FACTORIZATION IN Γ - INTEGRAL DOMAINS

By
*Md. Sabur Uddin and **A. C. Paul
* Department of Mathematics, Carmichacl College, Rangpur Bangladesh.
**Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh.

Abstract

In this paper we work on factorization in Γ-integral domains, factorization in Γ-unique factorization domains and factorization in Γ principal ideal domains. We have developed some characterizations of these above domains.

1. Introduction

V. Sahai and V. Bist [6] worked on factorization in integral domains. They have developed some characterizations. Haram Paley and Paul M. Weichsel [5] characterized factorization in unique factorization domains and principal ideal domains.

In this paper we generalize the above mentioned works in gamma rings due to Barnes [1]. The main theorems we have proved are the following : A non-unit element a of a Γ-PID has a factorization into primes and every Γ-PID is a Γ-UFD. Some other characterizations are studied in this note.

2. Preliminaries.

2.1 Definitions

Gamma Ring : Let M and Γ be two additive abelian groups. Suppose that there is a mapping from $M \times \Gamma \times M \rightarrow M$ (sending (x, α, y) into $x \alpha y$) such that
(i) $(x+y) \propto z=x \alpha z+y \alpha z$
$x(\alpha+\beta) z=x \alpha z+x \beta z$
$x \alpha(y+z)=x \alpha y+x \alpha z$
(ii) $(x \alpha y) \beta z=x \alpha(y \beta z)$,
where $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.Then M is called a Γ-ring. This definition is due to Barnes [1].
Ideal of Γ-rings : A subset A of the Γ-ring M is a left (right) ideal of M if A is an additive subgroup of M and $M \Gamma A=\{c \alpha a \mid c \in M, \alpha \in \Gamma, a \in A\}(A \Gamma M)$ is contained in A. If A is both a left and a right ideal of M, then we say that A is an ideal or twosided ideal of M.

If A and B are both left (respectively right or two-sided) ideals of M, then $A+B=\{a+b \mid a \in A, b \in B\}$ is clearly a left (respectively right or two-sided) ideal, called the sum of A and B. We can say every finite sum of left (respectively right or two-sided) ideal of a Γ-ring is also a left (respectively right or two-sided) ideal.

It is clear that the intersection of any number of left (respectively right or two sided) ideal of M is also a left (resprectively right or two-sided) ideal of M.

If A is a left ideal of M, B is a right ideal of M and S is any non-empty subset of M, then the set, $A \Gamma S=\left\{\sum_{i=1}^{n} a_{i} \gamma s_{i} \mid a_{i} \in A, \gamma \in \Gamma, s_{i} \in S, n\right.$ is a positive integer $\}$ is a left ideal of M and $S \Gamma B$ is a right ideal of $M . A \Gamma B$ is a two-sided ideal of M.

If $a \in M$, then the principal ideal generated by a denoted by $\langle a\rangle$ is the intersection of all ideals containing a and is the set of all finite sum of elements of the form $n a+x \alpha a+a \beta y+u \gamma a \mu v$, where n is an integer x, y, u, v are elements of M and $\alpha, \beta, \gamma, \mu$ are elements of Γ. This is the smallest ideal generated by a. Let $a \in M$. The smallest left (right) ideal generated by a is called the principal left (right) ideal $\langle a|(|a\rangle)$.

Identity element of a Γ-ring : Let M be a Γ-ring. M is called a Γ-ring with identity if there exists an element $e \in M$ such that

$$
a \gamma e=e \gamma a=a \text { for all } a \in M \text { and some } \gamma \in \Gamma .
$$

We shall frequently denote e by 1 and when M is a Γ-ring with identity, we shall often write $1 \in M$. Note that not all Γ-rings have an identity. When a Γ-ring has an identity, then the identity is unique.

