Mathematical Forum Vol.XVIII, 2005-2006

FACTORIZATION IN Γ - INTEGRAL DOMAINS

By

*Md. Sabur Uddin and **A. C. Paul * Department of Mathematics, Carmichacl College, Rangpur Bangladesh. **Department of Mathematics, University of Rajshahi,

Rajshahi-6205, Bangladesh.

Abstract

In this paper we work on factorization in Γ -integral domains, factorization in Γ -unique factorization domains and factorization in Γ -principal ideal domains. We have developed some characterizations of these above domains.

1. Introduction

V. Sahai and V. Bist [6] worked on factorization in integral domains. They have developed some characterizations. Haram Paley and Paul M. Weichsel [5] characterized factorization in unique factorization domains and principal ideal domains.

In this paper we generalize the above mentioned works in gamma rings due to Barnes [1]. The main theorems we have proved are the following : A non-unit element a of a Γ -PID has a factorization into primes and every Γ -PID is a Γ -UFD. Some other characterizations are studied in this note.

2. Preliminaries.

2.1 Definitions

Gamma Ring : Let M and Γ be two additive abelian groups. Suppose that there is a mapping from $M \times \Gamma \times M \to M$ (sending (x, α, y) into $x\alpha y$) such that

- (i) $(x + y)\alpha z = x\alpha z + y\alpha z$ $x(\alpha + \beta)z = x\alpha z + x\beta z$ $x\alpha(y + z) = x\alpha y + x\alpha z$
- (ii) $(x\alpha y)\beta z = x\alpha(y\beta z),$

where $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Then M is called a Γ -ring. This definition is due to Barnes [1].

Ideal of Γ -rings : A subset A of the Γ -ring M is a left (right) ideal of M if A is an additive subgroup of M and $M\Gamma A = \{c\alpha a | c \in M, \alpha \in \Gamma, a \in A\}(A\Gamma M)$ is contained in A. If A is both a left and a right ideal of M, then we say that A is an ideal or two-sided ideal of M.

If A and B are both left (respectively right or two-sided) ideals of M, then $A+B = \{a+b | a \in A, b \in B\}$ is clearly a left (respectively right or two-sided) ideal, called the sum of A and B. We can say every finite sum of left (respectively right or two-sided) ideal of a Γ -ring is also a left (respectively right or two-sided) ideal.

It is clear that the intersection of any number of left (respectively right or two sided) ideal of M is also a left (resprectively right or two-sided) ideal of M.

If A is a left ideal of M, B is a right ideal of M and S is any non-empty subset of M, then the set, $A\Gamma S = \left\{\sum_{i=1}^{n} a_i \gamma s_i | a_i \in A, \gamma \in \Gamma, s_i \in S, n \text{ is a positive integer}\right\}$ is a left ideal of M and $S\Gamma B$ is a right ideal of M. $A\Gamma B$ is a two-sided ideal of M. If $a \in M$, then the principal ideal generated by a denoted by $\langle a \rangle$ is the intersection of all ideals containing a and is the set of all finite sum of elements of the form $na + x\alpha a + a\beta y + u\gamma a\mu v$, where *n* is an integer *x*, *y*, *u*, *v* are elements of *M* and α , β , γ , μ are elements of Γ . This is the smallest ideal generated by *a*. Let $a \in M$. The smallest left (right) ideal generated by a is called the principal left (right) ideal $\langle a | (|a\rangle)$.

Identity element of a Γ -ring : Let M be a Γ -ring. M is called a Γ -ring with identity if there exists an element $e \in M$ such that

$$a\gamma e = e\gamma a = a$$
 for all $a \in M$ and some $\gamma \in \Gamma$.

We shall frequently denote e by 1 and when M is a Γ -ring with identity, we shall often write $1 \in M$. Note that not all Γ -rings have an identity. When a Γ -ring has an identity, then the identity is unique.

Commutative Γ -ring : Let M be a Γ -ring. M is called a commutative Γ -ring if $a\gamma b = b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Zero Divisor : Let M be a Γ -ring. An element $a \neq 0$ in M is called a left zero divisor if there exists an element $b \neq 0$ in M such that $a\gamma b = 0$ for some $\gamma \in \Gamma$. Similarly, an element $b \neq 0$ in M is called a right zero divisor if there exists an element $a \neq 0$ in M such that $a\gamma b = 0$ for some $\gamma \in \Gamma$. A zero divisor is an element that is either a left or a right zero divisor. If M is a commutative Γ -ring, then the concepts of left and right zero divisor coincide.

 Γ -integral domain : Let M be a commutative Γ -ring such that $1 \in M$. If M has no zero divisors, then we call M a Γ -integral domain.

Principal ideal : An ideal A of a Γ -integral domain M is called a principal ideal of M if A is generated by a single element $a \in M$, that is, $A = a\gamma M$ for all $\gamma \in \Gamma$.

