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Abstract:

In this paper the concept of faz-zy funclional compactness and fuzzl
seminonnality is introduced in fuzzy topological spaces. Some interesting
properties and characterizations ofthese spaces are obtained.
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1. Introduction

Ever since c. L. chang [2] introduced and developed the concept of ftzz,
topological spaces based on the concept of fu24'set introduced by L. A. Zadeh [1-r .

the fiiz4' concept has invaded many branches of Mathematics. Since then laric,,
important concepts in classical topology such as compactness have been extendei i ,

fuzzy topological spaces.

The concept of functional compactness and seminormality in general topolor
was introduced and studied in il,3,5,6,10.11,13] and [4,8,9,12] respectively. The,.

are focinating classes of spaces possessing many interesting properties. The purpos:
of this paper is to introduce fitzzy functional compactness and fuzzy seminormairi-
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in fuzzy topological spaoes. We give various charactetrzations along with some

interesting preliminary properties of these spaces'

2. Preliminaries

The interior and the closure of the fuzzy set X in X will be denoted by Int X

andcl},respectiveLy.Afuzzyset}"inXissaidtobefilzzyregularlyopenif
Int(cll)=l"andflrzzyregularlyclosedifcl(Int7")=l''Afuzzysetrsfuz4'
,.goiurty .pen if its complement is fuzzy regularly closed. For the concepts not defined

in this paper we refer to [2,71.

3. F uzzy Functionally C omp actnes s in Fuzzy Top olo gical Sp aces

Definition 1: A fuzzy Hausdorff spac e (x, T ,) rs fiuzy functionally compact e For

every fazryclosed set l, in{ satisfying the property that for every fuzzy continuous

map/from (X, T j)onto a fuzzy Hausdorff space (Y, T r), f( 1 ) is fu2ry closed'

Delinition 2: Afiuz1 Llausdorff spa ce (x, I)is said to be fuzzy absolutely closed e

Forevery fazzy T -fazry opencover 9; {lt/a e A\ of Xthete exists a finite

subfamily Fo,,lto; ..', Po,sushthat l*<Y^ cl (P. )'

Definition 3: Abase for (X, Q is called fivzy regdar open, if ilconsists of faz4-

regular oPen sets.

Definition4:LetpbeufilzrypointinXand(X,I)beafuzzytopologicalspace,).e
/x is said to be a fuzzy regular open neighbourhood ofp if there is some regular open

fuzzv set P in Xsuch thatP eP and P S l'

Delinition 5: Afuzzy topological space ( -X, r) is called fu2ry semi normal <+ given

a fuzzy closed set 2 and fuzzy open set p such thar )' (p, then there exists a fuzzs

regular open set osuch that )" < o S p'

Definition 6: A fazzlr topologicai space ({ Q is said to be fuzzy regular semi normal

if given a fuzzy regular closed set ,1. of x and a fizzy open set 7-r of x such th at p 2 )-'

there exist afizzy regular open set dofXsuchthat )" S 0 < p'
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proposition l. A fuzry topological space ( x T ) is fu2ry semi normal <+ Given any

fuzzy closed set )' arrd a fiiz4t closed set p such that )' + p < I 
' 

then there exists a

fu2ry open set osuchthat p S (cl o) atfi( cl o) + )' < 1'

proof:Assume tx, Disfiiz4r semi normal. Giventhat )"and parcfozry c1os1d sets

suchthat2 +p < 1.Now2 +pl1 )X.< I -p.Thenl'rsfuzzy closed and 1-pis

fazzy open.Hence by assumption there exists a fuzzy regalar open set p such thal

)'sps I -P (1)

Puto: l -cl(p),then
t r , ^, t/^\7ct(o):clIt-cl(P)]

>ct[1-cl(1 -P)]

2cl [Int PJ >P

Also

cl (o) + )' -- cl I I - cl (P)] + I

=cl I Int (1 - p)] - l': (l - P)+)'

Now from (1)

p>)"

.'.1-p<1-)"

i.e., l-P+)'<t
i.e., cl (P) + 1< l'

Conversely, suppose ),is fizzyclosed and p is fivzy open set suchthat )' < 1t

Choose afuz4- open set P such that

I - 1t Sct (P), 
"l 

(o) + l' <,

This means ), < I - cl (p) < lt,Therefore it is sufficient if we show that I - cl (p) ts :
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fuzzy reglJar open set.

Int ct [ 1 - ct (P)] :'llr",'rt,'r,rt,', 

,'_ ,lrt 
- P)]l

: Int [ ] - Int { t - Int (t - p)}l
-: Int [ ] - Int kl (p))l slnt ( I - p)

st-cl(p)

Also,

I - cl (p) 2lnt cl ( I - cl (p))

=Int cl ( I - cl (p)) : I - cl (p)

= I - ct (p) is fuzzyregular open. a

Proposition 2: Let (X,T) be a fizzy Hausdorff functional compact space If
r - { p,la e A} isabaseonXsuchthattheintersection ),of theelements of r is

equal to the intersection of the closures of the elements of rr, then f is a base for the

fuzzy neighbourhood of i".

