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Abstract
In this paper we work on factorization in f -integral domains,

factorization in f -unique factorization domains and factorization in I- -
principal ideal domains. We have developed some character,zations of
these above domains"

1. Introduction

V. Sahai and V. Bist [6] worked on factorization in integral domains. They

have developed some characterizations. Haram Paley and Paul M. weichsel [5]
characterized factorization in unique factorization domains and principal ideal

domains.

In this paper we generalizethe above mentioned works in gamma rings due

to Barnes [1]. The main theorems we have proved are the following : A non-unit

element a of a I -PID has a factorization into primes and every r -PID is a f -UFD.

Some other characterizations are studied in this note.
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2. Preliminaries.

2.1 Definitions

Gamma Ring : Let M and Ibe two additive abelian groups. Suppose that there is a

mapping from Mx f x M e M (sending (x, u, y) into xay) such that

(i) (, * yh z: xsz + yM

,(o, + 9)r: xw * x$z

*a(Y +'): *aY + xctz

(ii) (*ay)gr: xa(yBz),

where x, j, z e M and a, P e I .Then M ts called a I- -ring. This'defirrition is due to

Barnes i1l. x

Ideal of f -rings :A subset A of thei--ring M is a left iright) idealof M if I is an

additive subgroup of M and MfA={r"ol" eM,c* el,a e l}(dru)is contained

in A. If I is both a left and a right ideal of M, then we say that A is an ideai or two-

sided ideal of M.

If A andB are both left (respectively right or two-sided) ideais of M, then

A + B = \a + bla e A,b e f ) it clearly a left (respectively right or two-sided) ideal,

called the sum of A andB. We can say every finite sum of left (respectiveiy right or

two-sided) ideal of a f -ring is also a left (respectively right or two-sided) ideal.

It is ciear that the intersection of any number of left (respectively right or

two sided) ideal of Mis also a left (resprectively right or two-sided) ideal of M.

If I is a left ideal of M, B is a right ideal of M and S is any non-empty

subset of M,thenthe set, .4fS = {f ",, 
s,la, e A,y e I,s, e S, ris a positive inteser} is

Lr=r )

a left ideal of M and SfB is a right ideal of M. AIB is a two-sided ideal of M.
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If aeM, then the principal ideal generated by a denoted aV \")is the

intersection of all ideals containing a and is the set of all finite sum of elements of
the form na * xa,a + ,Fy + uyaltv, where r is an integer x, !, u, y are elements of M
and cr, fr, y, lt are elements of I-. This is the smallest ideal generated by a. Let
qe M. The smallest left (right) ideal generated by a is called the principal left (right)

idear (al(la))

Identity element of a I--ring : Let M be a f-ring. M is called a f-ring with identity
if there exists an element ee M such that

aye : eya: a for all ae M and some ye I.
we shali frequently denote e by I and wh.en M is a f-ring with identity, we shall
often write 1e M. Note that not all I--rings have an identity. when a f-ring has an

identity, then the identity is un;que.

commutative l-ring : Let M be a f-ring . M is called a commutative f-ring if
ayb : bya for all a, b e M and y el.
Zero Divisor : Let Mbe a f-ring. An element a* 0 inMis called aleftzero divisor
if there exists an eiement b * 0 inM such that ayb: 0 for some y€ f . Similarly, an

element b*0 intll is called a right zero divisor if there exists an element a*0 in
M such that ay b: 0 for some 1z€ l. A zero divisor is an eiement that is either a left
or a right zero divisor .If M is a commutative l-ring, then the concepts of left and

right zero divisor coincide.

f-integral domain : Let M be a commutative f-ring such that reM. lf M has no
zero divisors, then we call M al-integral domain.