 Γ -Principal ideal domain : A Γ -ring M is called a Γ -principal ideal domain (Γ -PID for short) if M is Γ -integral domain and every ideal of M is a principal ideal.

Prime ideal : Let M be a commutative Γ -ring. An ideal K in M is called a prime ideal if whenever $a\gamma b \in K$, $a \in M$, $b \in M$ and some $\gamma \in \Gamma$, then either $a \in K$ or $b \in K$.

Maximal ideal : An ideal R in a Γ -ring M is called a maximal ideal in M if (i) $R \subset M$ and (ii) whenever L is an ideal in M such that $R \subseteq L \subseteq M$, then either L = R or L = M.

Division gamma ring : Let M be a Γ -ring. Then M is called a division Γ -ring if it has an identity element and its only non-zero ideal is itself. A commutative division Γ -ring is called a Γ -field.

Multiplicatively closed sub set of a Γ -ring : A non empty sub set S of a Γ -ring M is said to be multiplicatively closed if $x\gamma y \in S$ whenever x, $y \in S$ and some $\gamma \in \Gamma$.

We need the following three Theorems due to V. Sahai and V. Bist [6] in ring theory. We modify these theorems in gamma rings which are needed to our next works.

2.2 Theorem : Let M be a commutative Γ -ring with identity and let A be an ideal of M. If S is a multiplicatively closed subset of M with $A \cap S$ is empty, then the family F of all ideals B of M which contain A and $B \cap S$ is empty possesses a maximal element; and such a maximal element is a prime ideal of M.

2.3 Theorem : Let M be a commutative Γ -ring with identity. An ideal K of M is

prime if and only if M_{K} is a Γ -integral domain.

2.4 Theorem : Let M be a commutative Γ -ring with identity. Let K be maximal ideal in M. Then K is a prime ideal.

The proof of the above three theorems are similar to that of the ring theories.

3. Some Factorization in Γ-integral Domains

3.1 Definition : Let M be a Γ -integral domain. If m and s are elements of M, then we say m divides s (in symbols m|s) if there exists an element $t \in M$ such that $s = m\gamma t$ for some $\gamma \in \Gamma$. In this case m is called a factor or a divisor of s.

3.2 Definition : Let M be a Γ -integral domain. An element $a \in M$ is called a **unit** in M if there exists $b \in M$ such that $a\gamma b = 1$ for some $\gamma \in \Gamma$.

3.3 Definition : Let M be a Γ -integral domain. Non-zero elements a and b are called **associates** if a|b and b|a. Note that 1|m for every m in M. Also, if u is a unit in M, then u and 1 are associates.

3.4 Theorem : Let a and b non-zero elements in a Γ -integral domain. Then

- (i) *a* divides *b* if and only if $\langle b \rangle \subseteq \langle a \rangle$
- (ii) *a* and *b* are associates if and only if $\langle a \rangle = \langle b \rangle$
- (iii) a is a unit in M if and only if $\langle a \rangle = M$.

Proof: (i) If a|b, then $b = a\gamma x$ for some $x \in M$ and $\gamma \in \Gamma$. Thus $b \in \langle a \rangle$ and so $\langle b \rangle \subseteq \langle a \rangle$. Conversely, if $\langle b \rangle \subseteq \langle a \rangle$, then $b \in \langle a \rangle$ and so $b = a\gamma x$ for some $x \in M$ and $\gamma \in \Gamma$, that is, a|b.

(ii) follows easily from the definition **3.3** and (i)

(iii) follows from (ii) as a and 1 are associates and $\langle a \rangle = M$.

3.5 Theorem : Let a and b be non-zero elements in a Γ -integral domain M. Then a and b are associates if and only if there exist a unit u in M such that $b = a\gamma u$ for some $\gamma \in \Gamma$.

Proof: Suppose that a and b are associates. Then a|b and b|a, there exist u, v in M such that $b = a\gamma u$ and $a = b\gamma v$ for some $\gamma \in \Gamma$. Now,

$$a = b\gamma v$$
$$= (a\gamma u)\gamma v$$
$$= a\gamma (u\gamma v)$$

So,
$$a - a\gamma(u\gamma v) = 0$$
.

Thus $a\gamma(1-u\gamma\nu)=0$.

This implies that $1 - u\gamma v = 0$, since $a \neq 0$. Hence $u\gamma v = 1$. Therefore u is a unit.

Conversely, let $b = a\gamma u$ for some $\gamma \in \Gamma$, where u is a unit in M. Then we have a|b.

