Mathematical Forum Vol.XVII, 2004-2005

ON SOME GENERALIZATIONS OF FUZZY G₈- CONTINUOUS MAPPINGS

E. ROJA, M.K. UMA Department of Mathematics Shri Sarada College for Women Salem - 636 016 Tamil Nadu, India.

G. BALASUBRAMANIAN Ramanujan Institute for Advance Study in Mathematics University of Madras, Chepauk Madras - 600 005

ABSTRACT

In this paper, making use of fuzzy G_8 - set and fuzzy F_{σ} - set various generalizations of fuzzy G_8 - functions are introduced and studied. Further, the interrelations among the concepts introduced are also discussed in detail. Key Words

Fuzzy G_8 - continuous, M - fuzzy G_8 - continuous, σ - closure, σ - interior fuzzy almost G_8 - continuous, strong fuzzy G_8 - continuous, perfectly fuzzy G_8 - continuous.

2000 Mathematics Subject Classification 54A40, 03E72.

1. INTRODUCTION :

The fuzzy concept has invaded almost all branches of Mathematics since the introduction of the concept of fuzzy set by Zadeh [9]. Fuzzy sets have applications in many fields such as information [7] and control [8]. The theory of fuzzy topological spaces was introduced and developed by Chang [5] and since then various notions in classical topology have been extended to fuzzy topological spaces [1 to 4]. The concept of fuzzy G_8 - set was introduced by Balasubramanian [2]. In this paper making use of fuzzy F_{σ} - sets and fuzzy G_8 sets, we have introduced the concepts of fuzzy σ - closure and fuzzy σ - interior and investigated their properties. Further we have introduced and studied various types of fuzzy continuous functions involving fuzzy G_8 - sets. Further we have given complete discussion about the interrelations among functions introduced.

2. PRELEMINARIES

Definition 1. Let (X,T) be a fuzzy topological space and λ be fuzzy set in X. λ is called a fuzzy G_{δ} - set [2] if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ where each $\lambda_i \in T$, $i \in I$.

Definition 2. Let (X,T) be a fuzzy topological space and λ be a fuzzy set in X. λ is called a fuzzy F_{σ} - set [2] if $\lambda = \bigvee_{i=1}^{\infty} \lambda_i$ where each $\lambda_i \in T$, $i \in I$.

Definition 3. Let $f:(X,T) \to (Y,S)$ be a mapping from a fuzzy topological space X to another fuzzy topological space Y. f is called (i) a fuzzy continuous mapping [1] if $f^1(\lambda) \in T$ for each $\lambda \in S$. (ii) a fuzzy open/closed mapping [1] if $f(\lambda)$ is open/closed set of Y for each open/closed set λ of X.

Definition 4. Let (X,T) be fuzzy topological space and Y be an ordinary subset of X. Then $T_Y = (\lambda/Y/\lambda \in T)$ is a fuzzy topology on Y and is called the induced or relative fuzzy topology [3]. The pair (Y,T_Y) is called a fuzzy subspace of (X,T).

Definition 5. Let $\{(X_i, T_i) : i \in I\}$ be a family of fuzzy topological spaces and let $X = \prod X_i$ be the cartesian product of X_i 's. The fuzzy product topology [6] $\prod T_i$ on

X is the smallest fuzzy topology on X (if exists) which makes each projection $p_i: X \to (X_i, T_i), i \in I$, fuzzy continuous.

3. FUZZY G₈ - CONTINUOUS MAPPINGS :

Definition 6. Let $f:(X,T) \to (Y,S)$ be a mapping from a fuzzy topological space X to another fuzzy topological space Y.

- 1. f is said to be fuzzy G_8 continuous, if $f^{-1}(\lambda)$ is a fuzzy G_8 set in (X,T) for any fuzzy open set λ in (Y,S).
- 2. f is said to be fuzzy G_{δ} if f (λ) is a fuzzy G_{δ} set in (Y,S) for any fuzzy G_{δ} set λ in (X,T).
- 3. f is said to be fuzzy F_{σ} , if f (λ) is a fuzzy F_{σ} -set in (Y,S) for any fuzzy F_{σ} -set λ in (X,T).
- 4. f is said to be M-fuzzy G_{δ} continuous, if $f^{1}(\lambda)$ is a fuzzy G_{δ} set in (X,T) for any fuzzy G_{δ} -set λ in (Y,S).
- 5. f is said to be fuzzy G_8 -homeomorphism, if f is one-to-one, onto, M-fuzzy G_8 -continuous and fuzzy G_8 .
- 6. f is said to be strongly fuzzy G_{δ} -continuous, if $f^{1}(\lambda)$ is both fuzzy G_{δ} and fuzzy F_{σ} for any fuzzy set λ in (Y,S).
- 7. f is said to be perfectly fuzzy G_{δ} -continuous, if $f^{-1}(\lambda)$ is both fuzzy open and fuzzy closed in (X,T) for any fuzzy G_{δ} -set λ in (Y,S).
- 8. f is said to be weakly perfectly fuzzy G_{δ} continuous, if $f^{1}(\lambda)$ is fuzzy open in (X,T) for any fuzzy G_{δ} -set λ in (Y,S).

