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Abstract
The induced flow and the heat transfer in a porous medium have been

discussed when a flat plate parallel to the porous surface oscillates in
its own plane with its temperature also oscillating. The gap between
two surfaces is filled with a viscous fluid which also fully saturates the
porous medium. It is found that when the porous medium is unbounded
the amplitude of oscillation of the fluid at the interface increases with
the increase of the permeability of the porous medium and also with
the increase of Reynolds number. There is a boundary layer formation
at the interface in the porous region when the thicknesses ofthe porous
material and the clear fluid are equal. The case rvhen thickness of the
porous layer is one-tenth ofthat ofthe clear fluid, this system produces
a cooling, effect on the porous surface.
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1. Introduction

The flow of a viscous fluid and the heat transfer through a porous medium
have broad range application in geothermal system, thermal installation. metal
processing, catalyic reaction, filteration and transpiration cooling. vafai and
Tien [1]. vafai [2] and Beckerman and viskanta [3] have studied the eff'ect of
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12 A.C. SRIVASTAVA AND MANJU AGARWAL

variable porosity and variation in the boundar-V layer and temperature in florcec

convection baundary layer flow, heat and mass. transfer along a flat plate

embedded in a porous medium.

The obiect of this paper is to study the induced flow and the effect ol

cooling in a porous medium when an infinite flat plate parallel to the poroul

surface oscillates in its own plane. The space between the plate and the poroul

medium is fi1led with an incompressible viscous fluid with which the porou:

medium is ful1y saturated. The temperature of the oscillating plate also oscillate:

g,ith the same frequency as that of the oscillation of the plate. It is assumed tha

Navier-Stokes equation and Brinkman equation [4] respectively govern the flor'

irr the cfear fluid region, called region I and in the porous region, called regior

Itr. At the interface of these two regions the conditions on velocity and stressesr

suggested b-V Ochao-Tapia and Whitaker [6] are taken and we have propose(

that similar conditions on rhe temperature be taken at the interface. Our resul

shows that the induced steady tbmpel4ture is such that cooling effects ar'

produced in the porous medium^

Cooling problem has assumed a continuously growing importance in th

development of high speed vehicles (like space vehicles. aircrafts, missiles ete.)

One c;f the effective method of cooling is the transpiration cooling in rvhich th

surfaces to be protected are manufactured from porous materials and cold flui

is ejected from the pores (See Shivakumara and Venkatachalappa [6])' Anothe

method is that the surface be protected from hot fluid is lined with porous materia

and our resuits are useful in this case.

2. Statement of the problern :

Consider the flow and the heat transfer of an incompressible viscous flui

confined between an infinite impervious flat plate executing linear harmoni

oscillation of flequency n parallel to itself and a porous medium fuliy saturate

r.vith the fluid. Temperature of the oscillating plate also oscillates with frequenc

n. Let x denote the coordinate parallel to the firecfion of motion and y th
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coordinate perpendicular to the plate. Let the oscillating plate be represented by

y : d, the interface b.v -y = 0 and the plane bounding the porous medium by

y = - Id r,vhere 1, is a real constant. The schematic of the problem is given in

figure l. In the region I the floi,v is governed by Navier-Stokes equation and in

region II it is governed by Brinkman equation [4]. They only velocity component

in the direction of x and the temprature are functions of y and t only and are

respectively denoted by u(y,t), T(y,t) in the region I and U(y,t), H(y,t) in the

region II. The boundary conditions ofthe problem are :

u=UnCos(nt)aty=d,

T = T* + To Cos(nt) at y: d,

U=0at y:-Id,

H: T* at y = -Id.
At the interface of the porous medium and clear fluid y = 0, we assume

that rhe velocity component is continuous and the jump in the shearing stress T*
is given by the equation suggested by Ochao-Tapia and Whitaker [5]. These

assumptions in our notation can be written as :

u:U at y=0,

(1)

(2)

(3)

(4)

AU Au Bu-U"" _U""'=r*U aty:6' av av 
^ltr

(5)

(6)

where p is is the viscosity ofthe fluid, k is the permeability ofthe porous medium

and p is a constant which takes positive as well as negative values and depends

on the nature of the porous surface (See Ochao-Tapia and Whitaker [7]). Using

these conditions at tire interface Srivastava [8] has discussed the torsional

oscillation of an infinite disk in a viscous liquid bounded by a porous medium.