Therefore,

$$b\gamma u^{-1} = (a\gamma u)\gamma u^{-1}$$
$$\Rightarrow b\gamma u^{-1} = a\gamma (u\gamma u^{-1})$$
$$\Rightarrow b\gamma u^{-1} = a\gamma 1$$

 $\Rightarrow b\gamma u^{-1} = a$. Hence $a = b\gamma u^{-1}$. Thus b|a. Hence a and b are associates. Thus the theorem is proved.

3.6 Definition : Let M be a Γ -integral domain.

(i) An element a of M is irreducible if a is a non-zero, non-unit element and if $a = x\gamma y$ for some $\gamma \in \Gamma$, then either x or y is unit.

(ii) An element k of M is prime if k is a non-zero, non-unit element and if $k|x\gamma y$ for some $\gamma \in \Gamma$, then k|x or k|y.

It follows immediately from the above definition that every associate of a prime (respectively irreducible) element is also prime (respectively irreducible).

3.7 Theorem : Let k be a non-zero element of a Γ -integral domain M. Then k is a prime if and only if $\langle k \rangle$ is prime ideal.

Proof: Let k be prime, then k is a non-zero non-unit. So $\langle k \rangle \neq 0$ and $\langle k \rangle \neq M$. If $x, y \in M$ such that $x\gamma y \in \langle k \rangle$ for some $\gamma \in \Gamma$, then $k | x\gamma y$ and so k | x or k | y. Thus $x \in \langle k \rangle$ or $y \in \langle k \rangle$. Therefore $\langle k \rangle$ is a prime ideal.

Conversely, let $\langle k \rangle$ be a prime ideal, since $k \neq 0$ and $\langle k \rangle \neq M$, so k is not a unit. If $k | x \gamma y$ for some $\gamma \in \Gamma$, then $x \gamma y \in \langle k \rangle$ and so $x \in \langle k \rangle$ or $y \in \langle k \rangle$. Hence k | xor k | y. Therefore k is a prime element of M. Thus the theorem is proved.

3.8 Theorem : Let M be a Γ -integral domain.

- (i) If k is a prime element of M and $k|(a_1\gamma a_2\gamma \dots \gamma a_t)$ for some $\gamma \in \Gamma$, then $k|a_1$ for some index r.
- (ii) Every prime element is irreducible.
- (iii) If $k_1\gamma k_2\gamma \dots \gamma k_s = q_1\gamma q_2\gamma \dots \gamma q_t$ for some $\gamma \in \Gamma$, where elements k_i and q_j are primes, then s = t. Further, there exists a permutation $\sigma \in S_t$ such that k_i and $q_{\sigma(i)}$ are associates. This means that the decomposition into primes is unique upto rearrangement of factors or multiplication of factors by units.

Proof: (i) By induction on t. The case t = 2 is trivial. Now $k | (a_1 \gamma a_2 \gamma \dots \gamma a_{t-1}) \gamma a_t$ implies that $k | (a_1 \gamma a_2 \gamma \dots \gamma a_{t-1})$ or $k | a_t$. If $k | a_t$, then we have proved the statement; other wise $k | a_1 \gamma a_2 \gamma \dots \gamma a_{t-1}$ and so by induction hypothesis $k | a_r$ for some $r = 1, 2, \dots, t-1$.

(ii) Let $k \in M$ be a prime. If $k = a\gamma b$ for some $\gamma \in \Gamma$, then k|a or k|b. Without any loss we can assume that k|b. Then $b = k\gamma x$ for some $x \in M$. Therefore,

- $a\gamma b = a\gamma k\gamma x$ $\Rightarrow k = a\gamma k\gamma x$ $\Rightarrow k - a\gamma k\gamma x = 0$ $\Rightarrow k - k\gamma a\gamma x = 0, \text{ since M is commutative}$ $\Rightarrow k\gamma (1 - a\gamma x) = 0$
- $\Rightarrow 1 a\gamma x = 0$, since $k \neq 0$. Thus $a\gamma x = 1$. Hence a is a unit. Thus k is irreducible.

(iii) Without any loss we can assume that $s \le t$. Suppose first that s < t. Then $k_1\gamma k_2\gamma \ldots \gamma k_s = q_1\gamma q_2\gamma \ldots \gamma q_t$ for some $\gamma \in \Gamma$ with s < t. Since each k_i divides $q_1\gamma q_2\gamma \ldots \gamma q_t$ by (i) there exists q_{r_1} such that $k_i|q_{r_1}$ and so $q_{r_1} = k_i\gamma x_i$ for some $x_i \in M$ and $\gamma \in \Gamma$. Therefore

$$k_1 \gamma k_2 \gamma \dots \gamma k_s = (k_1 \gamma k_2 \gamma \dots \gamma k_s) \gamma (x_1 \gamma x_2 \gamma \dots \gamma x_s) \gamma q'$$

where q' is product of remaining primes from $\{q_1, q_2, ..., q_t\}$. But then it implies that $(x_1\gamma x_2\gamma ...\gamma x_s)\gamma q' = 1$, that is, q' is a unit. This is a contradiction. Hence s = t.