Note : The identity function $i : (X,T) \rightarrow (X,T)$ is fuzzy G_{δ} -continuous

Remark : Since every fuzzy open set is fuzzy G_8 , every fuzzy continuous mapping is fuzzy G_8 -continuous. The converse need not be true See Example 1.

Example 1. Fuzzy G_8 -continuity fuzzy \neq > fuzzy continuity.

Let X = [0,1]. Define $T = \{0_x, 1_x, \lambda_n\}$ where $\lambda_n(x) = (n-1)/2n$ (n = 2,3,4,.....), $\forall x \in X$. Let $Y = \{p\}$. Define $S = \{0_y, 1_y, \mu\}$ where $\mu : Y \rightarrow [0,1]$ is such that $\mu(p) = \inf \{\lambda_n(x)\}_{n=2}^{\infty}$. Define

 $f: (X,T) \rightarrow (Y,S)$ as $f(x) = p, \forall x \in X$. Now,

$$f^{1}(\mu)(\mathbf{x}) = \mu f(\mathbf{x}) = \mu(\mathbf{p}) = \inf \{\lambda_{n}(\mathbf{x})\}_{n=2}^{\infty} = \bigwedge_{n=2}^{\sim} \lambda_{n}(\mathbf{x}). \text{ That is, } f^{1}(\mu) = \bigwedge_{n=2}^{\infty} \lambda_{n}(\mathbf{x}).$$

which is fuzzy G_{δ} . But $f^{-1}(\mu) = \lim_{n \to \infty} \lambda_n = 1/2$, is not fuzzy open. Therefore, f is fuzzy G_{δ} -continuous but not fuzzy continuous.

Definition 7. For any fuzzy set λ in (X,T) define the σ -closure of λ , denoted by $cl_{\sigma}\lambda$, to be the intersection of all fuzzy F_{σ} -sets containing λ . That is $cl_{\sigma}\lambda = \wedge \{\mu \in I^{X} / \mu \text{ is fuzzy } F_{\sigma} \text{ and } \mu \geq \lambda \}$.

Remarks if λ is a fuzzy F_{σ} -set, then $cl_{\sigma}\lambda = \lambda$. Also $\lambda \leq cI_{\sigma}\lambda \leq cI\lambda$.

Definition 8. A Fuzzy set λ in X is called fuzzy σ -closed if $\lambda = cI_{\lambda}$.

Note A fuzzy F_{σ} -set is fuzzy σ -closed.

Definition 9. For any fuzzy set λ in (X,T) define the σ - interior of λ denoted by $\operatorname{int}_{\sigma}(\lambda)$ to be the union of all fuzzy G_{σ} -sets contained in λ . That is $\operatorname{int}_{\sigma}(\lambda) = \bigvee (\mu \in I^X / \mu)$ is fuzzy G_{δ} and $\mu \leq \lambda$.

3. PROPERTIES

- 1. For any two fuzzy sets λ and μ of (X,T) we have
 - (i) $cl_{\sigma}0 = 0$

- (ii) $\lambda \leq \mu \Rightarrow cI_{\sigma}\lambda \leq cI_{\sigma}\lambda$.
- (iii) $\operatorname{cl}_{\sigma}[\operatorname{cl}_{\sigma}(\lambda)] = \operatorname{cl}_{\sigma}\lambda$.
- (iv) $cl_{\sigma}(\lambda \vee \mu) = cl_{\sigma}\lambda \vee cl_{\sigma}\mu$.
- (v) $\operatorname{int}_{\sigma}(\lambda \wedge \mu) = \operatorname{int}_{\sigma}\lambda \wedge \operatorname{int}_{\sigma}\mu$.
- (vi) For a fuzzy set λ of a fuzzy space X, 1-Int_{σ}(λ) = cl_{σ}(1- λ) and 1-cl_{σ} λ = int_{σ}(1- λ).

5

- 2. Let $f: (X,T) \to (Y,S)$ be fuzzy G_s continuous function. Then the following statements are valid.
 - (i) For a fuzzy set λ in X, $f[cl_{\sigma}\lambda] \leq clf(\lambda)$.
 - (ii) For any fuzzy set μ in Y, $cl_{\sigma}f^{1}(\mu) \leq f^{1}(cl\mu)$
 - (iii) If $\lambda \in I^{\gamma}$ is a fuzzy closed set, $f^{1}(\lambda) = cl_{\sigma}f^{1}(\lambda)$.
 - (iv) Let $A \subset X$ be a fuzzy subspace of X. Then the restriction $f/A: (A,T/A) \to (Y,S)$ is fuzzy G_{δ} continuous.
 - (v) If $f(X) \subset Z \subset Y$, then the mapping $g:(X,T) \to (Z,R)$ restricting the range of f is fuzzy G_8 -continuous.