Principal ideal : An ideal A of a f-integral domain M is called a principal ideal of
M lf A is generated by a single element ae M, that is, A: ay M for all y e f.
f-Principal ideal domain : A f-ring Mis calied a f-principal ideal domain (I--PID for
short) if M is f-integral domain and every ideal of M is a principat ideal.
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Prime ideai : Let M be a commutative f-ring. An ideal K rt M is called a prime

ideal if whenever ay be K, a€ M, be M and'some y€ Ir, then either ae K ot be K'

Maximal i<leal : An ideal R in a f-ring M is calied a maximal ideai in M if (1) Rc"M

and (ii) whenever I is an ideal in M such that Rc L c M, then either I : 'R or

T 
- 

ITL - LUl.

Division gamma ring : Let M be af-ring. Then M is cailed a division f-ring if it

has an identity element and its only non-zero ideal is itself. A commutative division

f-ring is called a f-field.

Multiplicatively closed sub set of a f-ring : A non empty sub set ,s of a f-rin g M is

said to be multiplicatively closed if xy yeS whenever x, ye S and some y ef '

We neecl the following three Theorems due to V. Sahai and V. Bist [6] in

ring theory. we modify these theorems in gamma rings rvhich are needed to our

next works.

2.2 Theorem :Lel M be a commutative f-ring with identity and iet Abe an ideal of

M.\f sis a multiplicatively closed subset of M withA-s is empty, then the family

.tr of all ideals B of M which contain A arld Bns is empty possesses a maximal

element; and such a maximal element is a prime ideal of h['

2.3 Tlreorem : Let M be a commutative f-ring with identity. An ideal K of M is

prime if and only if YU* a f-integral domain'

2.4 Theorem : Let M be a commutative f-ring with identity. Let K be maximal

ideai in M.Then K is a Prime ideal'

The proof of the above three theorems are similar to that of the ring theories'

3. Some Factorization in l-integral Domains

3.1 Definition : Let Mbe al-integral domain. If m arlds are elements of M, then

we say ru divides s (in synbols zls) if there exists an element te M suchlhat s : my t

for some y(-f .In this case m is called a factor or a divisor of .s.
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3.2 Definition : Let M be a f-integral domain. An element ae M rs called a unit in

M if thereexists be M such that ay b : I for some y€ l.

3.3 Definition: Let Mbe a f-integral domain. Non-zero eiements a and b are

called associates if alb arrd bla. Note that llm for every m in M. AIso, if u is a unit

in M, then u and I are associates.

3.4 Theorem -. Lel a and b non-zero elements in a l-integral domain. Then

(i) a divides b if and only if (A) . (r)

(ii) a and b are associates if and only if (") = (A)

(iii) a is a r"rnit in M ifand only if (a) - M .

Proof : {r)If alb,then6:ayxforsomex€ Mandyef.Thus be(a) andso (f)=(")

Conversely, ir (b)g(o), then be (a) and so b: ayx for some xeM andy€1,

that is, alb.

(ii) follows easily frorn the definition 3.3 and (i)

(iii) follows from (ii) as a and 1 are associates and (rl = m

3.5 Theorem : Let a and 6 be non-zero elements in a f-integral domain M. Then ct

and b areassociates if and only if there exist a unit u in M such that b : ay u for

some y € l.

Proof : Suppose that a and b are associates. Then alb and bla, there exist u, v in M

such that b: atfu and a: byv for some Ie l. Now,

a=byv

=(oyu)y,

= ay Qtyv)

!
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So, 4- ay(,ryv):g

Thus cy (l -,ryr): O .

This impliesthatl-uyv:0, since a*0. Hence u\ft: l. Therefore u is aunit.

Conversely, let b : ayu for some y e I-, where u is a unit in M. Then we
have alb.

Therefore,

hr-'.:(ry")yu-'

> byr*' : "v@"-')

= bYu-t : ayl

sbyu-t =4. Hence a : byut.Thus bla. Hence a and b are

associates. Thus the theorem is proved.

3.6 Definition : Let Mbe af-integral domain.

(i) An element h of M is irreducible if a is a non-zero, non-unit element and if
a: xyy for some ye I-, then either x or y is unit.