Now we prove by iduction on t that if $k_1\gamma k_2\gamma \dots \gamma k_t = q_1\gamma q_2\gamma \dots \gamma q_t$, then there exists $\sigma \in S_t$ so that k_i and $q_{\sigma(i)}$ are associates. If t = 1, then the hypothesis is clearly true. Suppose that the hypothesis is true for all r < t. Now if $k_1\gamma k_2\gamma \dots \gamma k_t = q_1\gamma q_2\gamma \dots \gamma q_t$, then $k_t |q_1\gamma q_2\gamma \dots \gamma q_t$. Thus $k_t |q_h$ for some index h and so $q_h = u\gamma k_t$ for some $u \in M$. Since q_h is prime and so irreducible, u is a unit in M. Therefore q_h and k_t are associates. Now

$$k_{1}\gamma k_{2}\gamma \dots \gamma k_{t-1}\gamma k_{t} = q_{1}\gamma q_{2}\gamma \dots \gamma q_{h-1}\gamma q_{h}\gamma q_{h+1}\gamma \dots \gamma q_{t}$$

$$\Rightarrow k_{1}\gamma k_{2}\gamma \dots \gamma k_{t-1}\gamma k_{t} = q_{1}\gamma q_{2}\gamma \dots \gamma q_{h-1}\gamma (u\gamma k_{t})\gamma q_{h+1}\gamma \dots \gamma q_{t}$$

$$\Rightarrow k_{1}\gamma k_{2}\gamma \dots \gamma k_{t-1}\gamma k_{t} = u\gamma q_{1}\gamma q_{2}\gamma \dots \gamma q_{h-1}\gamma k_{t}\gamma q_{h+1}\gamma \dots \gamma q_{t}, \text{ since } M \text{ is}$$

commutative. Dividing by k_i on both sides, we get.

$$k_1 \gamma k_2 \gamma \dots \gamma k_{t-1} = u \gamma q_1 \gamma q_2 \gamma \dots \gamma q_{h-1} \gamma q_{h+1} \gamma \dots \gamma q_t$$

By induction hypothesis, there exists a one-one and onto mapping σ from $\{1, 2, ..., t\}$ to $\{1, 2, ..., h - 1, h + 1, ..., t\}$ such that k_i and $q_{\sigma(i)}$ are associates. Now define $\sigma(t) = h$, to obtain the claim. Thus the theorem is proved.

3.9 Theorem : Let k be a prime in a Γ -integral domain. If q is an associate of k, then q is a prime.

The proof is obvious.

4. Factorization in Γ-Unique Factorization domains

4.1 Definition : A Γ -integral domain M is a Γ -unique factorization domain (Γ -UFD) if it satisfies followin conditions :

(i) every non-zero, non-unit element a of M can be written as $a = k_1 \gamma k_2 \gamma \dots \gamma k_n$ for some $\gamma \in \Gamma$, where k_1, k_2, \dots, k_n , are irreducible elements in M and

(ii) if $a = k_1 \gamma k_2 \gamma \dots \gamma k_n$ and $a = q_1 \gamma q_2 \gamma \dots \gamma q_t$ for some $\gamma \in \Gamma$, where k_1, k_2, \dots, k_n , q_1, q_2, \dots, q_t are irreducibles, then n = t and for some permutation $\sigma \in S_t$ each q_i is an associate of $k_{\sigma(i)}$.

If we define a relation ~ on a Γ -integral domain M by $a \sim b$, if a is an associate of b, then ~ is an equivalence relation. Since a is associate of b if and only if $\langle a \rangle = \langle b \rangle$ (by Theorem 3.4). Also we have a is an associate of b if and only if $a = u\gamma b$ for some unit u in M and some $\gamma \in \Gamma$ (by Theorem 3.5). Thus if \overline{a} denotes the equivalence class of a, then $\overline{a} = \{u\gamma b \mid u \text{ is a unit in } M \text{ and some } \gamma \in \Gamma \}$.

Let *M* be a Γ -UFD. If a is a non-zero non-unit in *M*, then by part (i) of the above definition we have $a = c_1 \gamma c_2 \gamma \dots \gamma c_i$ for some $\gamma \in \Gamma$, where c_1, c_2, \dots, c_i are irreducibles in *M*. If we collect all associates of these irreducibles together, then it is easy to see that we can write a as $a = u\gamma (k_1\gamma)^{m_1} k_1\gamma (k_2\gamma)^{m_2} k_2\gamma \dots \gamma (k_n\gamma)^{m_n} k_n$, where *u* is a unit, k_1, k_2, \dots, k_n are irreducibles such that no two of these are associates. More precisely, $\overline{k_1}, \overline{k_2}, \dots, \overline{k_n}$ are distinct equivalence classes. Further, part (ii) of the above definition says that these equivalence classes and positive integers m_1, m_2, \dots, m_n are uniquely determined by *a*. Thus if also $a = v\gamma (q_1\gamma)^{s_1} q_1\gamma (q_2\gamma)^{s_2} q_2\gamma \dots \gamma (q_h\gamma)^{s_h} q_h$ with *v*, a unit and $\overline{q_1}, \overline{q_2}, \dots, \overline{q_h}$ distinct equivalence classes, then h = n and for some $\sigma \in S_n$ we have $\overline{k_i} = \overline{q_{\sigma(i)}}$ for all $i = 1, 2, \dots, n$.