3. Let $A \subset (X,T)$ be any non-empty subset of X. The inclusion map j; $(A,T/A) \rightarrow (X,T)$ is fuzzy G_{g} -continuous.

4. Let (X,T) and (Z,R) be fuzzy topological spaces and $Y \subset Z$ be a fuzzy subspace of Z. The mapping $h:(X,T) \to (Z,R)$ obtained by expanding the range of the fuzzy G_{δ} -continuous mapping $f: (X,T) \to (Y,S)$ is fuzzy G_{δ} -continuous.

5. An injective fuzzy open map is fuzzy G_8 .

6. Any fuzzy closed map is fuzzy F_{σ} but not conversely.

Example 2. Let X = [0,1]. Define $T = \{0_x, 1_x, \lambda\}$ where $\lambda(x) = 1/2, \forall x \in X$. Let Y = [0,1]. Define $S = \{0_y, 1_y, \mu_n\}$ where $\mu_n(x) = (n+1)/2n$ $(n = 2,3,...), \forall x \in X$. Define $f : (X,T) \rightarrow (Y,S)$ as $f(x) = x, \forall x \in X$. Now. $f(1-\lambda)(x) = 1/2, \forall x \in X$. This shows that f is fuzzy F_{σ} but not fuzzy closed in (Y,S).

7. If g of is fuzzy G_s and f is bijective fuzzy G_s - continuous map. Then g is fuzzy G_s .

8. If (X,T) and (Y,S) are fuzzy topological spaces, and f is a mapping from (X,T) to (Y,S), then the conditions below are related as follows.

(a) and (b) are equivalent; (a) and (c) are equivalent.

(a) f is M-fuzzy G_8 -continuous

(b) For every fuzzy set λ of X, $f(cl_{\sigma}\lambda) \leq cl_{\sigma}f(\lambda)$.

(c) For all fuzzy sets λ of Y, $cl(f^{1}(\lambda)) \leq f^{1}(cl_{\sigma}\lambda)$.

9. Let $f:(X,T)\to(Y,S)$ be a mapping from a fuzzy space X to another fuzzy space Y. Then if the graph $g:X\to X\times Y$ of f is strongly fuzzy G_{δ} - continuous, f is also strongly fuzzy G_{δ} - continuous.

10. Let $f:(X,T)\to(Y,S)$ be a mapping from a fuzzy space X to another fuzzy space Y. Then if the graph $g: X\to X\times Y$ of f is perfectly fuzzy G_{δ} - continuous, f is also perfectly fuzzy G_{δ} -continuous.

The converse need not be true. See example 3.

Example 3.

Let μ_1 and μ_2 be fuzzy set of I defined as

 $\begin{array}{l} \mu_1(x) \ = 0, \ 0 \le x \le 1/2 \\ &= 2x\text{-}1, \ 1/2 \le x \le 1 \\ \\ \text{and} \quad \mu_2(x) \ = 1, \ 0 \le x \le 1/4 \\ &= -4x+2, \ 1/4 \le x \le 1/2 \\ &= 0, \ 1/2 \le x \le 1 \end{array}$

Clearly T = {0, μ_1 , μ_2 , $\mu_1 \lor \mu_2$, 1} is a fuzzy topology on I. Let S = {0, μ_1 , 1}. Clearly (I,S) is also a fuzzy topological space and $\mu_2 \lor \mu_1$ is a fuzzy G₈-set of the fuzzy product space (I,T,) × (I,S).

Let $f: (I,T) \to (I,S)$ be defined by f(x) = 1(x) for each $x \in I$. Clearly $f-1(\mu_1)=1$ is both fuzzy open and fuzzy closed in (I,T). We have $g^{-1}(\mu_2 \times \mu_1) = \mu_2 \wedge f^{-1}(\mu_1) = \mu_2$. Now μ_2 is not fuzzy closed in (I,T) and hence g is not perfectly fuzzy G_8 continuous.

7

11. Let X, X_1 and X_2 be fuzzy topological spaces and $p_1: X_1 \times X_2 \rightarrow X_i$ (i=1,2) be the projection of $X_1 \times X_2$ onto X_i . Then if $f: X \rightarrow X_1 \times X_2$ is a fuzzy G_8 -continuous mapping, p_i f is also fuzzy G_8 -continuous.

