Mathematical Forum Vol.XV. 2002-2003

SOME STRONGER FORMS OF ψ -CLOSED SETS IN TOPOLOGICAL SPACES

R. Devi and K. Muthukumaraswamy And Department of Mathematics Kongu Nadu Arts and Science College Coimbatore - 641029 K. Balachandran Department of Mathematics Bharathiar University Coimbatore - 641 046

ABSTRACT :

In this paper we introduce a new class of sets namely ψ^* -closed sets which is the stronger form of ψ -closed sets. We study some relation between ψ^* -closed sets and g-closed set, g*-closed set, ψ -closed set, sg-closed set, ga-closed set, α -closed set, α -closed set, α -closed set, α -closed set, and preclosed set.

1. Introduction

N Levine introduced semi open sets [5] and generalized closed (briefly g-closed) sets [6] in topological spaces. S.P. Arya and T. Nour [1] defined the notion of generalized semi closed sets. Bhattacharya and Lahiri [2] introduced and studied semi generalized closed sets. Veerakumar [12] introduced a new class of sets namely ψ -closed sets. In this paper we introduce a new class of sets called ψ^* -closed sets and study some of their properties.

As an application of ψ^* -closed sets we have introduced three new spaces namely T ψ -space, T ψ^* -space and T ψ^{**} -space. Devi etal [4] and Levine[6] introduced T_b, T_d-spaces and T_{1/2}, semi T_{1/2}-spaces respectively. Some relations between newly introduced spaces and the existing spaces like T_b, semi T_{1/2}, T_{as} and T_{sa}-spaces are investigated.

Throughout this paper X, Y and Z denote topological spaces on which no separation axioms are assumed unless otherwise explicitly stated.

2. Preliminaries

Here we recall the following known definitons.

Definition 2.1

A subset A of a topological space (X, τ) is called :

- a) Semi open [5] if $A \subseteq CI$ (int(A)) and semi closed if int (CI(A)) $\subseteq A$.
- b) Generalized closed (briefly g-closed) [6] if CI (A) \subseteq U whenever A \subseteq U and U is open in X.
- C) Semi generalised closed (briefly sg-closed) [2] if $scl (A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
- d) Generalized semi closed (briefly gs-closed) [1] if scl (A)⊆U whenever A⊆U and U is open in X.
- e) α -Open [9] if A \subseteq int (cl (int (A))) and α -closed
 - if cl (int (cl (A)))⊆ A.
- f) ψ Closed [11] if scl (A) \subseteq U whenver A \subseteq U and U is sg-open in X.

Definition 2.2 :

A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be

- Semi continuous [5] if f⁻¹ (V) is semi-open in (X,τ) for every open set V of (Y,σ).
- (2) Sg-continuous [10] if $f^{-1}(V)$ is sg-closed in (X,τ) for every closed set V of (Y,σ) .
- (3) Irresolute [3] if f⁻¹ (V) is semi-open in (X,τ) for every semi-open set V of (Y,σ) .
- (4) Sg-irresolute [10] if f⁻¹ (V) is sg-closed in (X,τ) for every sg-closed set V of (Y,σ).

Defination 2.3:

A Topological space (X,τ) is said to be

- (a) a T_{1/2} space [6] if every g closed set in it is closed.
- (b) a semi $T_{1/2}$ space [2] if every sg-closed set in it is semi closed.
- (c) a T, space [4] if every gs-closed set in it is closed.

SOME STRONGER FORMS ... IN TOPOLOGICAL SPACES

(d) a T_{d} space [4] if every gs-closed set in it is g-closed.

(e) a T_{qe^*} -space [10] if every gs-closed set of (X, τ) is - ψ closed.

(f) a $T_{s\sigma^*}$ - space [10] of every sg-closed set of (X, τ) is - ψ closed.

3.Basic properties of - ψ^* closed sets

We intrroduce the following definitions.

Definition 3.01:

A subset A of (X,τ) is called a ψ^* - closed set if scl (A) \subseteq Int (U) whenever A \subseteq U and U is sg-open.

Definition 3.02:

A subset A of (X,τ) is called a ψ^* - closed set if scl (A) \subseteq Int (cl (U)), whenever A \subseteq U, U is sg-open.