4.2 Theorem : Let M be Γ -UFD. An element a of M is prime if and only if it is irreducible. Proof : By Theorem 3.8, if a is a prime element of M, then it is also irreducible. If 1 is the gcd of A, then we say that the set A is relatively prime. Note that any two gcd's of A are associates. Thus the gcd, if it exists, is well defined up to multiplication by a unit.

4.5 Theorem : Let M be a Γ -UFD and let A be a non-empty subset of $M \setminus \{0\}$. Then there exists a gcd of A.

Proof : Since *M* is a Γ -UFD, each $a \in A$ can be written in the form $a = u\gamma (c_1\gamma)^{h_1}c_1\gamma (c_2\gamma)^{h_2}c_2\gamma ...\gamma (c_r)^{h_r}c_r$ for some $\gamma \in \Gamma$, where *u* is a unit, $c_1, c_2, ..., c_r$ are irreducibles in *M* with no two of these irreducibles being associates and $h_i \ge 1$ for all i = 1, 2, ..., r. Define $D(a) = \{\overline{c_1}, \overline{c_2}, ..., \overline{c_r}\}$, where \overline{c} is the equivalence class of *c* with equivalence relation ~ on *M* defined by $a \sim b$ if and only if *a* is an associate of *b*. Clearly D(a) is finite. Observe that D(a) is empty if and only if *a* is a unit. Let $D = \bigcap \{D(a) \mid a \in A\}$. Since each D(a) is finite, so *D* is a finite set.

If $a' \in A$ is a unit, then a gcd of A is 1. Since if $e \in M$ and e|a for all $a \in A$, then in particular e|a' and so e is a unit. Thus e|1.

If all element of A are non-units, then D(a) is non-empty for all $a \in A$. First assume that D is empty. In this case we claim that 1 is a gcd of A. For this, it is sufficient to show that if $e \in M$ and e|a for all $a \in A$, then e is a unit. If e is not unit, then there exists an irreducible $c \in M$ such that c|e. Since e|a for all $a \in A$, so c|a for all $a \in A$. Thus $\overline{c} \in D$, a contradiction as D is empty.

Now assume that $D = \{\overline{q}_1, \overline{q}_2, ..., \overline{q}_t\}$, a non-empty set with t distinct elements. Then to each $a \in A$, there exists positive integers $m_i(a)$ such that $(k_i\gamma)^{m_i(a)}k_i|a$ and $(k_i\gamma)^{m_i(a)+1}k_i$ does not divide a for all i = 1, 2, ..., t and some $\gamma \in \Gamma$. Clearly, then every $a \in A$ can be written as $a = (k_i\gamma)^{m_i(a)}k_i\gamma(k_2\gamma)^{m_2(a)}k_2\gamma...\gamma(k_i\gamma)^{m_i(a)}k_i\gamma a'$ for some $\gamma \in \Gamma$, where $a' \in M$. Let m_i min = $\{m_i(a)|a \in A\}$ for i = 1, 2, ..., t and

86

 $d = (k_1 \gamma)^{m_1} k_1 \gamma (k_2 \gamma)^{m_2} k_2 \gamma \dots \gamma (k_i \gamma)^{m_i} k_i$ for some $\gamma \in \Gamma$. Then d|a for all $a \in A$. Now we will show that d is a gcd of A. Let $e \in M$ and e|a for all $a \in A$. If e is a unit, then clearly e|d. If e is a non-unit, then $e = v\gamma (q_1 \gamma)^{s_1} q_1 \gamma (q_2 \gamma)^{s_2} q_2 \gamma \dots \gamma (q_n \gamma)^{s_n} q_n$ for some $\gamma \in \Gamma$, where v is a unit, q_1, q_2, \dots, q_n are irreducible such that no two of these are associates an $s_i \ge 1$ for $i = 1, 2, \dots, n$. Since $q_j|e$ so $q_j|a$ for all $a \in A$. Thus $\overline{q}_j \in D$ for all $j = 1, 2, \dots, n$. Therefore, $\{\overline{q}_1, \overline{q}_2, \dots, \overline{q}_n\} \subseteq D$ so $n \le t$. Also, it shows that each q_j is an associate of some k_{i_j} . Thus $q_j = u_j \gamma k_{i_j}$ for some unit u_j in M and $\gamma \in \Gamma$.