- 12. If $f:(X,T) \to (Y,S)$ is fuzzy G_8 -homeomorphism, then
 - (i) $cl_{\sigma}[f^{1}(\lambda)] = f^{1}[cl_{\sigma}(\lambda)]$ where λ is a fuzzy set in Y.
 - (ii) $cl_{\sigma}[f(\lambda)] = f[cl_{\sigma}(\lambda)]$ where λ is a fuzzy set in X.
 - (iii) $f(int_{\sigma}(\lambda)] = int_{\sigma}(f(\lambda))$ where λ is a fuzzy set in X.
 - (iv) $f^{1}[int_{\sigma}(\lambda)] = int_{\sigma}[f^{1}(\lambda)]$ where λ is a fuzzy set in Y.

Definition 10. Let (X,T) be a fuzzy topological space. A fuzzy set λ in X is called generalized fuzzy F_{σ} if $cl_{\sigma}(\lambda) \leq \mu$ when ever $\lambda \leq \mu$ and μ is fuzzy G_{δ} . It is denoted by gf F_{σ} . A fuzzy set λ is called gf $G_{\delta} \Leftrightarrow 1-\lambda$ is gf F_{σ} .

Remark. For any fuzzy F_{σ} -set λ , $cl_{\sigma}\lambda = \lambda$. So that a fuzzy F_{σ} set is gf F_{σ} .

13. If λ_1 and λ_2 are gf F_{σ} -sets. Then $\lambda_1 \vee \lambda_2$ is a gf F_{σ} -set.

14. If λ is gf F_{σ} and if $\lambda \le \mu \le cl_{\sigma}\lambda$, then μ is gf F_{σ} .

Remark. However, the intersections of two gfF_{σ} -sets need not be gfF_{σ} -set as the following example shows.

Example 4. The intersection of two gfF_{σ} -sets not generally a gfF_{σ} -set. Let $X = \{x_1, x_2, x_3\}$. Define $\lambda_1, \lambda_2, \lambda_3 : X \to [0, 1]$ as follows $\lambda_1 = 0_x, \lambda_2 = 1_x$,

 $\lambda_{3}(x) = 0$ if $x = x_{2}, x_{3}$

= 1 if $x = x_1$.

Clearly T = { λ_1 , λ_2 , λ_3 } is a fuzzy topology on X. Define μ_1 , $\mu_2 : X \rightarrow [0,1]$ as follows

 $\mu_1(x) = 0$ if $x = x_3$,

= 1 if $x = x_1, x_2$.

$$\mu_2(x) = 0$$
 if $x = x_2$.

= 1 if $x = x_1, x_3$. It is easy to verify that μ_1 and μ_2 are gfF_{σ} - sets but $\mu_1 \wedge \mu_2$ is not gfF_{σ} .

15. If λ is a gfF_{σ}-set in X and if f:(X,T) \rightarrow (Y,S) is M-fuzzy G₈-continuous and fuzzy F_{σ} then f(λ) is gfF_{σ} in Y.

Example 5. Under fuzzy closed, fuzzy continuous maps gfG_{δ} -sets are generally not taken into gfG_{δ} -sets. Let $X = \{a\}$, $y = \{b,c\}$. Define $T = \{0_x, 1_x\}$, $S = \{0_y, 1_y, \lambda_1\}$ where $\lambda_1 : Y \rightarrow [0,1]$ such that $\lambda_1(x) = 1$ if x = b, $\lambda_1(x) = 0$ if x = c. Clearly T and S are fuzzy topologies on X and Y respectively. Define $f:(X,T) \rightarrow (Y,S)$ as follows $f(a) = c, f^{-1}(\lambda_1(a)) = \lambda_1 f(a)) = \lambda_1(c) = 0$. f is fuzzy continuous and fuzzy closed. Now we shall show that f does not take gfG_{δ} sets to gfG_{δ} -sets. Clearly 1x is gfG_{δ} in X. But $f(1x) = 1-\lambda_1$ which is not gfG_{δ} in Y.

16. In a fuzzy topological space (X,T), T_{gs} (the family of all fuzzy G_s sets) = $K_{F\sigma}$ (the family of all fuzzy F_{σ} -sets) \Leftrightarrow every fuzzy subset of X is a gf F_{σ} -set.

17. A fuzzy set λ is gfG₈ $\Leftrightarrow \mu \leq int_{\sigma}(\lambda)$ wherever μ is fuzzy F and $\mu \leq \lambda$.

18. If $\operatorname{int}_{\sigma}(\lambda) \leq \mu \leq \lambda$ and λ is $\operatorname{gfG}_{\mathfrak{s}}$, then μ is $\operatorname{gfG}_{\mathfrak{s}}$.

Definition 11.