Theroem 3.03

Every ψ^* - closed set is ψ - closed.

Proof:

Let $A \subset U$ and U is sg-open. Since A is ψ^* - closed, Scl (A) \subseteq Int (U). This implies Scl (A) \subseteq U. Therefore, A is ψ - closed.

Remarks : 3.04

The converse of the above theorem need not be true by the following example.

Example : 3.05

Let X = {a,b,c,} and τ = {X, ϕ ,{a}, {c}, {a,c}}. In this topological space the set {b} is ψ - closed but not ψ *- closed.

Theorem: 3.06

Every ψ^* - closed set is ψ^{**} - closed.

Proof:

Let $A \subset U$ and U is sg open. Since A is ψ^* -closed, Scl (A) \subseteq Int (U). This implies Scl (A) \subseteq Int (Cl (U)). Therefore A is $\overline{\psi^*}^*$ -closed.

Remark : 3.07

The converse of the above theorem need not be true. It is seen by the following example.

Example : 3.08

Let X={a,b,c,} and $\tau =$ {X, ϕ ,{b},{a,c,}}. Let A = {a}. Then A is ψ^{**} - closed but it is not ψ^{*} - closed.

Theorem 3.09

Every ψ^* - closed set is sg-closed and also gs-closed.

Proof:

Let A be any ψ^* - closed set in (X, τ). By theorem 3.03, A is ψ - closed. By theorem 3.03 (ii) [12] A is sg-closed, and thus semi-preclosed and also gs-closed. Therefore, every ψ^* - closed set is sg-closed, semi-preclosed and gs-closed.

Remarks : 3.10

The converse of the above theorem need not be true. It is seen by the following example.

Example : 3.11

Let X = {a,b,c,} and τ = {X, ϕ ,{b} {b,c}}. In this topological space the set {a} is sg-closed but not ψ^* - closed.

Result : 3.12

 $\psi^*\mbox{-}$ closedness and g-closedness are independent notions. It can be seen by the following example.

Example : 3.13.

In example 3.11 let A = {a} and B = {c}. Then A is g-closed however A is not ψ^* - closed and B is ψ^* - closed however B is not g-closed. Hence ψ^* - closedness and g-closedness are independent.

Remark : 3.14

The union of two ψ^* - closed sets need not be ψ^* - closed. It is seen by the following example.

Example : 3. 15

Let X={a,b,c,} and τ ={X, ϕ ,{a},{b}, {a,b}}. Let A={a} and B={b}. Then A and B are ψ^* - closed sets but their union A U B = {a,b} is not ψ^* - closed.

Theorem: 3:16

If a subset A is ψ^* - closed in (X, τ) then scl(A)/A does not contain a nonempty sg-clsoed set.

Proof:

Suppose that A is ψ^* - closed and let F be a non-empty sg-closed set such that $F \subseteq Scl (A)/A$. Then $F \subseteq scl (A)$ and $A \subseteq X/F$. Since X/F is sg-open and A is ψ^* - closed, Scl (A) \subset Int (X/F) \subset X/F. Thus we have $F \subseteq X/scl (A)$. This is a contradiction. Hence $F = \phi$.

Remark : 3.17

The converse of the above theorem need not be true. It is seen by the following example.

Example : 3.18

Let X = {a,b,c,d} and τ = {X, ϕ ,{a,b}, {a,b,d,}}. For a subset {c}, scl ({c})/{c} does not contain non-empty sg-closed set. However {c} is not ψ^* - closed in (x, τ). **Definition : 3.19 [11]**

A subsets A of (X,τ) is called g^{*}- closed if cl(A) \subseteq U, whenever A \subseteq U and U is g-open in (x,τ) .

Remark : 3.20

g*- closedness and ψ^* - closedness are independent notions. It can be seen by the following example.

Example: 3.21

Let X = {a,b,c} and τ = {X, ϕ ,{c},{b,c}}. Let A = {a} and B ={b}. Then A is g⁻closed however A is not ψ ^{*} - closed and B is ψ ^{*} - closed however B is not g^{*}closed.

Remark : 3.22

Every gs-closed set need not be ψ^* - closed. It is seen by the following example.

