly followed by Popov [3], Mendelson [4], Bojadziev [5] and Murty
[6]. Shamsul [7] and Shamsul et al [8] proved that Krylov, Bogoliubov and
Mitropolskii‘s [1,2] assumption is incorrect for the nonlinear system with
large damping effects, especially when the damping force approaches toward
the ciritical damping force.

Now differentiating (3) twice with respect to ¢, substituting for the
derivatives %, £ and x in (2), utilizing relations (4) and comparing the
coefficients of €, we obtain

exp (-kt + @) [(A] — 200B]) cos (@ot + P)~(2wgA1 + B) sin (wot
+ Q)] + iy +2kij + 0y =-fO+Q, ©)
where, fO = f(x,, xp ) and X = exp (-kt + a) cos (wgt + ©).
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In order to solve (5) for Ay, By and uj, we substitute u; = v1(#) + w(t)
into (5) and separate it for Ay, By, vi and w as :

exp (—kt + o) [A] — 200B1) cos (ot + P)~(2woA1 + B1) sin (wof +
)] + V1 + 2kv] + 02V = fO, (©)
and W +2ko + 0w = Q. )

Equation (7) can be easily solved for w when Q is specified. Followed
by Popov’s [3] assumption, Arya and Bojadziev [11] solved (6) under the
restriction that v excludes first harmonic terms. Shamsul [7] carefully
investigated the nonlinear systems for different damping forces and observed
that Krylov, Bogoliubov and Mitropolskii’s [1,2] assumption is correct for
certain damping effect, which is much smaller than the critical damping
force. It is interesting to note that increasing with damping force, the
error(s) of Popov’s [3] or Mendelson’s [4] solution is being increased and
after a certain damping force, the solution gives incorrect results. In
Shamsul’s [7] and Shamsul et al [8] papers, perturbation solutions were
found in which some first harmonic terms are involved in the so-called
correction term, v;. However, Shamsul’s [7] and Shamsul et al’s [8]
previous solutions show good agreement with numerical solutions
respectively for large and near to the critical damping forces. as a limiting
approach, the solution obtained in [8] reduces to an exact critically damped
solution found by Shamsul [9].

In accordance to -Krylov, Bogoliubov and Mxtropolskn s [1,2]
assumption, f be expanded in a Fourier series

f0) = ZO F,, cosn(wo? + 0) +G, sin n(wof + @), ®)

and then substituting the functional values of f© into (6) and comparing
equal harmonic terms from both sides, we obtain

exp (=kt + ) (A] — 200B,) = - Fy, )

exp (—kr + o) 2wpA] + B)) =Gy, (10)
91+ 2kv i+ 02vy = Fo—éan cos I n(wot + @) +G, sin II n(wg? +9).

| (1)

rq‘
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The particular solution of (9)-(11) gives three unknown functions Ay,
Bi, and v; which complete (with w) the first order formal KBM solution of
(1) found by Arya and Bojadziev [11].

On the contrary, in accordance to Shamsul’s [7] assumption the
corresponding equations of (9)-(11) become

exp (—kt + @) (A| - 200B1) = —F| cos?@, (12)
exp (—kt + o) QwoA] + B}) = Gy cos?q, (13)
and
Uy +2kv) + 02v) = - Fg —F| cos (wot + @) sin?¢ — G sin (0o + @)
sin @ ..., (14)

The particular solutions of (12)-(14) again gives three unknown
functions A, By and vy ; but it is difficult to solve (12)-(14). In general,
the right hand sides of (12)-(14) contain amplitudes and phase variables,
which are also functions of 7. However, we shall able to solve the equations
(12)-(14) if the amplitude and phase variables, & and @ are assumed to be
time-independent in the right hand sides of the equations (see {7,8,9,12]).