Let $f: (X,T) \to (Y,S)$ be a mapping from a fuzzy topological space. X to another space Y.

1. f is said to generalized fuzzy G_{δ} -continuous, if $f^{1}(\lambda)$ is a gfF_{σ}-set in (X,T) for any fuzzy F_{σ}-set λ in (Y,S).

2. f is said to be fuzzy $gc-G_{\delta}$ - irresolute (f-gc-G_{\delta}-irresolute), if $f^{1}(\lambda)$ is a gfF_{σ} -set in (X,T) for any gfF_{σ} -set λ in (Y,S).

3. f is said to be strongly gfG_{δ} -continuous, if $f^{1}(\lambda)$ is both fuzzy G_{δ} and gfF_{σ} in (X,T) for any gfG_{δ} -set λ in (Y,S).

4. f is said to be perfectly fuzzy gfG_{δ} -continuous, if $f^{-1}(\lambda)$ is both fuzzy G_{δ} , and fuzzy F_{σ} in (X,T) for any gfG_{δ} -set λ in (Y,S).

20. Let (X,T), (Y,S) and (Z,R) be fuzzy topological spaces and $f:(X,T) \rightarrow (Y,S)$, g: $(Y,S) \rightarrow (Z,R)$.

9

Then the following statement are valid.

- 1. If f and g are fuzzy G_8 then g.f is too.
- 2. If f is M-fuzzy G_{δ} -continuous and g is fuzzy G_{δ} -continuous then g. f is fuzzy G_{δ} -continuous.
- 3. If f and g are M-fuzzy G_8 -continuous, then g. f is too.
- 4. If f is fuzzy gc-G_{δ}-irresolute and g is gf G_{δ}-continuous then g.f is gf G_{δ}-continuous.
- 5. If f and g are fuzzy $gc-G_8$ -irresolute, then g.f is too.
- 6. If f and g are fuzzy G_8 -continuous, then g.f is too.
- 7. If f is perfectly fuzzy G_8 -continuous and g is strongly fuzzy G_8 -continuous, then g f is perfectly fuzzy G_8 -continuous.
- If f is perfectly gfG_δ-continuous and g is strongly gfG_δ-continuous, then g.f is perfectly fuzzy gc G_δ- irresolute.
- If f is M-fuzzy G_δ-continuous, and g is strongly gfG_δ-continuous, then g.f is strongly gfG_δ-continuous.
- 10. If f is gfG_{δ} -continuous and g is strongly gfG_{δ} -continuous, then g.f is fuzzy $gc-G_{\delta}$ -irresolute.
- 11. If f is strongly gfG_{δ} -continuous and g is fuzzy $gc-G_{\delta}$ irresolute, then g.f is strongly gfG_{δ} continuous.
- 12. If f is fuzzy G_{δ} -continuous and g is perfectly fuzzy G_{δ} -continuous, then g.f is M-fuzzy G_{δ} continuous.

4. INTERRELATIONS

For the mapping $f:(X,T)\rightarrow(Y,S)$, the following statements are valid.

1. f, strongly fuzzy G_{δ} -continuous \Rightarrow f, fuzzy G_{δ} -continuous,

f, strongly gfG₈-continuous,

f, gfG_{s} -continuous, f, M-fuzzy G₈-continuous, f, f-gc-G₈-irresolute, f, fuzzy G₈-continuous, f, f-gc-G₈-irresolute, f, M-fuzzy G₈-continuous, f, gfG₈-continuous, f, weakly perfectly fuzzy G₈continuous f, fuzzy G₈-continuous, f, gfG₈-continuous, f, M-fuzzy G_{δ} -continuous, f, strongly gfG_8 -continuous, f, gfG_{δ} -continuous, f, M-fuzzy G_{δ} -continuous, f, f-gc-G₈-irresolute, f, fuzzy G₈-continuous, f, gfG₈-continuous, \Rightarrow f, fuzzy G₈-continuous, f, M-fuzzy G₈-continuous, \Rightarrow

⇒ f, W-Iu22y G₈-continuous,
f, fuzzy G₈-continuous,
f, gfG₈-continuous,
⇒ f, gfG₈-continuous.

2. f, strongly gf G_{δ} -continuous

3. f, perfectly fuzzy G_{s} -continuous \Rightarrow

4. f, perfectly gf G_8 -continuous

5. f, M-fuzzy G_8 -continuous

6. f, weakly perfectly fuzzy G_8 -continuous

7. f, f-gc- G_8 -irresolute

Example 6.

Fuzzy G_{s} -continuity/M-fuzzy G_{s} -continuous \neq >

- a. Strongly fuzzy G₈-continuity
- b. f-gc- G_8 -irresolute
- c. Strongly gf G_{δ} -continuity
- d. Perfectly gf G_8 -continuity
- e. Perfectly fuzzy G_8 -continuity
- f. Weakly perfectly fuzzy G₈-continuity.

