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ABSTRACT

Tlie heat transfer due to flow of a viscous Newtonian fluid
between trvo parallel circular disks of infinite extent is investigated. Two
cases viz. squeeze- film flow and coaxial disk flow are considered. For
both the cases, the temperature function is assumed to consist of two
functions with prescribed temperature at the plates. The problem is studied
numerically for various values of the parameters pr, the prandtl number
and E, the Eckert number. The results are presented graphically. it is
observed that the temperature function increases for increase of the
parameter il in both the cases. Again as Pr increases, the temperature
functions in case ofcoaxial disk florry increase. In the case ofsqueeze-
film flow the first temperature function decreases for increase of pr but
the second function increases at first to a certain point and then decreases
from that point onwards. This point is at about one-fifth of the total
distance betr,veen the plates from the lower one.

l.INTRODUCTION

The flow of a Newtonian fluid between two parallel plates has been of
interest to scientists for its application to lubrication. Two cases of flow
configurations viz. Squeeze-film flow and coaxial disk flow are
considered here. There have already been investigations on these flows.
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Asymptotic solutions fortlte porous squeeze-film florvhave been provided

by Tenill and Cornish [1], Rasmussen [2] and Wang [3,4]. Rasmussen

12) and Wang [3,4] aiso provided a nurnerical solution to this two-point

boundary value problem (BVP). The disk g6q, problem has been well

studied long back by Von Karman [5] and later by Batchelor [6] and

Stervartson [7] for flow between two coaxical disks.

Phan-'fhien and Bush [8] have studied the problem for small and

moderate Reynolds number rvhere Von Katman's solution was taken for
granted. They assumed power series for the lelocity function and solved

the non-linear algebraic syster.r by optiniisation method.

In this paper, an attempt has been made to study the heat transfer

(Eckert and Drake [9]) to (i) the steady continuous squeeze-film flow
between two parallel circular disks where the upper disk is porous and

the lorver one is rigid and stationary and (ii) the fluid flow betu,een two

rigid coaxial circular disks where the upper disk is rotating with an angular

velocity and the lower disk is stationary. In both the configurations the

disks are assumed to be of infinite extent. The exact similarity solutions

for the energy equations are presented. In case (ii) solution for velocity

function obtained by Phan-Thien and Bush is used to solve the energy

equation. In case (i) velocity as rvell as temperature functions are obtained

by using shooting methods [10,11,12].

2. FORMULATION

Case 1: Continuous squeeze-film flow

2.1.A. Velocity function: In this configuration the fluid flow is considered

between two parallel circular disks of infinite extent. The bottom plate is

rigid and stationary and the upper one is porous. The flow is generated

by the injection of fluid through the upper plate. Considering (u, v, w) as

the velocity components in cylindrical polar co-ordinates (r, e, z), the

Navier-Stokes equations after simplifi cation become

f iv 1ftgffr'r: Q (1)
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1(r)
rvitlr ,=:l;l,Yf'(ri, v=0, *=-VfQt) trlt\d.)

rvhere Re : pVd/m, p, V, V d, I : zld are the Reynolds number,
density, coefficient of viscosity, r,ertical velocity of fluid at the upper
plate, distance between the plates and dimensionless vertical co-ordinate
respectively. The function f is to be determined. The boundary conditions
on f are

f(0):0, f '10;: g

f(1):1, f '11;:6

2.1.8 Heat transfer: Let To and To be the temperatures of the upper
plate and lower plate respectively. Thermal boundary layer developed
between the plates. The energy equation with the viscous dissipation in
cylindrical polar co-ordinate is

( ar ar) .( a'r t ar a'r\
'ol' * +1t'- 

)= 
o[r., *; 

a, 
* 

u; 1* 
uo $)

(s)

(3)

wh e re, =,{(#)' . ff)' . ( # )' } 
. ( *r)'

is the dissipation function, q, cr, k and p are density, specific heat at
constant pressure, thermal conductivity and coefficient of viscositr-
respectively. The boundary conditions on T are

T:T, atz:O: T:T alz:dO'a- (6)

To solve equation (4), consider the substitution

T_T / \ (,\,

==o,(ry)*l; 
I e,(,r) (7)

-a \d )

and on equating various coefficients. r,,e get equation on 0, and 0, as
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01" + 4e2 + Pr Reffi" + 3Pr Ef '2:0
0," - Pr lte(f '0, - ffir') + r/o Pr Ef "2: 0

with boundarl'conditions on 0,, 0, as

sl(o): 1,02(o) -- o

0,(1):0,0,(1):0

(8)

(e)

(10)

where Pr : cop/k and E : Y2lco ATuo are Prandtl number and Eckert

nurnber respectively. ATru: To - Tu is the temperature difference befween

the lor.ver and the upper plate.

Case Il: coaxial disk flow

2Jl.A. Veiocity function: We consider here the flow between two rigid

circular disks cf infinite extent. The lor.ver disk is stationary and the upper

one is rotating with an angular velocity fJ. Following Von Karman's

soiution for velocity field as (Schlichting [13])"
u: rf)h'(r1), v: rf)g(q), w: -2Odh(rl) (11)

Phan*Thien and Bush [8] obtained the equations of motion as

g" - 2Re(h'g - hg'):O (12)

|1" + 2Re(g'g * hh"'): 0

with no-slip boundary conditions

h(0): h'(0): g(0) :0
h(1): h'(1;:0, g(1) : 1 (13)

2.II.B. Heat transfer: Consider the transfer of heat between t,*,o parallei

plates where the upper one has temperature To and iower one has

temperature T,.