(ii) An element k of M is prime if k is a noi-zero, non-unit element and. if klxnly for
some I€ I, then klx or kly.

It follows immediately from the above definition that every associate of a
prime (respectively irreducible) element is also prime (respectively irreducible).

3.7 Theorem : Let k be a non-zero element of a f-integral domain M. Then k is a

prime if and only if (f) is prime ideal.

Proof : Let kbe prime, then ft is a non-zero non-unit. So (/.) #0and (k) * U . rc
xye M suchthat .nyy'e (f ) for some y€ f, then klxyy and.so frlx or fr[y. Thus * e (X)
or / € (fr). rnerefo." (f) is a prime ideal.

80
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Conversely, fet (/r) be a prime ideai, since k*0 and (tcl*lrt, so kis not

a unit. If klxyy for some ye f, then ,yy . (k) and so , e (f) or I € (fr) . uence klx

or kly. Therefore A is a prirne element of ,L1" Thus the theorem is proved.

3.8 Tlieorem :Let h{ be a f-integral domain.

(i) If kis aprime element of M and kl(a;yary ..rya,)for some ye i-, then

kla, for some index r.

(ii) Every prime element is irreducible.

(iii) If krTkzy . . "yk, : el{7zT . . "^yq, for some I€ I-, where elements k and

q are primes, then s : t. Further, there exists a permutation o"€ S, such

that k and ?oi;l are associates. This lneans that the decomposition into

primes is unique upto rearrangement of factors or multiplication of
lactors by units.

Proof : (i) By induction on l. The case l: 2 is trivial. Now frl(rz,ya il . . .'ya,-tlc, implies

that kl(ar^{azT . . .Ta, ,) or kla,.lf kla,, then we have proved the statement; other r.vise

,l
klar^'1ary ..."!at_t and so by induction hypothesis llc, for some r : 1,2,. . .. i-1.

(ii) Let ke M be a prime. If k : ay b for some I€ f, then kla or klb. Without any ioss

we can assume that klb. Then 6 : kyx for some xe M. Therefore,

ayb = aylqx

) k: aylryx

+ k - aYlrYx:O

=> k - tqayx- Q, since M is commutative

= tct Q - ayx): g

- 1- alx:0, since fr + 0.Thus alx= i.Henceaisaunit.Thusfrisirreducible.
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(iii) Without any loss we can assume that s ( l. Suppose first that s < l. Then

kifkry...yk,=QJQzy...yq, for some y ef with s < t. Since each k. divides

elQzy ...yq, by (i) there exists {,., such that k,le,rand so e,r- k,T*, for some xeM
and 7e f. Therefore

k,T k.y ...y k, =(k,y kry .. y k,)y (*;r rry ...y *,\q'

where q'is product of remaining primes from {q,, Q2, . ., q,}.But then it implies

that (x,y x2T ...y *,\ q'= 1 , that is, q' is a unit. This is a contradiction. Hence s: /.

Now we prove by iduction on r that if krykry ...T k, : qi(qrT ...TQt,then there

exists oe S, so that k,ard Q o<,lare associates. If l: 1, then the hypothesis is clearly true.

Suppose that the hypothesis is true for all r < /. Now tf kykry ...Tk,:4ilQzT ...TQ,,

then k,lq;yqzT ...yQ,. Thus k,lgofor some index & and so Qo: uyk,for some ue M.

Since qo is prime and so irreducible, u is a unit in M. Therefore qoand k,are

associates. Now

ki{kry ...yk,-i'tk, = QIQ)Y -"YQn-il QnT Qn*i{ "'T4,

+ k,ykry ...Tk,-rTk, = eilQzT ...yQn-il ?yk,)y Qn*tT "..yQ,

+ k;yk;y ...Tk,_ryk,=uyq{yq;f ...Tqr,_flkiyQn+ff ...TQt, since M is

commutative. Dividing by k,on both sides, we get.