Let X = {a,b,c,}. Define T = {0x, 1x, λ } where $\lambda : X \rightarrow [0,1]$ is such that $\lambda(a) = 1$, $\lambda(b) = \lambda(c)=0$ and S={0x, 1x}. Define f: (X,T) \rightarrow (X,S) as f(a) = b, f(b) = a, f(c) = c. Now f¹(1x), f¹(0x) = 0x. Therefore, f is fuzzy G₈-continuous/M-fuzzy G₈-continuous.

Define a fuzzy set μ : X [0,1] such that $\mu(a) = \mu(c) = 0 \mu(b) = 1$.

(a) f is not strongly fuzzy fuzzy G_{δ} -continuous. For the set μ , $f^{1}(\mu)(a)=1$, $f^{1}(\mu)(b) = 0$, $f^{1}(\mu)(c)=0$. Therefore $f^{1}(\mu) = \lambda$ is fuzzy G_{δ} but not fuzzy F_{σ} in (X,T). Therefore, f is not strongly fuzzy G_{δ} -continuous.

(b) f is not f - gc - G_{δ} - irresolute.

 $cl_{\sigma} \mu = 1$. Therefore μ is gfF_{σ} in (X,S) $f^{1}(\mu)(a) = 1$, $f^{1}(\mu)(b) = 0$, $f^{1}(\mu)(c) = 0$, $f^{1}(\mu) = \lambda$. $cl_{\sigma} f^{1}(\mu) = cl_{\sigma}\lambda = 1 \ll \lambda$. But $f^{1}(\mu)$ is not gfF_{σ} . Hence **f** is not **f** - gc - G_{δ} -irresolute.

(c) f is not strongly gf G_8 -continuous.

 $cl_{\sigma}\mu = 1$. Therefore, μ is gfF_{σ} in (X,S). But $f^{-1}(\mu) = \lambda$ which is fuzzy G_{δ} but not gfF_{σ} in (X,T). Therefore **f** is not strongly gfG_{δ} -continuous.

(d) f is not perfectly gfG_{δ} - continuous. For μ , $f^{1}(\mu) = \lambda$ is fuzzy G_{δ} in (X,T) but not fuzzy F_{σ} in (X,T). Therefore, f is not perfectly gfG_{δ} -continuous.

(e) f is not perfectly fuzzy G_8 -continuous.

Let X = {a,b,c}. Define T = {0x, 1x, λ } where $\lambda : X \rightarrow [0,1]$ is such that $\lambda(a) = 1, \lambda(b) = \lambda(c) = 0$. S={0x, 1x, λ } where $\mu : X \rightarrow [0,1]$ is such that $\mu(a) = 0$, $\mu(b) = 1, \mu(c) = 0$. Define f: (X,T) \rightarrow (X,S) as f(a) = b, f(b) =a, f(c) = c.f¹(1x) = 1x, f¹(0x) = 0x, f¹(\mu)(a) = 1, f¹(\mu)(b) = 0 f¹(\mu)(c) = 0, f¹(\mu) = \lambda which is fuzzy G_{δ} in (X,T). Therefore, f is fuzzy G_{δ} -continuous/M-fuzzy G_{δ} -continuous. But for G_{δ} set μ in (X,S), f¹(μ) is not fuzzy closed. Therefore f is not perfectly fuzzy G_{δ} -continuous.

(f) f is not weakly perfectly fuzzy G_{δ} -continuous.

Let X = [0,1]. Define T = {0x, 1x, λ_n } where $\lambda_n = (n-1)/2n$ for n = 2,3,... S = {0x, 1x, λ_n }. Define f: (X,T) \rightarrow (X,S) as f(x) = x $\forall x \in X$. f¹(λ_n) = $\lambda_n \forall_n$. f¹(0x) = 0x, f¹(1x) = 1x. Therefore f is fuzzy G_{δ} -continuous/M-fuzzy G_{δ} -continuous. But for fuzzy G_{δ} set $\bigwedge_{n=2}^{\infty} \lambda_n = 1/2$ in (X,S), f¹($\bigwedge_{n=2}^{\infty} \lambda_n$)=1/2 is not fuzzy open in (X,T). Therefore f is not weakly perfectly fuzzy G_{δ} -continuous.