Commutative Γ-ring : Let M be a Γ-ring. M is called a commutative Γ-ring if $a \gamma b=b \gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Zero Divisor : Let M be a Γ-ring. An element $a \neq 0$ in M is called a left zero divisor if there exists an element $b \neq 0$ in M such that $a \gamma b=0$ for some $\gamma \in \Gamma$. Similarly, an element $b \neq 0$ in M^{*} is called a right zero divisor if there exists an element $a \neq 0$ in M such that $a \gamma b=0$ for some $\gamma \in \Gamma$. A zero divisor is an element that is either a left or a right zero divisor. If M is a commutative Γ-ring, then the concepts of left and right zero divisor coincide.
Γ-integral domain : Let M be a commutative Γ-ring such that $1 \in M$. If M has no zero divisors, then we call M a Γ-integral domain.

Principal ideal : An ideal A of a Γ-integral domain M is called a principal ideal of M if A is generated by a single element $a \in M$, that is, $A=a \gamma M$ for all $\gamma \in \Gamma$.
Γ-Principal ideal domain : A Γ-ring M is called a Γ-principal ideal domain (Γ-PID for short) if M is Γ-integral domain and every ideal of M is a principal ideal.

Prime ideal : Let M be a commutative Γ-ring. An ideal K in M is called a prime ideal if whenever $a \gamma b \in K, a \in M, b \in M$ and some $\gamma \in \Gamma$, then either $a \in K$ or $b \in K$.
Maximal ideal : An ideal R in a Γ-ring M is called a maximal ideal in M if (i) $R \subset M$ and (ii) whenever L is an ideal in M such that $R \subseteq L \subseteq M$, then either $L=R$ or $L=M$.
Division gamma ring : Let M be a Γ-ring. Then M is called a division Γ-ring if it has an identity element and its only non-zero ideal is itself. A commutative division Γ-ring is called a Γ-field.
Multiplicatively closed sub set of a Γ-ring : A non empty sub set S of a Γ-ring M is said to be multiplicatively closed if $x \gamma y \in S$ whenever $x, y \in S$ and some $\gamma \in \Gamma$.

We need the following three Theorems due to V. Sahai and V. Bist [6] in ring theory. We modify these theorems in gamma rings which are needed to our next works.
2.2 Theorem : Let M be a commutative Γ-ring with identity and let A be an ideal of M. If S is a multiplicatively closed subset of M with $A \cap S$ is empty, then the family F of all ideals B of M which contain A and $B \cap S$ is empty possesses a maximal element; and such a maximal element is a prime ideal of M.
2.3 Theorem : Let M be a commutative Γ-ring with identity. An ideal K of M is prime if and only if M / K is a Γ-integral domain.
2.4 Theorem : Let M be a commutative Γ-ring with identity. Let K be maximal ideal in M. Then K is a prime ideal.

The proof of the above three theorems are similar to that of the ring theories.

3. Some Factorization in Γ-integral Domains

3.1 Definition : Let M be a Γ-integral domain. If m and s are elements of M, then we say m divides s (in symbols $m \mid s$) if there exists an element $t \in M$ such that $s=m \gamma t$ for some $\gamma \in \Gamma$. In this case m is called a factor or a divisor of s.
3.2 Definition : Let M be a Γ-integral domain. An element $a \in M$ is called a unit in M if there exists $b \in M$ such that $a \gamma b=1$ for some $\gamma \in \Gamma$.
3.3 Definition : Let M be a Γ-integral domain. Non-zero elements a and b are called associates if $a \mid b$ and $b \mid a$. Note that $1 \mid m$ for every m in M. Also, if u is a unit in M, then u and 1 are associates.
3.4 Theorem : Let a and b non-zero elements in a Γ-integral domain. Then
(i) $\quad a$ divides b if and only if $\langle b\rangle \subseteq\langle a\rangle$
(ii) $\quad a$ and b are associates if and only if $\langle a\rangle=\langle b\rangle$
(iii) $\quad a$ is a unit in M if and only if $\langle a\rangle=M$.