On the similar basis u,e propose that temperature is continuous at the interface

and there is a jump in the heat flux at the interface which is proportional to the

temperature at the interface. This can be r,vritten as :

T=H al y:0, (7)
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given by

KaH -Ky=+ rry @ 'lt<

psc.{= x+. r(+)' - (1"eot --il,'Ifu)'
where v is the kinematic coefflcient of viscosity, p is the density, g is

acceleration due to gravity and cn is the specific heat at constant pressure' '

equations governing the velocity and temperature in region II' ae respectir

14

at y=0, (8]

where K is the thermal conductivity and o, is a constant depending on t

surface of the porous medium and its value is similar to that of p.

The equations go'i,erning the velocity and temperature in regional I l

respectively given bY

-^1du d'u
d ry"'

(e

AU A2U v

at 
=v n -7u' (r

(lNcoary =.#.r(X)' *fu'
The equation (12) is written by taking dissipation due to viscosity as '

as due to permeability. Srivastava and Sharma [9] have studied the heat tran

in a porous medium due to rotation of a disk near its surface by taking equa

( 1 2) for temperature distribution.

3. The Velocity Field :

we adopt here the complex notation with the convention that only

parts of the complex quantities represent the physical quantities. Llnder

notation boundary condition (1) is written as :

u = IJo ei" aty=d,
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rvhere 'r = nt. We assume the following expressions for the velo.;ifr in regron I
and II respectively

u = {Jo g(rl)ei,,

u = Uo G(n)et",

r'"'here n = (/d) 'l'he equations (9) and (11) give the following equations ibr
g(n) and G(q) respectively :

iReg=g",

(i Re + o2)G = G",

r'vhere o = (d/{k), Reynold's number p, = (nd2lv) and a prime denores
differentiation with respect to rl.
The boundary conditions (l) and (3) give

g(l): 1,

G(-2";: s,

The matching conditions at the interface (5) and (6) become

g(0) = G(0),

c' (0) - g' (0) = poG(0)

The solutions ofthe equations (16) and (17) satisfying (rs) - (zl) are

g(n) = (1/sh p) [C, sh ]"q sh p(1-n) + sh pnl,

G(n) = C, sh q(}.+q),

(14)

(15)

(16)

QN

(18)

(re)

(:iii

(21)

(21 i

(2i )

where (l/cr) : (1/p) [p sh ]"q ch p + q shp ch )"q - po sh ],q sh pl = Arei+r (2.1)

p: (l + i){(Relz), e = or * ia,= a[.^[9]., sir(q\1
1"""[r, -' '"'1, ))

o=(Re'+o^)f,, tano =(H."lor)
1.,-

,---,-
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Inwritingtheabovesolutioncoshlandsinhlarewrittenaschlandand
sh 1 respectively' 

unbounded can be deduced from the
The case when the Porous reglon ls

above solution by taking limits of the expressions as )'-+co'

Theexpressionforg(n)isunchangedexceptthatthevalueofC,ismodifiedas

Lim c, = (i t p) I p ch p +(q - po)sh o)= o,''^ (25)

'7+q L- I

The expression for G(q) is given bY

Gh)=(Tl A,1n"''o' (26)

The case when ). = 1, the amplitude of oscillation of the induced velocity in the

porous region is given bY 
_lr .lz

I U l= (U o I Ar) ch ua,(r + ri - Cos zar(t + r)l',LJ
where

(l/p)(p shqchp + q shp ch q - po shp shq) =A'eio: (28)

4. TemPerature Field

The viscous dissipation function in equation (10) can be written as :

t :2 f /^ \lr
la'\ =(/:lnea/[ 99r" 1l
t ayl -'L \.4/ ))

=%-9c- 9E-+LIIRe,,[l[+',1','"-l \zs)2 aY aY " 12try, l
whereIistheconjugatecomplexofg.SimilarexpressionscanbewrittenforU:

( zu\2
and I -- I in the equation (12). Hence, the temperature freld consists of thret