T -To :o,Gr)*(r)r,rr, (14)Substituting T, -7,
and u, v, w from (11) in the energy equation (4), we get

$," * 2Pr Reh$,'+ 12Pr E h'+ 4Qr:0 (15)
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br" - 2Pr Re(02 h' - h$r') + 2Pr E(h"2 + g'') : 0

rvith boundary conditions

+,(o): 1, $r(o) : o

o,(1) :0, $2(1): o

( 16)

(17)

where E : U2lc-(T^-T,) is the Eckert number and U : f)d.p' u

In the above analysis temperature distribution for both the cases

are considered to consist of two functions.

3. METT{OD OT SOLUTIOI\

To solve BVP (1-3), (8-10) and (15-17), the shooting method is

applied" In this method the BVP is converted to an initial value problem

(NP) by estimating the missing initial values to a desired degree of
accuracy by an iterative scheme . Hazartka [ 1 2] showed that thou-eh there

is no guarantee of convergence ofthe iterative scheme, ifthe initial guesses

for the missing initial values are on opposite sides of the true value. the

convergence is rapid and agrees well with other methods. This is
experienced in our actual computation too. In solving the s,vstem (15 )-

(17), Phan-Thien and Bush [8] solutions for g and h are used.

Using shooting methods, the missing initial values viz. f ti-r t.

f "'(0), 0i'(0), +,'(0), (i : 1, 2) ate estimated for various combination of the

parameters and consequently the problem is solved.

4. RESULT AND DISCUSSION

In this paper shooting method is successfully applied to soh e :1,

the three Boundary Value Problems, (1-3), (8-10) and (15-17 i. \.:ii,'rcri',

distribution for squeeze-film flow is determined for variotts rai;es ..i
Re. The estimated values of the missing initiai values are presen:ed ,:l

Table-I for various values of Re. It may be noted here that in Pi:r-l:-en
and Bush method it is found diffrcult to obtain solution for high R.e'" :..-,i-r

number (>1S) due to limitation of their method br-it solutttnS arr' e:.silr

obtainable by the shooting method for considerabll greater r .:lues rl R.e

(>70) treating the problem to be a mathematical one.
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In Table-i the missing values f "(0) and f "'(0) and in Table-il various
missing initiai values for the temperature functions are presented.

In figures 1,2, 5 and 6, 0, and 0, and in figures 3, 4,7 and 8. 0, anci

0, are plotted for various values of Pr and E. The foiiowing observations
are made.

1. In all cases rviren E increases then 0, and $,(i:1,2) increases as

observed from Figs. 2" 3. 5 and 8.

2. As Pr increases ril,, 0, increase but 0, d,:creases as seen from Figs.
i. 6, and 7.

3" At first 0, increases to a certain point (at about one fifth of the
distance from the lower plate) and then decreases from that point
onwards u,ith the increase of Pr as evident from Fig. 4.

Table - I
Re f "(0) f "'(0)

I 1

5

10

i5
18

2A

25

30

35

40

50

55

60

3.678517

7.966281

9.874500

11.s58604

12.469s64

13.042295

14.37392s

1s.589704

16.714468

17.765635

19.694342

20.588s66

2r.444021

-13.605582

-21.084982

-31,.769304

-42.8s2646

-49.518070

-53.952s49

-64.994324

-75.971123

-86.888786

-97.755A13

-119.358887

-130)a6964

-14A.823486

70
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Table - II

x .7 1.0 1.5 tl

0.0 or'(o)

er'(o)

0,'(o)

$,'(0)

0

-2.418750

0

-.830866

0

-2.771011

0

-.762348

0

-3.215393

0

-.6s4618

0

-3.559236

0

-.555950
0.5 or'(o)

02'(o)

+,'(o)

0r'(o)

1.482134

-1.849478

"111984

-.736A94

1.471965

-2.A65366

.158293

-.622260

2.1 00089

-2.3244t4

.22yA8

-.375144

2.689-1r9

-2.515748

.286980

-.1r0t79
1.0 e1'(o)

e,'(0)

0,'(o)

4,r'(0)

2"164268

-1.280207

.211362

-.69A6s4

2.988929

- 1.358921

.288416

-.s05492

4.2CI0177

-1.433434

.406007

-.57264

s.376897

-1.472239

.515415

.?2V239
1.5 or'(o)

e2'(o)

0,'(o)

0r'(o)

3"246403

-.710935

.301763

-.632119

4.433894

-.652476

.4A7229

-.40428s

630A265

-.542454

.567293

.425539
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Fig.l Variation cf 0., for Re=10, E=.5 and Pr:{)'25, '75,
1.25, 1.75 in squeezing flow.
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1.5, 1.75 in squeezing flow.
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Fig. 3 lhriation of 0, for Re=50, Pr=.l ancl E:0.5, 1.0,
1.5,7,75 in squeezing flow.
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Fig. 5 Variation of $, for Re=5, Pr=2.00 and E=0'25r0'75,1'25 in

Co-axial disk flow.
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Fig.6 Variation of 0., for Re=S, E=1.25 and Pr:0'50, 1'00, 1'50,

2.00 in Co-axial disk flow.
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Fig.7 Variation of 0, for Re=5, E=1.25 and pr:0.50, 1.00, 1.50,
2.00 in Co-axial disk flow.
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