Example : 3:23

Let X = {a,b,c,} and τ = {X, ϕ ,{a}, {a,b}}. In this topolgoical space the set {a,c} is gs-closed but not ψ^* - closed.

Remark : 3.24

 $\psi^*\mbox{-}$ closedness and $\alpha\mbox{-}$ closedness are independent notions. It can be seen by the following example.

Example : 3.25

Let X = {a,b,c,} and τ = {X, ϕ ,{b},{c}}. Let A = {b} and B = {a,c}. Then A is ψ^* - closed but not α - closed and B is α - closed but not ψ^* - closed.

Remark : 3.26

The following two examples show that ψ^* closedness is independent from ga-closedness, ag-closedness and pre closedness.

Example: 3.27

In example 3.15 the set {a} is ψ^* - closed but it is neither a g α -closed set nor an α g-closed set. Also {a} is not a pre closed set.

Example: 3.28

Let X = {a,b,c} and τ = {X, ϕ ,{a},{b,c}}. Let B = {b}. Then B is a g α -closed set and hence it is an α g-closed set. Moreover B is also a pre closed set of (x, τ). But B is not a ψ^* - closed set.

Remarks : 3.29

 $\psi^*\mbox{-}$ closedness and semi-closedness are indepenent notions. It can be seen by the following two examples.

Example : 3.30

Let X = {a,b,c,} and τ = (X, ϕ , {a}, {a,c}}. In this topological space the set {b} is semi-closed but not ψ^* - closed.

Example : 3:31

Let X = {a,b,c} and τ = {X, ϕ ,{a,b}}. In this topological space the set {a,c} is ψ^* - closed but not semi-closed.

Remark 3:32

Closedness and $\psi^*\mathchar`$ - closedness are independent notions. It can be seen by the following example.

Example : 3.33

In example 3.30 let A = {b} and B = {c}. Then A is closed but not ψ^* -closed and B is ψ^* - closed but not closed.

Remark : 3.34

 ψ - Closedness and ψ^{**} - closedness are independent notions. It can be seen by the following example.

Example 3.35

In example 3.15 let A = {c} and B = {a,b}. Then A is ψ - closed but not ψ^{**} - closed and B is ψ^{**} - closed but not ψ - closed.

Proposition : 3.36

Let (X, τ) be an extremely disconnected topological space. Then the union of two ψ^* - Closed sets is ψ^* - closed.

Proof:

Let $A \cup B \subseteq U$, where U is sg-open. Then $A \subseteq U$ and $B \subseteq U$. Then scl (A) \subseteq Int (U), scl (B) \subseteq Int (U). Therefore, scl (A \cup B)=scl (A) \cup scl(B) \subseteq Int (U) \cup Int (U) \subseteq Int(U). This implies scl(A \cup B) \subseteq Int (U). Hence the union of two ψ^* - closed sets is ψ^* - closed.

Proposition: 3.37

If A is ψ^* - closed in (X, τ) and A \subset B \subset scl (A), then B is ψ^* - closed in (X, τ). **Proof :**

Let $B \subset U$ and suppose that U is sg-open. Then scl (A) \subset Int (U) and Scl (B) \subset scl (A). Therefore, we have scl (B) \subset Int (U). Hence B is a ψ^* - closed set. Definition 3.38

Let $B \subset Y \subset X$. A subset B of Y said to be ψ^* - closed relative to Y if B is ψ^* -Closed in the subspace $(Y, \tau/Y)$.

Theorem 3.39

Let $B \subset Y \subset X$.(i) If B is ψ^* - closed relative to Y and Y is open and ψ^* closed in (X,τ) then B is ψ^* - closed in (X,τ) .

