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ABSTRACT

The heat transfer due to flow of a viscous Newtonian fluid
between two parallel circular disks of infinite extent is investigated. Two
cases viz. Squeeze- film flow and coaxial disk flow are considered. For
both the cases, the temperature function is assumed to consist of two
functions with prescribed temperature at the plates. The problem is studied
numerically for various values of the parameters Pr, the Prandtl number
and E, the Eckert number. The results are presented graphically. It is
observed that the temperature function increases for increase of the
parameter E in both the cases. Again as Pr increases, the temperature
functions in case of coaxial disk flow increase. In the case of squeeze-
film flow the first temperature function decreases for increase of Pr but
the second function increases at first to a certain point and then decreases
from that point onwards. This point is at about one-fifth of the total
distance between the plates from the lower one.

1. INTRODUCTION

The flow of a Newtonian fluid between two parallel plates has been of
interest to scientists for its application to lubrication. Two cases of flow
configurations viz. Squeeze-film flow and coaxial disk flow are
considered here. There have already been investigations on these flows.
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Asymptotic solutions for the porous squeeze-film flow have been provided
by Terrill and Cornish [1], Rasmussen [2] and Wang [3,4]. Rasmussen
[2] and Wang [3,4] also provided a numerical solution to this two-point
boundary value problem (BVP). The disk flow problem has been well
studied long back by Von Karman [5] and later by Batchelor [6] and
Stewartson [7] for flow between two coaxical disks.

Phan-Thien and Bush [8] have studied the problem for small and
moderate Reynolds number where Von Karman's solution was taken for
granted. They assumed power series for the velocity function and solved
the non-linear algebraic system by optimisation method.

In this paper, an attempt has been made to study the heat transfer
(Eckert and Drake [9]) to (i) the steady continuous squeeze-film flow
between two parallel circular disks where the upper disk is porous and
the lower one is rigid and stationary and (ii) the fluid flow between two
rigid coaxial circular disks where the upper disk is rotating with an angular
velocity and the lower disk is stationary. In both the configurations the
disks are assumed to be of infinite extent. The exact similarity solutions
for the energy equations are presented. In case (ii) solution for velocity
function obtained by Phan-Thien and Bush is used to solve the energy
equation. In case (i) velocity as well as temperature functions are obtained
by using shooting methods [10,11,12].

2. FORMULATION
Case 1: Continuous squeeze-film flow

2.1.A. Velocity function: In this configuration the fluid flow is considered
between two parallel circular disks of infinite extent. The bottom plate is
rigid and stationary and the upper one is porous. The flow is generated
by the injection of fluid through the upper plate. Considering (u, v, w) as
the velocity components in cylindrical polar co-ordinates (r, 6, z), the
Navier-Stokes equations after simplification become

fv+Reff" =0 (1)
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with %= %({i‘JVf’(ﬂ): v=0, w= “Vf(ﬂ) (2)

where Re = pVd/m, p, p, V, d, n = z/d are the Reynolds number,
density, coefficient of viscosity, vertical velocity of fluid at the upper
plate, distance between the plates and dimensionless vertical co-ordinate
respectively. The function fis to be determined. The boundary conditions

on f are
f0)=0,f'0)=0
fih=1,f'1)=0 3)

2.1.B Heat transfer: Let T, and T, be the temperatures of the upper
plate and lower plate respectively. Thermal boundary layer developed
between the plates. The energy equation with the viscous dissipation in
cylindrical polar co-ordinate is

at ror oz

ou) (u) (owY ou\’
e ¢:2{(5;] CRt) Ha) ®

is the dissipation function, q, ¢ , k and p are density, specific heat at
constant pressure, thermal conductivity and coefficient of viscosity
respectively. The boundary conditions on T are

oT or o°T 10T &
Cp Uu—+w—m_ _\=%k +—-——t — +ﬂ¢ (4)

T=T atz=0; T=T, at z=d (6)

b

To solve equation (4), consider the substitution

T-T rY
£ :0 - 9')
T,-T, 1(77)+( d) ~(77) (7

and on equating various coefficients, we get equation on 0, and 6, as
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0,"+46,+PrRefd'+3PrEf?=0 (8)
6,"- PrRe(f'0,-9,)+ Y, PrEf™ =0 ©)
with boundary conditions on 0,, 6, as
9,(0=1,9,0=90
0,(1)=0,0,1)=0 (10)
where Pr = cpu/k and E = Vz/cp AT, are Prandtl number and Eckert

number respectively. AT =T, -T, is the temperature difference between
the lower and the upper plate.

Case I1: coaxial disk flow

2.IL.A. Velocity function: We consider here the flow between two rigid
circular disks of infinite extent. The lower disk is stationary and the upper
one is rotating with an angular velocity Q. Following Von Karman's
solution for velocity field as (Schlichting [13]).

u=rQh'(n), v=rQg(n), w=-2Qdh(n) (11)
Phan_Thien and Bush [8] obtained the equations of motion as
g"-2Re(h'g -hg")=0 (12)

h" + 2Re(g'g + hh") =0
with no-slip boundary conditions
h(0) =h'(0)=g(0)=0
h(1)=h'(1)=0,g(1) =1 (13)

2.I1.B. Heat transfer: Consider the transfer of heat between two parallel
plates where the upper one has temperature T and lower one has
temperature T .