Proof: (i) If $a \mid b$, then $b=a \gamma x$ for some $x \in M$ and $\gamma \in \Gamma$. Thus $b \in\langle a\rangle$ and so $\langle b\rangle \subseteq\langle a\rangle$. Conversely, if $\langle b\rangle \subseteq\langle a\rangle$, then $b \in\langle a\rangle$ and so $b=a \gamma x$ for some $x \in M$ and $\gamma \in \Gamma$, that is, $a \mid b$.
(ii) follows easily from the definition 3.3 and (i)
(iii) follows from (ii) as a and 1 are associates and $\langle a\rangle=M$.
3.5 Theorem : Let a and b be non-zero elements in a Γ-integral domain M. Then a and b are associates if and only if there exist a unit u in M such that $b=a \gamma u$ for some $\gamma \in \Gamma$.

Proof : Suppose that a and b are associates. Then $a \mid b$ and $b \mid a$, there exist u, v in M such that $b=a \gamma u$ and $a=b \gamma v$ for some $\gamma \in \Gamma$. Now,

$$
\begin{aligned}
a & =b \gamma v \\
& =(a \gamma u) \gamma v \\
& =a \gamma(u \gamma v)
\end{aligned}
$$

So, $a-a \gamma(u \gamma v)=0$.
Thus $a \gamma(1-u \gamma \nu)=0$.
This implies that $1-u \gamma v=0$, since $a \neq 0$. Hence $u \gamma v=1$. Therefore u is a unit.
Conversely, let $b=a \gamma u$ for some $\gamma \in \Gamma$, where u is a unit in M. Then we have $a \mid b$.

Therefore,

$$
\begin{aligned}
b \gamma u^{-1} & =(a \gamma u) \gamma u^{-1} \\
\Rightarrow b \gamma u^{-1} & =a \gamma\left(u \gamma u^{-1}\right) \\
\Rightarrow b \gamma u^{-1} & =a \gamma 1 \\
\Rightarrow b \gamma u^{-1} & =a . \text { Hence } a=b \gamma u^{-1} . \text { Thus } b \mid a . \text { Hence } a \text { and } b \text { are }
\end{aligned}
$$ associates. Thus the theorem is proved.

3.6 Definition : Let M be a Γ-integral domain.
(i) An element a of M is irreducible if a is a non-zero, non-unit element and if $a=x \gamma y$ for some $\gamma \in \Gamma$, then either x or y is unit.
(ii) An element k of M is prime if k is a non-zero, non-unit element and if $k \mid x \gamma y$ for some $\gamma \in \Gamma$, then $k \mid x$ or $k \mid y$.

It follows immediately from the above definition that every associate of a prime (respectively irreducible) element is also prime (respectively irreducible).
3.7 Theorem : Let k be a non-zero element of a Γ-integral domain M. Then k is a prime if and only if $\langle k\rangle$ is prime ideal.

Proof : Let k be prime, then k is a non-zero non-unit. So $\langle k\rangle \neq 0$ and $\langle k\rangle \neq M$. If $x, y \in M$ such that $x \gamma y \in\langle k\rangle$ for some $\gamma \in \Gamma$, then $k \mid x \gamma y$ and so $k \mid x$ or $k \mid y$. Thus $x \in\langle k\rangle$ or $y \in\langle k\rangle$. Therefore $\langle k\rangle$ is a prime ideal.