(ii) If B is ψ^* - closed in (X, τ) and Y is open in (X, τ) then B is ψ^* - closed relative to Y. **Proof**:

(i) Let U be an sg-open set of (X,τ) such that $B \subset U$. Since B is ψ^* -closed relative to Y, $(\tau/Y)^s$ cl (B) $\subseteq (\tau/Y)$ Int (U $\cap Y$). We know if Y is open in (X, τ) then $(\tau/Y)^s = \tau^s Y$. Therefore we have τ^s -cl (B) $\cap Y = (\tau^s/Y)$ cl (B) = $(\tau/Y)^s$ cl (B) \subset Int (U $\cap Y$) $\cup \{X-(\tau^s-cl(B))\}$ is sg-open in (X, τ) and it contains Y. Since Y is ψ^* -closed in (X, τ), τ^s - cl (B) $\subset \tau^s$ - cl (Y) \subset Int[Int(U $\cap Y$) $\cup \{X-(\tau^s-cl(B))\}]$ \subset Int(U) $\cup \{X-(\tau^s-cl(B))\}$. Therefore, scl (B) \subset Int (U). Hence B is ψ^* - closed in (X, τ).

(ii) Let $B \subset U$ and suppose that $U \in (\tau/Y)^s$. We know if Y is open in (X,τ) then $(\tau/Y)^s = (\tau^s/Y)$. Therefore, $U \in \tau^s/Y$. Hence there exist a sg-open set V of (X,τ) such that $U=V \cap Y$. Then τ^s - cl (B) $\subset Y$, B \subset V and τ^s - cl (B) \subset int (V). Therefore, we have $(\tau/Y)^s$ - cl(B) = τ^s - cl (B) $\cap Y \subset$ Int (V) $\cap Y = (\tau/Y)$ Int (U). Hence B is ψ^* - closed relative to Y.

Remark : 3.40

From the above theorems and results we have the following diagram.

4. Ψ - CONTINUOUS, Ψ - IRRESOLUTE FUNCTIONS AND GROUPS We introduce the following definitions.

Definition 4.01 :

- (i) A map f: (X,τ) → (Y,σ) is said to be Ψ* continuous if for every closed set B of (Y,σ), f¹(B) is Ψ* closed in (X,τ).
- (ii) Ψ* Open if the image f(U) is Ψ* open in (Y,σ) for every open set U of (X,τ).
- (iii) Ψ^* Closed if the image f(F) is Ψ^* closed in (Y, σ) for every closed set F of (X, τ).
- (iv) $\Psi^{\text{-}}$ Irresolute if the inverse image f-1 (B) is $\Psi^{\text{-}}\text{-closed}$ in (X, τ) for every

 Ψ^* -closed set B of Y.

- (v) Ψ^* -Homeomorphism if f is a bijective, Ψ^* -continuous function and f $^{-1}$ is Ψ^* -continuous.
- (vi) $\Psi^{*}\text{C-homeomorphism if } f$ is a bijective $\Psi^{*}\text{-irresolute function and } f^{-1}$ is $\Psi^{*}\text{-irresolute.}$

Theorem 4.02:

If f is Ψ^* -continuous, then f is Ψ -continuous

Proof :

Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a Ψ^* -continuous map. Let V be a closed set of (Y,σ) . Since f is Ψ^* -continuous, f⁻¹ (V) is a Ψ^* -closed set in (X,τ) . But every Ψ^* -closed set is Ψ -closed (by theorem 3.03). So f⁻¹ (V) is a Ψ -closed set of (X,τ) . Hence f is a Ψ -continuous map.

Remark 4.03 :

The converse of the above theorem need not be true as can be seen from the following example.

Example 4.04:

Let X ={a,b,c}, τ = {X, φ , {b}, {b,c}}, Y = {p,q,r} σ ={Y, φ , {q,r}. Let f:(X, τ) \rightarrow (Y, σ) be a map defiend by f(a) = p,f(b) = q,f(c) = r, Then f is Ψ -continuous but not Ψ * continuous.

Remark 4.05 :

Pasting Lemmas for some "generalized maps" were investigated in [7], [8]. Here we prove an analogous result in the case of Ψ^* -closed sets in exteremely disconnected space (X, τ).

Lemma 4.06 :

Suppose that subsets A and B of (X,τ) are both open and Ψ^* -closed in extremely disconnected space (X,τ) . Let f: $(A,\tau/A)$ (Y,σ) and h: $(B,\tau/B) \rightarrow (Y,\sigma)$ be compatible mappings. If f and g are Ψ^* -continuous then its combination $f \bigtriangledown h$: $(X,\tau) \rightarrow (Y,\sigma)$ is also Ψ^* -continuous.