Example 7.

 gfG_{δ} - continuity $\neq>$

- (a) fuzzy G_s -continuity
- (b) M-fuzzy G_8 -continuity

Let X = {a, b, c}. Define T = {0x, 1x, λ } where $\lambda : X \rightarrow [0,1]$ is such that $\lambda(a)=0, \lambda(b)=\lambda(c)=0. S=\{0x, 1x, \mu\}$ where $\mu : X \rightarrow [0,1]$ is such that $\mu(a)=0, \mu(c)=1, \mu(b)=0. f: (X,T) \rightarrow (X,S)$ as $f(a) = a, f(b) = c, and f(c) = a, f^{-1}(1-\mu)(a) = 1, f^{-1}(1-\mu)(b) = 0, f^{-1}(1-\mu)(c)=1$ and $cl_{\sigma}f^{-1}(1-\mu)=1. f^{-1}(1-\mu)$ is gfF_s in (X,T). Therefore, f is gf G_s-continuous.

a. f is not fuzzy G_8 -continuous

For the fuzzy open set μ , $f^{1}(\mu) = (0, 1, 0)$ is not fuzzy G_{δ} . Therefore **f** is not fuzzy G_{δ} -continuous.

b. f is not M-fuzzy G_8 -continuous.

For the fuzzy G_{δ} set μ in (X,S), $f^{1}(\mu)$ is not fuzzy G_{δ} . Therefore **f** is not **M**-fuzzy G_{δ} -continuous.

Example 8.

Perfectly fuzzy G_{δ} -continuous $\neq >$

- (a) f-gc- G_{δ} -irresolute
- (b) Strongly fuzzy G_{δ} -continuity
- (c) Strongly gfG_8 -continuity
- (d) Perfectly gfG_8 -continuity

Let X = {a,b,c}. Define T = {0x, 1x, λ_1, λ_2 } where $\lambda_1: X \rightarrow (0,1)$ is such that $\lambda_1(a)=1, \lambda_1(b)=1$ and $\lambda_1(c)=0; \lambda_2: X \rightarrow [0,1]$ is such that $\lambda_2(a) = 1, \lambda_2(b)=0$ and $\lambda_2(c)=0$. Define S = {0x, 1x, λ_1 } $\lambda_1: X \rightarrow [0,1]$ is such that $\lambda_1(a) = 1, \lambda_1(b)=1$ and $\lambda_1(c) = 0$. Also define f: (X,T) \rightarrow (X,T) as f(a)=a, f(b) = a and f(c) = b. f¹(λ_1)(a)=1, f¹(λ_1)(b)=1, f¹(λ_1)(c) = 1, and f¹(λ_1) = 1x which is both fuzzy open and fuzzy closed in (X,T). Therefore **f** is **perfectly fuzzy** G_{δ} -continuous. Define $\mu: X \rightarrow [0,1]$ as $\mu(a)=1, \mu(b)=0, \text{ and } \mu(c)=1$.

(a) f is not f-gc- G_8 -irresolute.

 $cl_{\sigma}(\mu) = 1$. Since μ is not less than any fuzzy G_{s} set other than 1, μ is gfF_{σ} in (X,S). $f^{1}(\mu)(a)=1$, $f^{1}(\mu)(b)=1$, $f^{1}(\mu)(c)=0$, and $cl_{\sigma}f^{1}(\mu) \neq 1 \ll \lambda_{1}$. This shows that $f^{1}(\mu)$ is not gfF_{σ} . Therefore **f** is not **f**-gc- G_{s} -irresolute.

(b) f is not strongly fuzzy G_8 -continuous.

In the above example, $f^{1}(\mu) = \lambda_{1}$ which is fuzzy G_{δ} in (X,T) but not fuzzy F_{σ} in (X,T). Therefore **f** is not strongly fuzzy G_{δ} -continuous.

(c) f is not strongly gfG_8 - continuous.

1- μ is gfG_δ in (X,S) but $f^1(1-\mu)$ is not fuzzy G_δ in (X,T). Therefore **f** is not strongly gfG_δ-continuous.

(d) f is not perfectly gfG_8 - continuous

1- μ is gfG₈ in (X,S) but f¹(1- μ) is not fuzzy F₀ and not fuzzy G₈ in (X,T). Therefore **f** is not strongly gfG₈-continuous.

Example 9.

Weakly perfectly fuzzy G_8 -continuity $\neq >$

- (a) $f-gc-G_{\delta}$ -irresolute
- (b) Strongly fuzzy G_8 -continuity
- (c) Perfectly gf G_{δ} -continuity
- (d) Strongly gf G_8 -continuity

Let $X = \{a, b, c\}$. Define $T = \{0x, 1x, \lambda\}$ where $\lambda : X \to [0,1]$ is such that $\lambda(a) = 1$, $\lambda(b) = \lambda(c) = 0$. Define $S = \{0x, 1x\}$. Also define $f : (X,T) \to (X,S)$ as f(a) = b, f(b) = a, f(c) = c. $f^{1}(0x) = 0x$ and $f^{1}(1x) = 1x$. Therefore f is weakly perfectly fuzzy G_{g} continuous.

a. f is not f-gc- G_8 -irresolute

Define $\mu : X \to [0,1]$ such that $\mu(a) = 0$, $\mu(b) = 1$ and $\mu(c) = 0$. $cl_{\sigma}\mu = 1$. Hence μ is gf F_{σ} in (X,S). But $f^{1}(\mu) = \lambda$, $cl_{\sigma}f^{1}(\mu) = 1 > \lambda_{1}$. This shows that $f^{1}(\mu)$ is not gf F_{σ} in (X,T). Therefore **f** is not **f**-gc- G_{δ} -irresolute.

b. f is not strongly fuzzy G_8 -continuous.