Conversely, let $\langle k\rangle$ be a prime ideal, since $k \neq 0$ and $\langle k\rangle \neq M$, so k is not a unit. If $k \mid x \gamma y$ for some $\gamma \in \Gamma$, then $x \gamma y \in\langle k\rangle$ and so $x \in\langle k\rangle$ or $y \in\langle k\rangle$. Hence $k \mid x$ or $k \mid y$. Therefore k is a prime element of M. Thus the theorem is proved.
3.8 Theorem : Let M be a Γ-integral domain.
(i) If k is a prime element of M and $k \mid\left(a_{1} \gamma a_{2} \gamma \ldots \gamma a_{t}\right)$ for some $\gamma \in \Gamma$, then $k \mid a_{r}$ for some index r.
(ii) Every prime element is irreducible.
(iii) If $k_{1} \gamma k_{2} \gamma \ldots \gamma k_{s}=q_{1} \gamma q_{2} \gamma \ldots \gamma q_{t}$ for some $\gamma \in \Gamma$, where elements k_{i} and q_{j} are primes, then $\mathrm{s}=\mathrm{t}$. Further, there exists a permutation $\sigma \in S_{t}$ such that k_{i} and $q_{\sigma(i)}$ are associates. This means that the decomposition into primes is unique upto rearrangement of factors or multiplication of factors by units.

Proof: (i) By induction on t. The case $t=2$ is trivial. Now $k \mid\left(a_{1} \gamma a_{2} \gamma \ldots \gamma a_{t-1}\right) \gamma a_{t}$ implies that $k \mid\left(a_{1} \gamma a_{2} \gamma \ldots \gamma a_{t-1}\right)$ or $k \mid a_{t}$. If $k \mid a_{t}$, then we have proved the statement; other wise $k \mid a_{1} \gamma a_{2} \gamma \ldots \gamma a_{t-1}$ and so by induction hypothesis $k \mid a_{r}$ for some $r=1,2, \ldots, t-1$.
(ii) Let $k \in M$ be a prime. If $k=a \gamma b$ for some $\gamma \in \Gamma$, then $k \mid a$ or $k \mid b$. Without any loss we can assume that $k \mid b$. Then $b=k \gamma x$ for some $x \in M$. Therefore,

$$
\begin{aligned}
& a \gamma b=a \gamma k \gamma x \\
& \Rightarrow k=a \gamma k \gamma x \\
& \Rightarrow k-a \gamma k \gamma x=0 \\
& \Rightarrow k-k \gamma a \gamma x=0, \text { since } \mathrm{M} \text { is commutative } \\
& \Rightarrow k \gamma(1-a \gamma x)=0 \\
& \Rightarrow 1-a \gamma x=0 \text {, since } k \neq 0 . \text { Thus } a \gamma x=1 \text {. Hence } a \text { is a unit. Thus } k \text { is irreducible. }
\end{aligned}
$$

(iii) Without any loss we can assume that $s \leq t$. Suppose first that $s<t$. Then $k_{1} \gamma k_{2} \gamma \ldots \gamma k_{s}=q_{1} \gamma q_{2} \gamma \ldots \gamma q_{t}$ for some $\gamma \in \Gamma$ with $s<t$. Since each k_{i} divides $q_{1} \gamma q_{2} \gamma \ldots \gamma q_{t}$ by (i) there exists $q_{r_{1}}$ such that $k_{i} \mid q_{r_{1}}$ and so $q_{r_{1}}=k_{i} \gamma x_{i}$ for some $x_{i} \in M$ and $\gamma \in \Gamma$. Therefore

$$
k_{1} \gamma k_{2} \gamma \ldots \gamma k_{s}=\left(k_{1} \gamma k_{2} \gamma \ldots \gamma k_{s}\right) \gamma\left(x_{1} \gamma x_{2} \gamma \ldots \gamma x_{s}\right) \gamma q^{\prime}
$$

where q^{\prime} is product of remaining primes from $\left\{q_{1}, q_{2}, \ldots, q_{t}\right\}$. But then it implies that $\left(x_{1} \gamma x_{2} \gamma \ldots \gamma x_{s}\right) \gamma q^{\prime}=1$, that is, q^{\prime} is a unit. This is a contradiction. Hence $s=t$.