W k;t ...T k,-t : uy qit qzy -..Y Q n-rT Q n*i{ .. -T Q,

By induction hypothesis, there exists a one-one and onto mapping ofrom {1,2, . . . , t}

to {1, 2, . . . h -1, h1 1, . . ., l} such that k ar.d Qo,)are associates. Now define

o(t): /2, to obtain the claim. Thus the theorem is proved.

3.9 Theorem : Let ftbe a prime in a l-integral domain. If q is an associate of fr, then

q is a prime.

The proofis obvious.
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4. Factorization in l-Unique Factorization domains

4.1 Definition : A I-integral domainMis a l-unique factorization domain O-UFD) if
it satisfies followin conditions :

(i) every non-zero, non-unit element a of M canbe written as 4 : krykrT. . . yk^for

some y€ l, where kt, kz, . . ., kn, ate irreducible elements is M and

(ii) if a : krykrT. . . yk,anda: QJQzT. . .T4,fot some y€f, where kpkz,. . ',k,,

Q1, e2, . . ., erare irreducibles, then n: t and for some permutation O e S, each q- is

an associate ofk*r.

If we defrne a relation - on a l-integral domainMby a-b, if a is an associate

of 6, then - is an equivalence relation. Since a is associate of b if and only if
(r) = (a) (by Theorem 3.4). Also we have a is an associate of b if and only if a : uTb

for some unit u in M and some 7e I (by Theorem 3.5). Thus if Tdenotes the

equivalence class of a, then a : {uyb I u is a unit in M and some 7e I}-
Let Mbe a I-UFD. If a is a non-zero non-unit in M, then by part (i) of the

above definition we have a: cr! crT . . . yc,for some 7€ I-, where c, cz, - . -, ctare

irreducibles in M. If w e collect all associates of these irreducibles together, then it

is easy to see that we can write a as a = uy (kiy Y' t ;v &X Y' t;r .4 (kJ )" t, ,
where u is a unit, fr,, kr, : : ., knate irreducibles such that no two of these are

associates. More precisely, k-1, Er,...,Enur" distinct equivalence classes- Further,

part (ii) of the above definition says that these equivalence classes and positive

integers ttrt.rut2t mn ate uniquely determined by a- Thus if also

a=vy(q,yI'q;f {q1l'q;f ...V(q1fhqo with,v, a unit and 4r,42,-.-,q.distinct

equivalence classes, then h: n andfor some o e S, we have E,:lorufot all i: 1,

4.2 Theorem : Let M be |-UFD. An element aof Mis pnme :: ":.,'- . -.--: -:-e.

Proof :ByTheorem3.8, if ais aprimeelement of -11.::..: .: - --.--:-:-e.
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If 1 is the gcd of A,then we say that the set I is relatively prime' Note that any two

gcd,s of A are associates. Thus the gcd, if it exists, is well defined up to

multiplication by a unit.

4.5 Theorem :Let Mbea |-UFD and let Abe anon-empty subset of M\{0}' Then

there exists a gcd of A.

Proof : Since M is a r-UFD, each ae A can be written in the forrr:r

a-uT(",y)'c;r(c;r)"r;t...y(r,Y'c,.forsomeye l'whereuisaunit' c"c2'' ''c'

are irreducibles in M with no two of these irreducibles being associates and h, >-l for

alli:l,2,...,r.Define D(a)={rr,"r,.".,e,.},where Tistheequivalenceclassof

c with equivalence relation - on Mdefined by a-b if and only if n is an associate of

&.clearlyD(a)isfinite.cbserve thatD{.*) isemptyif anclonl,vif aisaunit'Let

p = n{n(o\a e a}. Since each D(a) is finite, so D is a finite set.