Proof :

Let F be a closed subset of (Y,σ) . By definition $(f \bigtriangledown h)^{-1}$ (F) = f⁻¹ (F) \cup h⁻¹ (F). By assumptions f⁻¹ (F) is Ψ^* -closed in $(A,\tau/A)$ and h⁻¹ (F) is Ψ^* -closed in $(B,\tau/B)$. By theorem 3.39 (i) and by assumption that f⁻¹ (F) and h⁻¹ (F) are Ψ^* -closed

in (X,τ) and using proposition 3.36, we have that its union f⁻¹ (F) \cup h⁻¹ (F) is Ψ^* -closed in (X,τ) for extremely disconnected spaces. Hence f ∇ h is Ψ^* -continuous. **Theorem 4.07 :**

Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a bijection. Then the following conditions are equivalent.

(a) f is Ψ -open and Ψ -continuous.

(b) f is Ψ^* -homeomorphism.

(c) f is Ψ^* -closed and Ψ^* -continuous.

Proof: (a) \Rightarrow (b)

Given that f is a bijection. Let f be a Ψ^* -open and Ψ^* -continuous map and G an open set in (X, τ). Since f is Ψ^* -open f (G) is Ψ^* -open in (Y, σ). That is (f⁻¹)⁻¹ (G) = f(G) is Ψ^* -open in (Y, σ). Thus f⁻¹ is Ψ^* -continuous. Then by definition

f is Ψ -homeomorphism.

(b)⇒(a)

Let f be a Ψ^* -homeomorphism and f⁻¹ = g then g⁻¹ f. Since f is bijective, g is also objective. If G is an open set in (X, τ), then g⁻¹ (G) is Ψ^* -open in (Y, σ). (Since g is Ψ^* -continuous). That is f (G) is Ψ^* -open in (Y, σ). Therefore f is Ψ^* -open and Ψ^* -continuous.

Therefore (b) \Rightarrow (a)

Hence (a)⇔(b).

(b)⇒(c)

Assume that f is a Ψ^* -homeomorphism. Let B be a closed set in (X,τ) . Then X-B is open. Since f ⁻¹ = g is Ψ^* -continuous, g ⁻¹ (X-B) is Ψ^* -open. That is g⁻¹ (X-B)=Y- \tilde{g}^1 (B) is Ψ^* -open. Thus g⁻¹ (B) is Ψ^* -closed. That is f (B) is Ψ^* -closed Hence f is a Ψ^* -closed map.

(c)⇒(b)

If f is Ψ^* -closed and Ψ^* -continuous then we have to prove f⁻¹ is also Ψ^* -continuous. Let G be an open set in (X, τ), then X-G is closed. Since f is Ψ^* -closed, f (X-G) is Ψ^* -closed in (Y, σ). That is g⁻¹ (X-G) = Y-g⁻¹(G) is Ψ^* -closed. This implies that \tilde{g}^1 (G) is Ψ^* -open. Thus the inverse image under g of every open set is Ψ^* -open. That is g = f⁻¹ is Ψ^* - continuous. Thus f is Ψ^* -homeomorphism. Thus (c) \Rightarrow (b). Hence (b) \Leftrightarrow (c).

Lemma 4.08 :

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a function.

- (i) If $f: X \rightarrow Y$ is bijection, pre-semi-open and sg-continuous then f is sq-irresolute.
- (ii) If $f: X \to Y$ is bijection and f is a homeomorphism then f⁻¹ and f are Ψ^* irresolute.

Proof :

(i) Let A be sg-closed set in (Y,σ) . To prove $f^{-1}(A)$ is sg-closed in (X,τ) . Let $f^{1}(A) \subset O,O$ is semi-open in X. This implies $A \subset f(O)$ (1). But f (O) is semi - open in Y. Therefore f (O) is semi - open and A is sgclosed.

(1) Implied by definition of sg-closed sets, scl (A) \subset f (O).

This implies f⁻¹ (scl (A)) $\subset O$

Since F is sg-continuous, f⁻¹ (scl (A)) is sg-closed in X.

But scl (f⁻¹ (A))⊂ scl f⁻¹(scl(A)) (3)

(2) & (3) \Rightarrow scl (f⁻¹ (A)) \subset O.