For the set μ in (X, S), f⁻¹(μ) is fuzzy G₈ but not fuzzy F_{σ} in (X, T). Therefore f is not strongly fuzzy G₈- continuous.

c. f is not perfectly gfG_8 -continuous.

 $f^{1}(\mu) = \lambda$ is G_{δ} but not fuzzy F_{σ} in (X,T). Therefore f is not perfectly gfG_{δ} -continuous.

d. f is not strongly gf G_8 -continuous.

 $f^{1}(\mu) = \lambda$ is not gfF_{σ} in (X,T). Therefore, f is not strongly gfG₈-continuous.

ON SOME GENERALIZATION ... G₈- CONTINUOUS MAPPINGS 15

Weakly perfectly fuzzy G_8 -continuity \neq > perfectly fuzzy G_8 -continuity.

Let $X = \{a,b,c\}$. Define $T = \{0x, 1x, \lambda\}$ where $\lambda : X \rightarrow [0,1]$, is such that $\lambda(a)=1$, $\lambda(b)=\lambda(c)=0$. Define $S = \{0x, 1x, \mu\}$ where $\mu : X \rightarrow [0,1]$, is such that $\mu(a) = 0$, $\mu(b) = 1$ and $\mu(c) = 0$, Define $f : (X,T) \rightarrow (X,S)$ as f(a) = b, f(b) = a and f(c) = c, $f^{1}(1x) = 1x$, $f^{1}(0x)=0x$ and $f^{1}(\mu)=\lambda$. Therefore, **f** is weakly perfectly fuzzy G_{δ} -continuous. For the fuzzy G_{δ} set μ in (X,S), $f^{1}(\mu)$ is fuzzy open but it is not fuzzy closed in (X,T). Therefore **f** is not perfectly fuzzy G_{δ} -continuous.

Remarks

e.

From the results proved so far, we have the following table of implication. In the following table a,b,c,d,e,f,g,h and i denote fuzzy G_{δ} -continuity, gfG_{δ} -continuity, fuzzy $gc-G_{\delta}$ -irresolute, strongly fuzzy G_{δ} -continuity, perfectly fuzzy G_{δ} -continuity, strongly gfG_{δ} -continuity, perfectly gfG_{δ} -continuity and weakly perfectly fuzzy G_{δ} -continuity respectively. Also 1 denotes 'implies', 0 denotes 'does not imply' and - denotes 'not known'.

⇒	a	b	c	d	е	f	g	h	i
a	1		0	0	0	0	0		0
b	0	1	-		-		2000 - 2008 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	0	e -
с	-	1	1	-	-		-	-	12
d	1	1	10	1	897 <u>0</u> 8	1	й IA ,	1	0.04
e	1	1	0	0	1	0	0	1	1
f	1	1	1	entr e ha	80 - 1	1	in ' d	1	ia "i
g	1	. 1	1	op e st t	4 - 0,	1	1	1	÷.
h	1	1	0	0	0	0	0	1	0
i	1	1	0	0	-	0	0	1	1

ACKNOWLEDGEMENT

The author is thankful to the referees for their helpful suggestions towards the improvement of this paper.

REFERENCES:

- 1. K.K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1981), 14-32.
- 2. G. Balasubramanian, Maximal Fuzzy Topologies, KYBERNETIKA, 31(1995), 459-464.
- G. Balasubramanian, Fuzzy β-open sets and fuzzy β-separation axioms, KYBERNETIKA, 35 (1999), 215-223.
- 4. A.S. Bin Shahna, On fuzzy compactness and fuzzy Lindelofness, Bull. Cal Math. Soc. 83 (1991), 146-150.
- C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1958), 182-190.
- 6. Rekha Srivastava, S.N.Lal and Arun K.Srivastava, Fuzzy Hausdorff topological spaces, J.Math Anal. Appl., 81(1981).
- M. Smets, The degree of belief in a fuzzy event, Inform. Sci., 25(1981), 1-19.
- M. Sugeno, An introductory survey of fuzzy control, Inform. Sci., 36(1985), 59-83.
- 9. L. A. Zadeh, Fuzzy sets, Information and Control., 8(1965), 338-353.