If a'eAis a unit, then a gcd of .4 is 1. Since if eeMand ela fot all

a e A , then in particular ela' arrd so e is a unit' Thus e l1'

If all elernent of ,4 are non-units, then D(a) is non-empty for all oe A. First

assume that D is empty" In this case we claim that tr is a gcd of ,4. For this, it is

sufficient to show lhat if ee M arrd ela tot all ae A, then e is a unit. If e is not unit,

then there exists an irreducib le ce M such that cle. Since ela fot all ae A, so cla for

all ael. Thus c e D, a contradiction as D is empty'

Now assume that D ={4r'42'"''q,}' u non-empty set with I distinct

elements. Then to each aeA, there exists positive integers z,(a) such that

(k,y)*'@ k,la and (k.y)*ib)*tft, does not divide a for all i:1,2,. . ' , I and some 7e 
'.'

Clearly; then every aeA canbe written u, o=(W)^@p"(1r"f(d;'X "'y(t'il't@)p,ro'

for some ye l, where a' eM .Lel m,min= {m,(a)laeA\ for i:1,2, ' ' ' , I and

.-<{
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d =(kry)"'kry (Ary )"'' kzT ...T(k,y)"' k, for some T€ f. Then dla fot all ae-l' Nou

we will show that d is a gcd of A. L,et ee M and ela for all ae A" lf e is a unit. lle:-

clearly eld.Iteisanon-unit,then e=v{ (q,y)" q,T(qry)"qry...y\q,y)"q,forsc:re

ye I-, where v is a unit, 41, Q2, . ., Qnare irreducible such that no two of these a:e

essociates an s, 2l fori: I,2,..., r. Since Q,lesoQ,laforalla.- A.Thus 1, e D i'r:

allT= 7,2,. ..rr.Tlterel'o...{% -q.,...,4,icDso n(I.AIso,il shorvslhaie"' '

q is an associate of some fr- . Thus q j: ujy ki lbr some unit u, tn M and y e f

Now e --qlqr^t)"{,y...y (q,y)"8n:vr{ (u,,r}'k,rTfu,r\i'k,ry ^,(!',,r1't '\\:':-

w-\\ (r,y )",r;'1 {u",.y}" *ry.."y(u,,Y)'" il,., a unit in&1' Now again as (^",''''l'':

fcraii n.eAan-c,i='i.2, ..,t1,b3rdefinitii:nofirr,.,'veget sj!,o,, .'Iirereir:;';

i'ience tht: th*crem is i:r*'"ed'

5. *reetr.rrisaticlra ifi {'l*Priqxelg:aE ide*l dorxailrs

5.j 'i'i:er--re:ri: l,rt ir i:e a llor-zcrrc elenierit in z tr-PiD M.'ihen c is irr':'i'"';: ' '
and oniy if ici is a maxi:r:.al ideal of :1,{"

proof : Ler ce,11 is irreducible. ihen (c)+0and (c) * M as c is n,):.'.';-

nonunit. Now suppose that there exists c in M such tirat (c) G (4, : -' i -' -

(r)+("1. Then c: ayx for some xeM and yeI. If x is a unit, then c a:; ,,::

associates (by Theorem 3.4), so (4 = (r) , a contradiction. Hence a musi ie :. ..:

Therefore ("): u ' Hence (c) it a maximal ideal of M'

Conversely, Iet (c) is a maximal ideal in M. Then c is not a unii Ii .: : ,'.^''.i -:-',

(.)=(") c:M and \cl*M. Then (r)=(r). Therefore c=oyufor s..::e *r- r,._

M and ye f (by Theorem 3.5). Hence c is irreducible. Thus the theorer :s ::.-".ej.



88 Md. Sabur Uddin and A.C. Paul

5.2 Theorem : Let M be a f-PID and A be a non empty subset of lz\{0}.

(i) An element d of M is a gcd of A if and only if d is a generator.of

(o) , a" ideal of M generated by L

(ii) If A: {a, ar, . . . , r,\ is finite, then every gcd of A is of the form

mtyat+ m2ya.2+ - . . msyas,where ffip ffi2, . . ., mreM andsome 7eI'

Proof : (i) Suppose that d is generator of (/l) . fU"" for any aeA, dla. Also as

a e (d), so d : mrfa, * m2yaz* . . . nl tTa t,for some ffi t, ffiz, . " -, ffi ,e M, a, ar. . ., a F A

and some ye f. Therefore, if ela for all aeAthen eld.Hence d is gcd of A.