Therefore $f^{-1}(A)$ is sg-closed in (X, τ). Therefore f is sg-irresolute.

(ii) To prove f⁻¹ is Ψ^* irresolute. Let A be a Ψ^* closed set of (X,τ) . To show $(f^{-1})^{-1}(A) = f(A)$ is Ψ^* closed in (y,σ) . Let U be a sg-open set such that $f(A) \subset U$. Then A = f⁻¹ (f(A)) \subset f⁻¹ (U) and by (i) f⁻¹ (U) is sg-open. Since A is Ψ^* Closed, scl (A) \subset Int (f⁻¹(U)). Since f is homeomorphism and bijection, f (scl (A)) = scl (f(A)) we have f (scl (A)) \subseteq f (Int(f⁻¹(U)). Therefore Scl (f(A) \subseteq Int (U). Therefore f(A) is Ψ^* closed. Thus we have showed that f⁻¹ is Ψ^* irresolute. Since f⁻¹ is also homemorphism, by the above proof (f⁻¹)⁻¹ = f is Ψ^* irresolute.

Theorem 4.09 :

(i) Let $f : (X,\tau) \to (Y,\sigma)$ and $g : (Y,\sigma) \to (z,\eta)$ be two functions between topological spaces. If f and g are Ψ^* C-homeomorphism, then their

composition $g \circ f : (X, \tau) \rightarrow (z, \eta)$ is a Ψ^* C-homeomorphism.

(ii) If $f: (X,\tau) \to (Y,\sigma)$ is a homeomorphism then f is a Ψ^* C-homeomorphism. **Proof :**

(i) let V be a open set in (Z,η) . Then it is Ψ^* -open in (Z,η) .

Consider (g $_{0}$ f)⁻¹ (V) = f¹ (g⁻¹ (V)) = f¹ (U), where U = g⁻¹ (V). As g is Ψ^{*}

C-homeomorphism, g is Ψ^* -irresolute. Therefore $g^{-1}(V)$ is Ψ^* -open in (Y,σ) . Now f is Ψ^* C-homeomorphism, f is Ψ^* - irresolute, then f⁻¹(U) is Ψ^* -open in (X,τ) . That is $(g \circ f)^{-1}(V)$ is Ψ^* -open in (X,τ) . Hence $g \circ f$ is Ψ^* irresolute. Let A be an open set in (X,τ) then it is also Ψ^* open in (X,τ) . Consider $(g \circ f)(A) = g$ (B) where B = f (A). As f is Ψ^* C-homeomorphism, f⁻¹ is Ψ^* irresolute. Therefore f(A) is Ψ^* open in (Y,σ) . Now g is Ψ^* C-homeomorphism, g⁻¹ is Ψ^* -irresolute, then we have g (B) is Ψ^* open. That is $(g \circ f)(A)$ is Ψ^* open. Thus $(g \circ f)^{-1}$ is Ψ^* irresolute. Hence gof is Ψ^* C-homeomorphism.

(ii) By lemma 4.08 (ii), (ii) obtained.

Definition 4.10 :

For a topological space (X,τ) , we define the following functions.

(i) Ψ^* Ch $(X,\tau) = \{f/f : (X,\tau) \to (X,\tau) \text{ is a } \Psi^*$ C-homeomorphism.

(ii) $\Psi^* h(X,\tau) = \{f/f : (X,\tau) \to (X,\tau) \text{ is a } \Psi^* \text{ C-homeomorphism.}$

We recall h $(X,\tau) = {f/f : (X,\tau) \rightarrow (X,\tau) \text{ is a homeomorphism}}.$

Theorem 4.11 :

(a) The set Ψ^* Ch (X, τ) forms the group under composition of maps.

(b) The set h (X, τ) is a subgroup of Ψ^* Ch (X, τ).

Proof:

(a) (i) Operation is closed by the theorem 4.09 (i)

- (ii) Since composition of mapping satisfies the associativity, associativity holds.
- (iii) Since the identity is Ψ^* C-homeomorphism, it is an identity element of Ψ^* Ch (X, τ).
- (iv) As the element in Ψ^* Ch (X, τ) are bijection f⁻¹ exists in Ψ^* Ch (X, τ). Hence Ψ^* Ch (X, τ) forms the group under the composition of mappings.