Now $e = v\gamma (q_1\gamma)^{s_1} q_1\gamma \dots \gamma (q_n\gamma)^{s_n} q_n = w\gamma (k_{i_1}\gamma)^{s_1} k_{i_1}\gamma (k_{i_2}\gamma)^{s_2} k_{i_2}\gamma \dots \gamma (k_{i_n}\gamma)^{s_n} k_{i_n}$, where $w = v\gamma (u_1\gamma)^{s_1} u_1\gamma (u_2\gamma)^{s_2} u_2\gamma \dots \gamma (u_n\gamma)^{s_n} u_n$, a unit in M. Now again as $(k_{i_j}\gamma)^{s_j} k_{i_j}|a$ for all $a \in A$ and j = 1, 2, ..., n, by definition of m_{i_j} , we get $s_j \leq m_{i_j}$. Therefore e|d. Hence the theorem is proved.

5. Factorization in G-Principal ideal domains

5.1 Theorem : Let c be a non-zero element in a Γ -PID M. Then c is irreducible if and only if $\langle c \rangle$ is a maximal ideal of M.

Proof : Let $c \in M$ is irreducible. Then $\langle c \rangle \neq 0$ and $\langle c \rangle \neq M$ as c is non-zero and nonunit. Now suppose that there exists a in M such that $\langle c \rangle \subseteq \langle a \rangle \subseteq M$ and $\langle c \rangle \neq \langle a \rangle$. Then $c = a\gamma x$ for some $x \in M$ and $\gamma \in \Gamma$. If x is a unit, then c and a are associates (by Theorem 3.4), so $\langle c \rangle = \langle a \rangle$, a contradiction. Hence a must be a unit. Therefore $\langle a \rangle = M$. Hence $\langle c \rangle$ is a maximal ideal of M.

Conversely, let $\langle c \rangle$ is a maximal ideal in M. Then c is not a unit. If $a \in M$ with $\langle c \rangle \subseteq \langle a \rangle \subseteq M$ and $\langle c \rangle \neq M$. Then $\langle c \rangle = \langle a \rangle$. Therefore $c = a\gamma u$ for some unit u in M and $\gamma \in \Gamma$ (by Theorem 3.5). Hence c is irreducible. Thus the theorem is proved.

5.2 Theorem : Let M be a Γ -PID and A be a non empty subset of $M \{0\}$.

- (i) An element d of M is a gcd of A if and only if d is a generator of $\langle a \rangle$, an ideal of M generated by A.
- (ii) If $A = \{a_1, a_2, \dots, a_s\}$ is finite, then every gcd of A is of the form $m_1\gamma a_1 + m_2\gamma a_2 + \dots + m_s\gamma a_s$, where $m_1, m_2, \dots, m_s \in M$ and some $\gamma \in \Gamma$.

Proof : (i) Suppose that d is generator of $\langle A \rangle$. Then for any $a \in A$, d|a. Also as $d \in \langle A \rangle$, so $d = m_1 \gamma a_1 + m_2 \gamma a_2 + \dots m_t \gamma a_t$, for some $m_1, m_2, \dots, m_t \in M, a_1, a_2, \dots, a_t \in A$ and some $\gamma \in \Gamma$. Therefore, if e|a for all $a \in A$ then e|d. Hence d is gcd of A.

Conversely, let d is gcd of A and $\langle A \rangle = \langle c \rangle$, then as d|a for all $a \in A$ so $a \in \langle d \rangle$. Therefore $\langle A \rangle \subseteq \langle d \rangle$, that is, $\langle c \rangle \subseteq \langle d \rangle$. Now if $a \in A$, then as $a \in \langle A \rangle = \langle c \rangle$ so c|a. Since d is a gcd of A, we have c|d, that is, $\langle d \rangle \subseteq \langle c \rangle$. Therefore $\langle d \rangle = \langle c \rangle = \langle A \rangle$. Hence d is a generator of $\langle A \rangle$.

(ii) is a straightforward consequence of (i). Thus the theorem is proved.
5.3 Theorem : Let M be a Γ-PID. Then an element k of M is prime if and only if k is irreducible.

Proof: By Theorem 3.8, we get if k is prime then it is irreducible. By Theorem 5.1, we get if k is irreducible, then $\langle k \rangle$ is maximal. So, $\frac{M}{\langle k \rangle}$ is a Γ -field. In particular

 $\frac{M}{\langle k \rangle}$ is a Γ -intergral domain. Therefore $\langle k \rangle$ is a prime ideal (by Theorem 2.3). By Theorem 3.7 we get, k is prime. Hence the theorem is proved.