Conversely, let d is gid of A arld' \e)=(.), tt"r, as dla for all aeA so

ae(a). Therefor " (l)q(d) , that is, (c) e(d). Now if aeA, then as

o .(.1)= (c) so cla. Since dis a gcd of A,wehave cld,that is, (a) 
= 

(c) . ttrerefore

(a) = (4 = U) Hence d is a generator of (,4) .

(ii) is a straightforward consequence of (i). Thus the theorem is proved.

5 .3 Theorem : Let M be a |-PID. Then an element k of M is prime if and only if A

is irreducible.

Proof : By Theorem 3 . 8, we get if k is prime then it is irreducible. By Theorem 5. 1 ,

we get if ft is irreducible, then (k)is maximal. So, 
Y<flis 

a f-field. In particular

Ml rr is a f-intergral domain. Therefore (f) 't a prime ideal (by Theorem 2.3).
/ (K)

By Theorem 3.7 we get, k is prime. Hence the theorem is proved-

_.fr
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S.4Lemma:Let Mbe a |-PID. Let kbe aprime and suppose that k does not divide a.

Then there exist elements s and t in M such that l: syk+ tyafoi some 7€f. '

Proof:LetAbetheidealgeneratedbyftanda,thatis,
(t-)

A=\^-yk+y,yol*eM,ye Mandsomey e f]. Since Aisa principal ideal, there

exists cey' such lhat A=(c) and so we can finds and I suchthat syk+f{a=c'

Since (k)q A=\rl, by Lemma3.4, clft. Similarly cla. Since k is a prime, c is

either a unit or an assoc iate of k.In the later case c : uyk, u auntl for some 7€ f'
Hence cla implies kla. This is impossible, so c is a unit. Thus there exists ee A such

that eyc: i. Now

/-\
(syk + rya): c

T'herefore, uy (tyk + fia): eyc

> e"'1sYk + €{fYl = eyc

=(eys\k +(eyt)ya=1

+ syk * fya:1 , since e is the identity ofM. Thus the lemma is proved.

5.5 Lemma : Let M bea |-PID. Let {A,ln = l, 2,. . . } b" a chain of ideals in M, that

is- A. c. A" c. A" c.... Then there exists an integer I such lhat A,: A, for all

s)1.

proof :Let An = (o,)and let A = J-,1,. Since A, e A1,;s t h,wecanprove easily

thal A is an ideal of M.Forlet a, beA.Then clearly there exists s such that aeA,

and be A,. Since,4, is an ideal of M, a-be A". Hence a-be A.It is also easy to prove

that if a€A, me.M andye I, then mya, aymel Srnce A is an ideal of M,thete

eiists an elernent ce,4 such that A = (.) . But since ,4 tt ll: :"i:" of sgts, cl A,for

i

L-
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some r. Thusl cl,. HenceA,cA,for alls2t' Since also'4 c A for all s > t'

Hence A,: A,for all s 2 t. Thus the lemma is proved'

5.6 Lemma :Let Mbea I-PID. Let B be an ideal of M, B + M.Thetthere exists a

maximal ideal ^R of M such that B c R. Moreover, R = (k)' where /r is a prime'

Proof : Let A, = B. lf B is not a maximal ideal, then there exists an ideal l, such

that I c A, 
= 

M . lt l, is not maximal, then there exists and ideal r4, such that

A, ; Az 
= 

A3 g M .By Lemma 5.5, this process must stop after a finite number

of steps. Thus there does not exist a maximal ideal R in M such that B g 't' By

Theorem 2.4, Ris a prirne ideal. Now let R = (f). tf f is not a prime, then /c : ayb

for some non-zero non-units a andband some 7eI-. Also te\tc), for if b e(k) ,

then D = cyk;for some c. Therefore,

k=ayb

= rYGtk)

=(ayc)yk

Then k -(ayc)yt =O

=Q- aYc)Yk =O

+l- aYc = Q, since k +0 '

Hence | : aTc..Therefore a is a unit, a contradiction. Thus u e\*) and similarly

a e (k\. But this contradicts that (k) is a prime ideal. Thus & is a prime' Hence the

lemma is proved.