3. Example
As an example of the above procedure, we consider the Duffing’s
equation with an external forcing term and damping
% + 2kx + w2x = —€x> + eEe~P! cosqgr. (15)
Here, f© =4l exp (=3kt + 3a) [3 cos(wor + @) + cos 3.(Qo? + @)], or

only nonzero coefficients are F| =%exp (-3kt + 3a) and F3 = %i exp

(=3kt + 3a). Now substituting these values of F| and F3 into (12)-(14),
replacing o and @ in the right hand sides by their respective values obtained
in the linear case and then solving them, we obtain
3k exp(=2kt+2010)c0s2@g 3w exp (=2kt+20.9) cosZ@g
A= 3 ,B1 = 3
8w 8w

(16)

and
uyp = -
exp(=3kt + 30p) « (k cos(wqt + @g) — Wq sin (Wqt + (pg))sinz(po
16w?2 k
(k2 - 204) cos 3(@ot + Q) = 3kwg sin 3(wgt + Qo)
* 3 -(17)
k2 + 400
Substituting the values of Aj and B} form (16) into (4) and solving the
equations, we obtain
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3eexp (20g) cos2Qg

= X (1 ~2k i
o =00+ 1602 (14K
2 2
Q=@+ 3E exsé(kzg) cor20 (1-e2k), (18)

For the equation (15), the solution of equation (7) become
. (p? + 2kp + % — g3) cos gt +2q (k+p) sin gt

— o-pt 19
i (p2 + 2kp + 02 — q2)2 + 4q2 (k+p)? a9
Therefore, the first approximate solution of (15) is
x(1,€) = exp (—kt + ) cos(wgt + @) + € (V] + W), (20)

where a and ¢ are given by (18) and u;j is given by (17).
4. Arya and Bojadziev’s Solution

We can at once solve (9)-(11) for Arya and Bojadziev’s [11] solution.
Substituting the values of F and F3 into (9)-(11) and then solving them,
we obtain
_ 3k exp (-2kt + 2a0)

_3wq exp (-2kr +20)
8w? -

8w?2 ’

Ay , By 21

and

__exp (3ki+3a) (K2-200)cos3(wor+@)-3kwpsin3 (wor+@)
- 16w? k2 + 4u)(2)

22)
Substituting the values of A} and By form (21) into (4) and integrating
with respect to ¢, one obtains
04 ’ W,
o= . »(P?(PO—EI?l" (1+

,\/1 , 3e0d (- 1)
8w?

Thus (20) represents also Arya and Bojadziev’s [1] solution of (15),
where o and @ are given by (23) and uj is given by (22). -

3 2 —2k1_1
SR =y ;emz )).(23)

5. Results and discussien

In order to test the accuracy of an approximate solution obtained by a
certain perturbation method, we sometimes compare the approximate
solution to the numerical solution (considered to be exact). With regard to
such a comparison concerning the presented KBM method of this paper, we
refer to a recent work [12]. First, solution (20) in where o, ¢ are computed
by (18) and u; is computed by (17), is compared to the numerical solution

generated by Runge-Kutta fourth-order formula) with initial conditions
Y3 g :

[x(0)=1,x(0)=0] fork=—", 0y = >

5 E=1,p=0¢=V2ande=02in

39
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Fig 1(a). Then Arya and Bojadziev’s [11] solution has been compared to
numerical solution in Fig. 1(b). By comparing the results of the figures, we
can tell that the new solution (concemed of this paper) is better than the
previous solution obtained by Arya and Bojadziev [11].

6. Conclusion

A simple formula is presented for obtaining the approximate solutions
of a nonlinear system governed by a second-order nonlinear non-autonomous
differential equation. The solution shows a good coincidence with numerical
solution for certain damping effect while the formal KBM solution (early
found by Arya and Bojadziev [11]) does not satisfy the numerical solution
nicely. On the contrary, Arya and Bojadziev’s [11] solution is useful for
small damping one. In the case of significant damping force, both solutions
(obtained in [11] and in this paper) give desired results.
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Fig. 1 (a) Perturbation solution (20) of Duffing equation (15) is presented
by solid line in where & and @ are evaluated by (18) for k=50 = ;— E =
I,p=0,g= \E and € = 0.2 with initial conditions [x(0) = 1,x(0)=01].(b)

Arya and Bojadziev’s [11] solution of (15) is presented by also solid line in
where ¢ and @ are evaluated by (23) for same values of k, g, E, p, ¢, €

and with same initial conditions. Corresponding numerical solution is given
by dashed line in both figures.
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