\rrI

(27)



parts the first part and the second part oscillate with frequencies n and l:
respectively and the third part is steady one independent of time. We assume lh';

following form of the temperature in the region I and region II respectivell

T - Tw = To[h,(n) e,. * h, (rl) e"'+ h3(n)],

H - Tw = To[H,(n) ei'* Mz (",'l) e''' + M3(n)],

The boundary conditions (2) and (4) give respectively the following conditions

(3C i

(3 i

(31 rh,(1)= i, h,(1)=0, i=2,3

Ht(-1,):0, i:1,2,3, (33t

Matching conditions (7) and (8) at the interface in terms of h, and H, can be

written as :

i = 1,2,3

I rr

(35 t

hi(o): Hi(o), i: 1,2,3

dH, ah,

dr1 0r1

Substituting (30) and (31) in (10) and (12) respectively and equatinr

coefficient of ei., e2i'and terms independent oftime on both sides of the equations

we get the following differential equations for h,(n), H,(rl), hr(n), H,(r1)' h.(t'

H,(n):'iReP,h1

lReP,Hl

= 
d'h'
drl' '

= 
d'Ht
drl'

(36)

(37)

(3r)

, (39)

(40 )

2i Re P, ,r=#.(+)

2 i Re P, H.=d'4'.fIl)drl' t2)

( as\'
\dr)'

lw)'.*o')
d'h, ( re,\lagl'
drt' \ 2 )laryl'
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Eckerr nunlber.

'l'he solutions of (36) and (37) satisfying (32) - (35 ) are :

l.r,(n) = (llsh m) [Co sh ]' m sh (l-q)m + sh mql ('

Hr(q): C, sh m (r + n), ('

(l/CJ = 11/m) [m sh ]. m ch m + rn sh m ch ]" m - o o sh ]' m sh ml

where m: (1+i){(Re P,/2). This is the case of pure conduction as there i

term involving convection in the differential equations' Substituting

expressionsofg(q)andG(r,1)from(22)and(23)intheequations(38)and
respectively, we get the follwoing solutions for hr(rl) and Hr(n) :

h,(rr)='#l- B,chmqJi + B,shmqJi

ch 2prt * Cl sh'zlqclxzpT- ry)-zc,snAqchp(t-zrl)
2p'-lReP,

ih + cl sh' l^q -2t',shuqchP)f:'-'' ReP, l"

ru,(,r)= ryl D,chmrTJi + D,shmr:Ju

lq= + o=)nzq(t' + ri* ,(r' - "')-l
2q= - iRe P, ReP, .l'

,2 Idcl .'--t2 I*-l +o'lGl I (ldrtl ' l'
the Prandtl numberanrl E-[',/ (gc,'r')];'

4= 
H, 

= -r4 l[
,l,t' I z )tt

whete Pr: (rg Cn/K) is
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Constants 81,82, D' D2 can be determined by substituting (44) and (-1j;

in (32) - (35) For the present we are interested in steady part only so w'e hare

not determined them.

Substituting the expressions of g(r1) and G(q) from (22) and (23) in the

equation (40) and (41) we get the following t"l,:r,"*t for h,(r1) and H,(I)
DD II L \ I

t',(ry) =ffiLtij { 
cosz(r -'i)'m.;

- 
I ('tx\f

- ch2(r-,/)".8; 
i 
. [f ,J1.,,(r 

- 2,7)J-ne'/,JRe - ch(r -2,7)J-nec,,.,R-.

- "; fu(U,.;;1 * o'\{,r,zt (r +,7)u, -,} ]

.(#)u+rr)M' (-1- r

where sh i" q : beir'. These experessions for hr(n) and Hr(n) satisfy the boundan

conditions (32) and (33). Two constants M, and M, are determined b1 the

conditions (34) and (35) which can be written as :

t r, - )ilr 2 = @;N[,r tund+a - o'\co,z:.)^a' -r)- o;

t 
- -\ 

/ 
- -flCos(y - O,)* (coszryJr.e - Cos2JRe )-\chzrTJxe - ch}JRe) 

I

-l

.[?)o -rt)M,, I -.ltt i

a,(,i = dij[* {,re;ra - o,\ { 
c,,zt tt + 4h, -1 .
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-1)1. ,l(*,)' .'] (48)

+.6E
ch2Jke -Cos2JRe

(_ \

u(*.' * oo)* o'l (chila,

g + ao)u, + M, = *"{+)' .,}.