T-T r?
Substituting "ﬁ]’?‘ =@ (77) + (;{}’52 (77) (14)
1 4o

and u, v, w from (11) in the energy equation (4), we get
¢,"+2PrReh¢,'+ 12PrEh' +4¢,=0 (15)
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," - 2Pr Re(¢, h' - h¢,") + 2Pr E(h"™ + g?) =0 (16)
with boundary conditions
$,0)=1,,(0)=0
0,(1)=0,,(1)=0 (7
where E = Uz/cp(TO-Tl) is the Eckert number and U = Qd.

In the above analysis temperature distribution for both the cases
are considered to consist of two functions.

3. METHOD OF SOLUTION

To solve BVP (1-3), (8-10) and (15-17), the shooting method is
applied. In this method the BVP is converted to an initial value problem
(IVP) by estimating the missing initial values to a desired degree of
accuracy by an iterative scheme. Hazarika [12] showed that though there
is no guarantee of convergence of the iterative scheme, if the initial guesses
for the missing initial values are on opposite sides of the true value, the
convergence is rapid and agrees well with other methods. This is
experienced in our actual computation too. In solving the system (15)-
(17), Phan-Thien and Bush [8] solutions for g and h are used.

Using shooting methods, the missing initial values viz. f "(0),
£'(0), 6,0, ¢,'(0), (i =1, 2) are estimated for various combination of the
parameters and consequently the problem is solved.

4. RESULT AND DISCUSSION

In this paper shooting method is successfully applied to solve all
the three Boundary Value Problems, (1-3), (8-10) and (15-17). Velocity
distribution for squeeze-film flow is determined for various values of
Re. The estimated values of the missing initial values are presented in
Table-I for various values of Re. It may be noted here that in Phan-Thien
and Bush method it is found difficult to obtain solution for high Reynolds
number (>18) due to limitation of their method but solutions are easily
obtainable by the shooting method for considerably greater values of Re
(>70) treating the problem to be a mathematical one.
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In Table-I the missing values £"(0) and £"'(0) and in Table-II various

missing initial values for the temperature functions are presented.

In figures 1,2, 5 and 6, 0, and ¢, and in figures 3,4, 7 and 8, 6, and
¢, are plotted for various values of Pr and E. The following observations

are made.

1. Inall cases when E increases then 0, and ¢, (i=1,2) increases as

observed from Figs. 2, 3, 5 and 8.

2. AsPrincreases ¢,, ¢, increase but 0 , decreases as seen from Figs.

1,6,and 7.

3. Atfirst 6, increases to a certain point (at about one fifth of the
distance from the lower plate) and then decreases from that point

onwards with the increase of Pr as evident from Fig. 4.

Table - I

Re £"(0) £"(0)

1 3.678517 -13.605582
5 7.966281 -21.084982
10 9.874500 -31.769304
15 11.558604 -42.852646
18 12.469564 -49.518070
20 13.042295 -53.952549
25 14.373925 -64.994324
30 15.589704 -75.971123
35 16.714468 -86.888786
40 17.765635 -97.755013
50 19.694342 -119.358887
55 20.588566 -130.106964
60 21.444021 -140.823486

e Y
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Table - II
Pr 7 1.0 1.5 2.0
E
0.0 16,'(0) 0 0 0 0
0,'(0) -2.4187501-2.771011 | -3.215393 |-3.559236
¢,'(0) 0 0 0 0
,'(0) -.830866 | -.762348 | -.654618| -.555950 ,
0.5 106,0) 1.082134 |1.477965 | 2.100089 | 2.689449
0,'(0) -1.849478 | -2.065366 | -2.324414 |-2.515748
¢,'(0) 111984 | .158293 | .223108 | .286980
$,'(0) -736094 | -.622260 | -.375144| -.110179
1.0 16,'(0) 2.164268 |2.988929 | 4.200177 | 5.376897
6,'(0) -1.280207-1.358921 | -1.433434 |-1.472239
¢,'(0) 211362 | 288416 .406007 | .515415
$,'(0) -.690654 | -.505492 -57264 | .220239
1.5 10,'(0) 3.246403 |4.433894 |6.300265 | 8.068344
0,'(0) - 710935 | -.652476 | -.542454 | -42877
¢,'(0) 301763 | .407229 | .567293 718111
$,'(0) -.632119 | -.404285 025539 | .494544
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Fig.1 Variation of 6, for Re=10, E=.5 and Pr=0.25, .75,
1.25, 1.75 in squeezing flow.
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Fig. 2 Variation of 6, for Re=50, Pr=.7 and E=0.5, 1.0,
1.5, 1.75 in squeezing flow.
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Fig. 3 Variation of 0, for Re=50, Pr=.7 and E=0.5, 1.0,
‘1.5, 1.75 in squeezing flow.
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Fig.4 Variation of 0, for Re=10, E=.5 and Pr=0.25, .75,
1.25,1.75 in squeezing flow.
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Fig. 5 Variation of ¢, for Re=5, Pr=2.00 and E=0.25, 0.75,1.25 in
Co-axial disk flow.
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Fig.6 Variation of ¢, for Re=5, E=1.25 and Pr=0.50, 1.00, 1.50,
2.00 in Co-axial disk flow.
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Fig.7 Variation of ¢, for Re=5, E=1.25 and Pr=0.50, 1.00, 1.50,
2.00 in Co-axial disk flow.
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Fig. 8 Variation of ¢, for Re=5, Pr=2.00 and E=0.25, 0.50, 0.75,
1.00, 1.25, 1.50 in Ce-axial disk flow.
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