88

FACTORIZATION IN F- INTEGRAL DOMAINS

5.4 Lemma : Let *M* be a Γ -PID. Let *k* be a prime and suppose that *k* does not divide *a*. Then there exist elements s and t in M such that $1 = s\gamma k + t\gamma a$ for some $\gamma \in \Gamma$.

Proof : Let A be the ideal generated by k and a, that is, $A = \{x\gamma k + y\gamma a | x \in M, y \in M \text{ and some} \gamma \in \Gamma\}$. Since A is a principal ideal, there exists $c \in A$ such that $A = \langle c \rangle$ and so we can find s and t such that $s\gamma k + t\gamma a = c$. Since $\langle k \rangle \subseteq A = \langle c \rangle$, by Lemma 3.4, c | k. Similarly c | a. Since k is a prime, c is either a unit or an associate of k. In the later case $c = u\gamma k$, u a unit for some $\gamma \in \Gamma$. Hence c | a implies k | a. This is impossible, so c is a unit. Thus there exists $e \in A$ such that $e\gamma c = 1$. Now

$$(s\gamma k + t\gamma a) = c$$

Therefore,

 $\Rightarrow e\gamma s\gamma k + e\gamma t\gamma a = e\gamma c$ $\Rightarrow (e\gamma s)\gamma k + (e\gamma t)\gamma a = 1$

 $e\gamma\left(s\gamma k+t\gamma a\right)=e\gamma c$

 \Rightarrow syk + tya = 1, since e is the identity of M. Thus the lemma is proved.

5.5 Lemma : Let M be a Γ -PID. Let $\{A_n | n = 1, 2, ...\}$ be a chain of ideals in M, that is, $A_1 \subseteq A_2 \subseteq A_3 \subseteq ...$ Then there exists an integer t such that $A_s = A_t$ for all $s \ge t$.

Proof: Let $A_n = \langle a_n \rangle$ and let $A = \bigcup_{n=1}^{\infty} A_n$. Since $A_s \subseteq A_h$, $s \leq h$, we can prove easily that A is an ideal of M. For let $a, b \in A$. Then clearly there exists s such that $a \in A_s$ and $b \in A_s$. Since A_s is an ideal of M, $a - b \in A_s$. Hence $a - b \in A$. It is also easy to prove that if $a \in A$, $m \in M$ and $\gamma \in \Gamma$, then $m\gamma a$, $a\gamma m \in A$. Since A is an ideal of M, there exists an element $c \in A$ such that $A = \langle c \rangle$. But since A is the union of sets, $c \in A_t$ for some t. Thus $A \subseteq A_t$. Hence $A_s \subseteq A_t$ for all $s \ge t$. Since also $A_s \subseteq A_t$ for all $s \ge t$. Hence $A_s = A_t$ for all $s \ge t$. Thus the lemma is proved.

5.6 Lemma : Let M be a Γ -PID. Let B be an ideal of M, $B \neq M$. Then there exists a maximal ideal R of M such that $B \subseteq R$. Moreover, $R = \langle k \rangle$, where k is a prime.

Proof: Let $A_1 = B$. If B is not a maximal ideal, then there exists an ideal A_2 such that $A_1 \subseteq A_2 \subseteq M$. If A_2 is not maximal, then there exists and ideal A_3 such that $A_1 \subseteq A_2 \subseteq A_3 \subseteq M$. By Lemma 5.5, this process must stop after a finite number of steps. Thus there does not exist a maximal ideal R in M such that $B \subseteq R$. By Theorem 2.4, R is a prime ideal. Now let $R = \langle k \rangle$. If k is not a prime, then $k = a\gamma b$ for some non-zero non-units a and b and some $\gamma \in \Gamma$. Also $b \notin \langle k \rangle$, for if $b \in \langle k \rangle$, then $b = c\gamma k$, for some c. Therefore,

 $k = a\gamma b$ = $a\gamma (c\gamma k)$ = $(a\gamma c)\gamma k$ Then $k - (a\gamma c)\gamma k = 0$ $\Rightarrow (1 - a\gamma c)\gamma k = 0$ $\Rightarrow 1 - a\gamma c = 0$, since $k \neq 0$.

Hence $1 = a\gamma c$. Therefore a is a unit, a contradiction. Thus $b \notin \langle k \rangle$ and similarly $a \notin \langle k \rangle$. But this contradicts that $\langle k \rangle$ is a prime ideal. Thus k is a prime. Hence the lemma is proved.

5.7 Lemma : Let M be a Γ -PID. Let $a \in M$, $a \neq 0$, a not a unit. Then there exists a prime $k \in M$ such that k|a.

Proof: Since a is not a unit, $\langle a \rangle \subseteq M$. Hence by Lemma 5.6, $\langle a \rangle \subseteq \langle k \rangle$ for some ideal $\langle k \rangle$, where k is a prime. Then by Theorem 3.4(i), k|a. Hence the lemma is proved.

