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ABSTRACT
Second-order time-dependent nonlinear differential system modeiing

damped oscillatory process is considered. The method is an extension or
modifi ed Krylov-Bogoliubov-M i tropolskii U, 2, 7) method.

1. INTRODUCTION

Perturbation solution of a second-order time-dependent nonlinear system
is found based on the modified Krviov-Bogoliubov-Mitropoiskii (KBM)
U,2,7) method. The merhod was exrended by popov [3] to a damped
nonlinear system (non-autonomous) and }ater some authors e.g., Mendelson
[4]' Bojadziev [5] and Murty [6] rediscovered the popov's resuirs. shamsul
[7] and Shamsul et al [8] further investigated nonrinear sysrems with strong
damping effect and almost criticat damping effect based on a critically
damped solution [9]. In rhese cases popov's [3] or Mendelson's [4] solution
was unable to give desired results. Bojadziev [5] actually exrended popov,s

[3] solution in some biological and biochemical systems. Bojadziev [10]
studied a damped forced nonlinear sysrem. Arya and Bojadzeiv [il] also
studied some time-depencient nonlinear systems. However, their solution
(obtained in Il] gives desired resuls only for some significant damping
forces much smaller than rhe critricai damping force. The aim of this paper
is to find an approximate solution of a time-dependent nonlinear system in
which a strong linear damping force acts.

2. THE METHOD

consider a weakly nonlinear system governed by the second-order
differential equation
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i + 2t.r + rD2r = -Ef(x,x) + eQ(l), (1)

rvhere over-dots denote dilferentiation with respect to t, e is a small

parameter, k > 0, o >0,,f is a nonlinear function and Q is an external

forcing term. Usually, Q is periodic ; but Arya and Bojadziev's [10]
considered a general case of the forcing term that Q is bounded-

Whe :r t = 0, (1) has two eigen-values, narneiy, -k
2t

er6 = roi - k-. Therefore. thL' unperturbed solution of (1) is

.r1r,0) = a6e+ :.ls rtrrryr + Qg),

where a6 and tpg are tuo itrbrlr:iry constants.

We seek a solution of (I) that reduces to (2) as the limit e + 0. We

start with the solution

x(t,e) = exp (-lcr + c() cos(oo, + 9) + tut (t) + e2u2(t) + e3 ..., (3)

where a(t) and <p(t). i.iu:)iy the firct i-.rder differential equations

d = L{ t(r) + cl .tz(l) + e3 ... ,

Q = eB 1 (t) + e:132 (r) + e3 ...,

Confining only to the t-irst few terms, 1,2, '". m, in the series

expansions of (3) and (-l), we evaiuate the functions ul,Lr7, "..:ArAz,
... anC Bt, Bz,... such rhat a(t) and tP(t) appearing in (3) and (4) satisfy the

given differential equation (1) with an accuracy of tm+1" Theoretically, the

solution can be obtained up to the accuracy of any order of approximation"

However, owing to the rapidly growing algebraic compiexity for the

derivation of the formulae, the soiution is in general confined to a low

order, usually the firsr [61. In order to determine these functions, it was early

imposeti by Krylov. Bogoliubov and Mitropolskii [1,2] that the functions

ul, uz, ... do not conuin first harmcnic terrns and later this assumption

was strictly followed by Popov [3], Mendelson [4], Bojadziev [5] and Murry

[6]. Sharnsui [7] and Shamsul et al [8] proved that Kryiov' Bogoliubov and

Mitropolskii's u,2l assumption is incorrect for the nonlinear system with

large damping effecs, especiaily rvhen the damping force approaches toward

the ciritical damping force"

Now differentiating (3) twice with respect to /, substituting for the

derivatives .r, .f and;r in (2), utiiizing relations (4) and comparing the

coefficients of e, we obain

exp (-,tr+o) [(Ar -2<ogB1) cos (ro6t + <p)-(2rogAi + Br) sin (o:gt

+ g)l + ii1 + 2kui + to2u1 = - f{o) + f2, (,
where" flo) = f(xo, xi ) and xo = exP (-kt + a) cos (togt + 9).