.5.7 Lemma : Let M be a F-PID . Let ae M, a*0, a not a unit. Then there exists a

prime /reM such that &[4.

!.--,- '..s:.d
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proof : Since a is not a unit, (")= M .Henceby Lemma S.6, (a) g(t) fm some

ideal (e), where Ic is a prime. Then by Theorem 3.4(i), &la. Hence tht lcm,or is

proved-

: \.a. lt be a F-PID-I.ct aeM, a*A, a not a unit' Then a has a

: - , : - 3; Le i:;la 5.7, there exists a prime ft, such that krla, that is, a: krya, fot

some unique 7e f .

If a, is a unit, then a is a prime by Theorem 3.9 and the proof is completec

If a, is not a prime, by Lemma 5.7,lhere exists a prime k, such that ar: k2^1a2.

Again if a, is a unit, then kryaris a prime. Hence o=kry(X;for)=kilkzya'is z

product of primes.

If a, is not a prime, we find that ar: kryar, ( is a prime' Continui:s' ';:

findprimes kt, kz, . . .,k,,. .' andelements ap a2, "', Qn,''' such tha: -; -

i : 2,3,. . ., . Thus by Theorem 3.4(i), (",) 
= 

(or) 
=(rr) =. 

. . - - -BvI-emoe 5J'

there exists an integer I such (o,)=(r,*,)=" "Thus ct,*r=trt6 = '"

Hence t4k,*r =1 . Thus t*, is a unit, which contradicts that fr,-' is a ::-:- ' " -

a, must be a prime. Hence a -- krykly ..-ykla, is a factorization o: ' :. : - -

some unique ye f. Thus the theorem is proved.

5.9 Theorem : Every f-PID is I-UFD.

Proof :Let M be a |-PID. Theorem 5.8, established the :' ' ' : "- *:

factorization for an element aeM, a*0, a not a unit

Suppose now that /r is a prime and klayb for so:e = 
- : : - :;

a,byLemma5.4,wegetl=syk+tyaforsomes.l€,|1:.
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1: (syk +rya)

>Wb:(syk +ry"\yt

=> b: sylqb + tyayb

-b=ry(,lyf ) +ryayb, since M is commutative

Thus the theorem is Proved.

> b : (syulyk + ry (ayb). Since trl(svu)vt and Al4 bvb)'rl(sva)vr + tv (a"'1b)

Thus klD.

nNow let a = kr^lkz^y ...yk,= Qr"lQzf ...fQ, for some y e f be two prime

factorizations for a. Then tql(Wqr"'yq,) and so krlQ,for some i' We may assume

that l: 1. Since Q,is aprime, fr, and 4' must be associates. Thp theorem now

foilows by inductio n. If m: 1, then a is a prime. Hence we have n : 7 andalso k, : 4,.

Thus, we may assume m >l andr >1. Now it is ciear that krl(qxqr...T4 ) and so by

Theorem3.S(i),krllnforsome/r'ButsinceQoisaprime'kr:Qo'Wernayassume

that the qi's areso arranged that h: 1' Thus k;fk;f '-'Yk,, : Wq;f "'yq''

Since l', * 0, we may cancel and get kr^tkrT"'Tk,,=QzTQt^'l "'TQ,:a'' But

l<a, <a andby our inductionhlpothesis we mayconciude (i) that m- l: n-l and

(ii) that the factoriza tion krykrT ' ' yk^is just a rearrangement of q''s i : 2' 3 ' ' ') m'

Thus m : n arldy is also unique, since /c, : Q, we have proved the theorem for m'

Hence the expression .] : Wk,y ...ykn, inloprimes is unique. Therefore Mis a f-lIFD.
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