EXAMPLE 1 Let M be a Γ -PID. Let $a \in M$, $a \neq 0$, a not a unit. Then a has a factor ration into primes in M.

Proof: By Lemma 5.7, there exists a prime k_1 such that $k_1|a$, that is, $a = k_1\gamma a_1$ for some unique $\gamma \in \Gamma$.

If a_1 is a unit, then a is a prime by Theorem 3.9 and the proof is completed.

If a_1 is not a prime, by Lemma 5.7, there exists a prime k_2 such that $a_1 = k_2 \gamma a_2$. Again if a_2 is a unit, then $k_2 \gamma a_2$ is a prime. Hence $a = k_1 \gamma (k_2 \gamma a_2) = k_1 \gamma k_2 \gamma a_2$ is a product of primes.

5.9 Theorem : Every Γ -PID is Γ -UFD.

Proof : Let M be a Γ -PID. Theorem 5.8, established the existence of one prime factorization for an element $a \in M$, $a \neq 0$, a not a unit.

Suppose now that k is a prime and $k|a\gamma b$ for some $\gamma \in \Gamma$. If the prime is a finite a, by Lemma 5.4, we get $1 = s\gamma k + t\gamma a$ for some $s, t \in M$ and $\gamma \in \Gamma$.

$$1 = (s\gamma k + t\gamma a)$$

$$\Rightarrow 1\gamma b = (s\gamma k + t\gamma a)\gamma b$$

$$\Rightarrow b = s\gamma k\gamma b + t\gamma a\gamma b$$

 $\Rightarrow b = s\gamma (b\gamma k) + t\gamma a\gamma b, \text{ since } M \text{ is commutative}$ $\Rightarrow b = (s\gamma b)\gamma k + t\gamma (a\gamma b). \text{ Since } k|(s\gamma b)\gamma k \text{ and } k|t\gamma (a\gamma b), k|(s\gamma b)\gamma k + t\gamma (a\gamma b)$ Thus k|b.

Now let $a = k_1 \gamma k_2 \gamma \dots \gamma k_m = q_1 \gamma q_2 \gamma \dots \gamma q_n$ for some $\gamma \in \Gamma$ be two prime factorizations for a. Then $k_1 | (q_1 \gamma q_2 \dots \gamma q_n)$ and so $k_1 | q_i$ for some i. We may assume that i = 1. Since q_1 is a prime, k_1 and q_1 must be associates. The theorem now follows by induction. If m = 1, then a is a prime. Hence we have n = 1 and also $k_1 = q_1$. Thus, we may assume m > 1 and n > 1. Now it is clear that $k_1 | (q_1 \gamma q_2 \dots \gamma q_n)$ and so by Theorem 3.8(i), $k_1 | q_h$ for some h. But since q_h is a prime, $k_1 = q_h$. We may assume that the q_i 's are so arranged that h = 1. Thus $k_1 \gamma k_2 \gamma \dots \gamma k_m = k_1 \gamma q_2 \gamma \dots \gamma q_n$.

Since $k_1 \neq 0$, we may cancel and get $k_2\gamma k_3\gamma \dots \gamma k_m = q_2\gamma q_3\gamma \dots \gamma q_n = a'$. But 1 < a' < a and by our induction hypothesis we may conclude (i) that m - 1 = n - 1 and (ii) that the factorization $k_2\gamma k_3\gamma \dots \gamma k_m$ is just a rearrangement of q_i 's $i = 2, 3, \dots, m$. Thus m = n and γ is also unique, since $k_1 = q_1$, we have proved the theorem for m. Hence the expression $a = k_1\gamma k_2\gamma \dots \gamma k_m$ into primes is unique. Therefore M is a Γ -UFD. Thus the theorem is proved.

92

FACTORIZATION IN Γ - INTEGRAL DOMAINS

1

and the second second

- Barnes, W. E. (1966). "On the gamma rings of Nobusawa", Pacific J. Math 18 (1966) 411-422.
- Coppage, W. E. and Luh, J. (1971). "Radicals of gamma rings", J. Math. Soc. Japan, Vol 23, No. 1 (1971), 40-52.
- [3] Jacobson, N. (1964). "Structure of Rings", revised Amer. Math. Soc. Colloquim oubl. 37, providence, 1964.
- [4] Nobusawa, N. (1964). "On a generalization of the ring theory", Osaka J. Math. 1 (1964), 81-89.
- [5] Paley, H. and Weichsel, P. M. (1996). "A First Course in Abstract Algebra", Holt, Rinehart and Winston, Inc. 1966.
- [6] Sahai, V. and Bist, V. (1999). "Algebra", Narosa Publishing House, New Delhi. 1999.