t i<r: g,

(2)

(4)
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In order to solve (5) for Ab Bt and a1, we substitute ut = vt(l) + w(t)
into (5) and separate it for 41, Bl, yl and 1r as :

exp (-kr + o) [A1- 2olgB1) cos (o:gt + g){2togA1 + B1) sin (ogr +
p)l + vr + 2kn1+ co2vl = -lo), (6)

and iy + 2kri: + o2w = (1. (7)

Equation (7) can be easily solved for rv when Q is specified. Followed
by Popov's [3] assumption, Arya and Bojadziev [11] solved (6) under the

restriction that v1 excludes first harmonic terrns. Shamsul [7] carefully

investigated the noniinear systems for different damping forces and observed

that Kryiov, Bogoliubov and Mitropolskii's [.2] assumption is correct for
certain damping effect, which is much smaller than the critical damping
force. It is interesting to note that increasing with damping force, the

error(s) of Popov's [3] or Mendelson's [4] solution is being increased and

after a cenain damping force, the soiution gives incorrect results. in
Shamsul's [7] and Shamsul et al [8] papers, perturbation solutions rvere

found in rvhich some first harmonic terms are involved in the so-called
correction term, l,t. However, Shamsul's [7] and Shamsul et al's [8]
previous solutions show _eood a-creement with numerical solutions
respectively for large and near to the critical damping forces. as a limiring
approach, the solution obtained in [8] reduces to an exact critically damped

solution found by Shamsul [9].

in accordance to Krylov, Bogoliubov and Mitropolskii's [,2]
assumption, flO) be expanded in a Fourier series

f(0) = ,i F, cosn(osr + q) + Gn sin n(ogr + g), G)

and then substituting the functional values of f{0) into (6) and comparing
equal harmonic terms from both sides, we obtain

exp(-,tt+a)(Ar -2asB)--F1, (9)

exp (-l[r + a) (2tr19,41 + 81) = S1, (10)

tr1+ 2kt1+ ot}v1 -fO-Ef, cos II n(ogr + rp) +G, sin II n(rogr +g).

(lt1

:?-
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The particular solution of (9)-(11) gives three unknown functions A1,

Bg, and v1 which complete (rvith rv) the first order formal KBM solution of

{1) found by Arya and Bojadziev Il l].

On the contirary, in accordance tc Shamsul's [7] assumption the

corresponriing equations of (9)-(11) become

exp (-&r + a) (A1 - 2iooBr) = -Ft cos29,

exp (-,tr + a) (2tog,41 + 81) = G1 cos29,

ard

v1 + 2liv1 + co2v1 =- F0 -F1 cos (togt + tp) sin29 -G1 sin (o:gr +9)
(i4)sinl g ... ,

The particular solutions of (12)-(la) again gives three unknorvn

functir:ns At, Bt and v1 : but it is difficuit to soive (12)-(14). In generai,

the right iranci sides of (12)-(14) contain amplitudes and phase variabies,

which are liso functions of L However, rve shall abie to solve the equations

ii2)-tt4) if the amplitudc and phase variables" u and I are assumeci to be

time -inricpendenr in the right hand sides of the equations (see [7'8'9' 12]).

3. Exanrple

As an exampie ol the above procedure, we consider the Duflfing's

equation rvith an e.rlernal lbrcing term and damping

i + 2k,t + 0l2x = -ex3 + eEe-Pt cos4t. (15)

Here. flo) -i 
"^p 

(-3kr + 3G) [3 cos(o6r + q) + cos 3- (qsr + 9)]' or

only nonzero coefficients are F1 =;exp (-3kt + 3u) and f3 = f, "xp
(-3,tr + 3s). Now substituting these values of F1 and F3 into (12)-(14),

replacing a and g in the right hand sides by their respective vaiues obtained

in the linear case and then solving them, we obtain

. 3ke.rp(-2kr+2og)cos2tp6 ^ 3tr:0 exp (-2kr+2s0) cosztpo ,Ar==-.7_-,Br=ffit16)
ard

ul --:
exo(-3kt + 3G,o)
-#x l6a*

1k2 - 2rol) cos 3(toot + tpo) - 3,ttro sin 3(ctot + tpo)\ tt+ 

- 

i<2 + 4roo 

-i' 