Proof Given that every fitzzy continttous mapping/from x to a fuzzy Hausdorfi-

space is fuzzy closed. Also given that f is afinzy base onXsuch that

I = Ao0,l )"" er)

= -t ^{cU,, 
l )", e rl

We claim that f is a base for the neighbourho od of ),.

Suppose not, then there exist a fuzzy open set p in Xsuch that

(i)p>)

(11) V y e f, (1 - p) +y{ I i.e. T- p {0i.e. y# pi.e., y> p
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Take I: Xand define a base G for a fuzzy- topolog-y roil )'as follows:

p € fi e (])-f-'id { i - }.) e f
or

(2)f'{o) e r
Tlrus ( X r) is afitzzy Hausdorffspace.Letf : x -+Ybethe identitymap. Then.- -,

ftizz.v continuous and therefore by hlpotheses/is fuzzy closed. Bfif(l - p) is r,c

fuzzy closed. This is a contradiction. Hence the proposition. n

Proposition 3: In the follorving statements the following implications are valid.

(i) <+ (ii) and (iiD e (iv) <+ (v).

(i) (X, T ) is finzy functionally compact.

(ii) Every fuzzy continuous function from X nto any fuz4r Hausdorff spa;'

is fuz4r closed.

(iii) Given afuzzy regularopenset Aof X,afazzy opencover (Bof (l - i"

andafuzry openneighbourhood pof ),,thenthere eists p,. e B'

l<i(nsuchthat
fnl

7x = F vlcl* r. P.,l
L'_'J

(iv) Given afazzy regular open cover 6 of any fuzzy closed set 2, then C=-

exists p,, e E, I Si ln suchthat

)' cl, (., p,

(v) X is fuzzy absolutely closed and fuzzy regular seminormal.

ProoT The equivalence of (i) and (ii) follorn's from the definition.

(iii) + (iv)

Let )"be an\' fi:zzv ciosed set. Let cB : {p,l a e A I be any fuzzy regtlar opdn c.: ,

of )".

Thenp = I - Iop,is fuzzy regular closed una l!oO": I - lt =tBis a i*.-
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P ro 0f: Let f be a fuz4, continuous mapping of x into a fuzzy Hausdorff sp ace Y. Let

1, be a fuzzy closed set inX. Tlten )"/ X,is fizzy closed inX, for i = I to nandf t X

are also fuzzy continuous for i = I to n.

n

Thenf(1) : v_ (f /xt )( )"/xt) isfizzy closed in L TherefotexisfiJzz\
l=l

functionall.v compact.

Proposition 5: Letxbe afuzryHausdorffspace and z afaz4t functionally compacr'

fuzzy Hausdorffspace Y.Lethbe afuzzy continuous mapplng of Z orlto X. ThenXis

fuzzy fimctionally compact.

Proof: Letf be afuzry continuous mapplng ofXinto afuznl Hausdorffspace L

Let )"be any fiu4r closed set inx. T\enf(1.) : (f o h) (h''(A.)) isfitzzy closed since

Z rs fazq, functionally compact aadf o h is fuzzy continuous.

This proves thatXis fuzzy functionally compact.

ACKNOWLEDGEMENT

The authors wish to thank the referee for his helpful suggestions towards ti--.

improvement of this paper.

References

tl] Angelo, Bella: A note on functionally compact spaces, Proc. Am' Math'

Soc. 98 (1986) No. 3, 507-512[]liil



G. PALANI CHETTY AND G. BALASUBRAMANIAN 45

L21 Clrang, C.L';Fttzzytopological spaces' J' Math' Anal' Appl' 141 (1968)

82-89

t3] Diclonan, A. K' Jr' atdZame'A; Functionally Compact Spaces' Pacific J'

Maths. 31 (1969) 303'312

t4lDorsett,C.;Semi-normalspaces'KyungpookMath'J'25(1985)173-180

15]Goss,G.andViglino,G.;Sometopologicalpropertiesweakertharrcompactress,
Pacifi-c J' Maths' 35 (1970) 635-638'

t6]Goss,G,andViglino,G.;C-compactandfunctionallycompactspaces,Pacific
J. Maths.37 (3) (1971) 677-681

tTlMukherjee,M'N.andGhosluB';Concerningnearlycompactfuzzytopological
spaces, Bull. Cal' J' Math' Soc' 83 (1971) 545-552

t8] Noiri(Kumamoto), T'; Semi-normal spaces and some functions' Acta Math'

Hungar. 65 (3) (1994), 305-311

19]Frink,orrin;Compactificationsandsemi-normalspacesHungarianJ.Math.
s6 (1964) 607-607

tl0]Ho,Kim;NotesonC-compactspacesandfunctionallycompactspaces
K1'ungPook Math' J' 10 (1970) 75-80

111]Lim,Tech-CheongandTan'Kok-Keong;FunctionalCompactnessandC-
Compactness J' London Math' Soc' (2) 9 (1974)' 371'377

112l viglino, G.; Seminormal and C-compact spaces' Duke Math' J' 38 (1971)

57 -61.

tl3] Willard, S. W.; Functionally compact spaces' C-compact spaces andmapprngs

of minimal Hausdoif spaces Facific J' Maths' 38 (l) (i971) 267-272

t14l Zadeh,L. A';Fazzy sets, Information and control' 8 (1965)' 338-353'