(b) It is obtained by using theorem 4.09 (ii).

Theorem 4.12 : If there exists a Ψ^* C-homeomorphism between (X,τ) and (Y,σ) then there exists a group isomorphism : Ψ^* Ch $(X,\tau) \cong \Psi^*$ Ch (Y,σ) .

Proof :

Let $f: (X,\tau) \to (Y,\sigma)$ be a Ψ^* C-homeomorphism. For an element $a \in \Psi^*$ Ch (X,τ) . Let $f*(A) = f \circ a \circ f^{-1}$. Then by theorem 4.09 (i), $f*(a) \in \Psi^*$ Ch (Y,σ) . Thus f* is a requried group isomorphism.

Remarks 4.13 :

The converse of the above theorem need not be true as can be seen from the following example.

Example 4.14 :

Let (X, τ) be a topological space where $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Ψ^* closed set of $(X, \tau) = \{X, \phi, \{b\}, \{b, c\}\}$. Let $h_a : (X, \tau) \to (X, \tau)$ be a function such that $h_a(a)=a, h_a(b)=c$ and $h_a(c)=b$. Let (Y, σ) be a topological space where $Y=\{a, b, c\}$ and $\sigma = \{Y, \phi, \{a, b\}\} \Psi^*$ closed set of $(Y, \sigma) = \{Y, \phi, \{c\}, \{a, c\}, \{b, c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijection defined by f(a) = c, f(b)=a and f(c) = b. Then f is not a Ψ^* C-homeomorphism. Indeed, for a Ψ^* closed set $\{c\}, f^{-1}(\{c\}) = \{a\}$ is not Ψ^* -closed. It is proved that Ψ^* Ch $(X, \tau) = \{1, h_a\}$ and Ψ^* Ch $(Y, \sigma) = \{1, h_c\}$ where $h_c : (Y, \sigma) \to (Y, \sigma)$ is bijection defined by $h_c(a) = b$, $h_c(b) = a$, $h_c(c) = c$. Since f*(1) = 1 and $f*(h_a) = f_0$ $h_a \circ f^{-1} = h_c$. Therefore f* is an isomorphism.

5. Applications of Ψ^* closed sets

As applications of Ψ^* closed sets three new spaces namely T_{ψ} space T_{ψ}^* space and T_{ψ}^{**} space are introduced.

Definition: 5.01

A subset A of (X,τ) is called a Ψ^* closed set if scl (A) \subseteq Int (U) whenever A \subseteq U and U is sg-open.

Definition: 5.02

A space (X, \tau) is called a T_{Ψ} space if every Ψ closed set is Ψ^* closed. Definition : 5.03

A space (X,τ) is called $T_{\psi}{}^*$ space if every sg-closed set is Ψ^* closed. Definition : 5.04

A space (X,τ) is called a $T_{\Psi}"$ space every gs-closed set is Ψ^* closed. Definition : 5.05

Every T_{ψ} space is a T_{sq} space.

Proof:

Let (X,τ) be a T_{Ψ}^* space and A be a sg-closed set of (X,τ) . Since (X,τ) is a T_{Ψ}^* space, A is Ψ^* closed. But every Ψ^* closed set is Ψ closed.[By theorem 3.02] Therefore A is Ψ closed. Thus (X,τ) is a T_{sn}^* space.

- [8] MAKI, H., SUNDARAM, P. and BALACHANDRAN, K., On generalized continuous maps and pasting lemma in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 40 (1991), 23-31.
- [9] NJASTAD, O., On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [10] SUNDARAM, P., MAKI, H. and BALACHANDRAN, K., Semi generalized continuous maps and semi-T_{1/2} spaces. Bull. Fukuoka Univ. Ed. 40 (1991), 33-40.
- [11] VEERAKUMAR, M.K.R.S., Between closec sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. (Math) 21 (2000), 1-19.
- [12] VEERKUMAR, M.K.R.S. Between semi-closed sets and semi-pre-closed sets, Rend. Inst. Mat. Univ. Trieste, (Italy) XXXII, (2000) 25-41.

R. Devi, K. Muthukumaraswamy and K. Balachandran