.i' t

substituting the values of A1 and B1 forrn (16) into (a) and soiving the

equadons, we obuin

(12)

(i3)

(& cos(toor + go) - coo_rin (coOr + 9O))sin/90

-*
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o = Gc 3eexp (?g,o)cos2rpo 
x (Le-2k1,

I btD"

3Eci^ exo (2o.n) cos2tonQ=Qcnffix(l-s-29.
For the equation (15), the soiution of equation (7) become

51

(18)

-^, .. ,p2 + 2lZ_t_c:_:_q1_9_g_S_SL+ 2rr (k+p) sin qr
,l - c ' A \L)J^ (p2 + Zkp + s2 - 1212 + 4q2 {k+p)a \

Therefore, the first approximate solution of (15) is

x(t,e) = exp (-*r + a) cos(cogt + q) + e (v1 + w), (20)

where o, and g are given by (18) and n1 is given by (17).

4. Arya and Bojadziev's Solution
We can at once solve (9)-(l l) for Arya and Bojadziev's I l] solution.

Substituting the values of Fi andF3 into (9)-(tl) and then solving them,
we obtain

, 3t exp (-2k + 2cr) ^ 3t:O exp (-2H + 2o-)Al=- ,ft=--TrZ , t2ll

ard

exp (-3kr + 3a) - (t2-2o;)cos3(to6r+9)-3tro6sin3 (ogr+rp1

"t = ---16ulr- ^

(22)

Substituting the values of A I and 81 form (2 i ) into (4) and integrating
u'ith respect to I, one obrains

0)61 ,.Q= 9o-7 tn
3r& k-rr, -

8ro2
(23)G=

Thus (20) represents also Arya and Bojadziev's Il] solurion of (15),
u'here s and g are given by (23) and u1 is given by (22).

5. Results and discussioxl

In orcier to test the accuracy of an approximate soiution obtained by a
certain perturbation method. we sometimes comoare th* approximate
solution to the numerical solution (considered to be exact). With regard to
such a comparison concerning the presented KBM method of this paper, we
refer to a recent work [2]. First, so]ution (20) in where u, , g are computed
by (18) and u1 is computed by (17), is compared to rhe numerical solurion
(generated by Runge-Kutta fourth-order formula) with initial conditions

lx(O)= 1, *(0) =01 fork=f, ro =le=l,p=0, s =i;and e =0.2 in
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Fig 1(a). Then Arya and Bojadziev's [11].solution has been compared to

""L.Il"f 
solution in Fig. Itb). By comparing the results of the figures' we

can rell that the n.* soiution (concemed of this paper) is better than the

p.erious solution obtained by Arya and Bojadziev [11]'

6. Conclusion
A simple formula is Presented tbr obtaining the approximate solutions

ofanoniinearSysremgovenredbyasecond-ordernonlinearnon-autonomous
iifi.r"",i"i equadon. ihe solution shows a good coincidence with numericai

solution for cenain Oo*ping etfect while ihe formal KBM solution (early

;;;;; t A.ya and BojadziJr tr rl ) does not satisfy the numerical so-ludon

nicely. On the .on,."ry erya'and'Bojadziev's [11] solution is.useful for

r*-ii ,irrpl"g on.. in ihe case oi signifrcant damping force' both solutions

ioUi"in.a in tiil ana in this paper) give desired results'

(r)

I

o3

aa

o-t

ql

{.1

(b)

Fig. 1 (a) Pem-ubation solution (20) of Duffing equation (15) is presented

by soiid line in rvhere a and tp are evaluated by (18) for k = i'' = 7'E =

1,p=0, s=fiand t =0'2with initiaiconditions [x(0) = 1' *(0)=0]' O)

Arya and Bojadziev's [11] solution of il5) is presented by also solid line in

where Ct and I are evaluated by (23) for same values of k' o0' E' p' q' E

andwithsameinitialconditions.Correspondingnumericalsolutionisgiven
by dashed line in both figures'

oa
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