VAS$-zrn" 
+ sftzJne). [?)('r* chlRe

+ cosJRe,aJn.)c,,(v - o,l)- rhlo, fuh;,* ;1 - o,\

I

5. Discussions and Conclusions :

The induced velocity in the porous medium when it is unbounded
below is given by substituting (26) in ( l5) as :

U = (Uo/Ar)ear'lCos (t + arrl - 0r) (s0)

This shows that the induced velocity in the porous medium has the form of damped
harmonic oscillations the amplitude of which is (uo/Ar)e"r,r. The fluid layer at a
distance (2xdlar) = 2n[2vkl{V1n'k' - v,) - u}f',rupurt oscillates with the same
phase and this distance is called the depth of penetration of the viscous layer
(See Schlichting I I 0]).

The amplitude of oscillations of the fluid velocity at the interface is given
by (Uo/Ar) The value of (Ar)-1 has been is table 1 for o : 5,6,'1,g,9,10:
Re = 2,3,4 and B = -0, 5, 0.5. The table 1 shows that amplitude of oscillations of
the fluid decreases with the increase of o for alI values of Re and B. It increases
with the increase of Re for all values of o and B. It decreases much with the

!,dl.,
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decrease of B and its values for B 
: -0.5 is less than half of those for B = 0.5. The

values of B for the porous surfaces depends on the porous material and can be

experimentally determined from other experiments (See Ochao - Tapia and

Whitaker [7]1.

In the case l": 1, the amplitude of the fluid oscillations in the porous

medium is given by

za,(t+ r)- cot (s 1)

where A, = l(l/RXp sh qchp+ q shp ch- Bo shp shq)l

laking Re : 2, B : 0.5 the graph of l(U/Uo)l has been drawn against q from ri =

0 to -1.0 for o = 5,6,7,8. i'ire graph shows that this amplitude reduces with the

increase of n and there is a boundary formation near the interface. Comparing

the values of l(U/Uo)in=o ir, the graph and those given in the table I we find that

these reduce much u,hen the porous medium is bounded by another plane below.

Now we will discuss the case of steady heat transfer where there is a

lining of a surface by a porous material. The rate of the heat transfer at the

nominal surface (interface) q = 0 from the porous material to the clear fluid is
given by :

(53)

l(u ru,)1=gra,fcn
I

zrr(t* fi)'

where N is the Nusselt number given by
/ au.\N=-l +l
\ d4 )a=o

Substituting the value of Hr(n) from (47) in (54) we get

(54)

rr EP,

'n 
: 

g,4:,uop,
+ oofirrhU.o,
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. ffi* ;1 - o'f ,sinuo,7- 
u] u, (ss

The values of N are positive, hence heat transfer takes palce from tl

porous surface to the clear fluid and there is cooling of the porous meterie

Hence when a surface is lined with a porous material surrounded by an oscillatir

fluid the surface is cooled. The oscillation of temperature is not important as

gives on ly conduction effect. Taking fu = 0.1, the ratio of N to the product of E

is given is table 2for a = 0.5, F = 0.5, -0.5; Re =2,3,4;o =5,6,'/,8,9,10. Tab

2 shows that the rate of cooling decreases with increase of o as well as Re for

= 0.5. For F: -0.5 this cooling rate increases with increase of Re but decreas,

with increase of o. It is very much reduced with the decrease of B whose valu,

are determined experimentally. Hence such porous lining would be done wi

material having high values of B.
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B:0.s I = -0.5

432Re

o

432

5

6

7

8

q

10

0.36901 0.43724 0.47103

0.32906 0.38972 0.42805

0,29456 0.34888 0.38695

0.26868 0.31427 0.35134

0 24681 0.28511 0.32093

0.22641 0.26027 0.29451

0.16122 0.17884 0.20407

0.13784 0.15797 0,17253

0.1 1 989 0.1 2906 0.14855

0.10794 0.11312 0.13056

0.09655 0 100ri5 0.11602

0.08654 0.09062 0 10457

Table 1. : Amplitude of oscillation of the fluid at the interface.
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I
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distance from interface'

ffin-xtzt o'23e73
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0 76408 0.55763 0'52476

0.53491 0.45939 0'39197

0.47760 0'39439 0'34437

0.42089 0'34626 0'29729

0.37622 0.30940 0'26377

for cl = 0'5'

'{oioiri'ar.o 
r-u y rroy')-)

Fi**. 1. Schematic of the Problem'
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