Now we prove by iduction on t that if $k_{1} \gamma k_{2} \gamma \ldots \gamma k_{t}=q_{1} \gamma q_{2} \gamma \ldots \gamma q_{t}$, then there exists $\sigma \in S_{t}$ so that k_{i} and $q_{\sigma(i)}$ are associates. If $t=1$, then the hypothesis is clearly true. Suppose that the hypothesis is true for all $r<t$. Now if $k_{1} \gamma k_{2} \gamma \ldots \gamma k_{t}=q_{1} \gamma q_{2} \gamma \ldots \gamma q_{t}$, then $k_{t} \mid q_{1} \gamma q_{2} \gamma \ldots \gamma q_{t}$. Thus $k_{t} \mid q_{h}$ for some index h and so $q_{h}=u \gamma k_{t}$ for some $u \in M$. Since q_{h} is prime and so irreducible, u is a unit in M. Therefore q_{h} and k_{t} are associates. Now

$$
\begin{aligned}
& k_{1} \gamma k_{2} \gamma \ldots \gamma k_{t-1} \gamma k_{t}= \\
& \Rightarrow q_{1} \gamma q_{2} \gamma \ldots \gamma q_{h-1} \gamma q_{h} \gamma q_{h+1} \gamma \ldots \gamma q_{t} \\
& \Rightarrow k_{1} \gamma k_{2} \gamma \ldots \gamma k_{t-1} \gamma k_{t}= \\
& \Rightarrow q_{1} \gamma q_{2} \gamma \ldots \gamma q_{h-1} \gamma\left(u \gamma k_{t}\right) \gamma q_{h+1} \gamma \ldots \gamma q_{t} \\
& \Rightarrow k_{1} \gamma k_{2} \gamma \ldots \gamma k_{t-1} \gamma k_{t}=u \gamma q_{1} \gamma q_{2} \gamma \ldots \gamma q_{h-1} \gamma k_{t} \gamma q_{h+1} \gamma \ldots \gamma q_{t}, \text { since } M \text { is }
\end{aligned}
$$

commutative. Dividing by k_{t} on both sides, we get.

$$
k_{1} \gamma k_{2} \gamma \ldots \gamma k_{t-1}=u \gamma q_{1} \gamma q_{2} \gamma \ldots \gamma q_{h-1} \gamma q_{h+1} \gamma \ldots \gamma q_{t}
$$

By induction hypothesis, there exists a one-one and onto mapping σ from $\{1,2, \ldots, t\}$ to $\{1,2, \ldots h-1, h+1, \ldots, t\}$ such that k_{i} and $q_{\sigma(i)}$ are associates. Now define $\sigma(t)=h$, to obtain the claim. Thus the theorem is proved.
3.9 Theorem : Let k be a prime in a Γ-integral domain. If q is an associate of k, then q is a prime.

The proof is obvious.

4. Factorization in Γ-Unique Factorization domains

4.1 Definition : A Γ-integral domain M is a Γ-unique factorization domain (Γ-UFD) if it satisfies followin conditions :
(i) every non-zero, non-unit element a of M can be written as $a=k_{1} \gamma k_{2} \gamma \ldots \gamma k_{n}$ for some $\gamma \in \Gamma$, where $k_{1}, k_{2}, \ldots, k_{n}$, are irreducible elements in M and
(ii) if $a=k_{1} \gamma k_{2} \gamma \ldots \gamma k_{n}$ and $a=q_{1} \gamma q_{2} \gamma \ldots \gamma q_{t}$ for some $\gamma \in \Gamma$, where $k_{1}, k_{2}, \ldots, k_{n}$, $q_{1}, q_{2}, \ldots, q_{t}$ are irreducibles, then $n=t$ and for some permutation $\sigma \in S_{t}$ each q_{i} is an associate of $k_{\sigma(i)}$.

If we define a relation \sim on a Γ-integral domain M by $a \sim b$, if a is an associate of b, then \sim is an equivalence relation. Since a is associate of b if and only if $\langle a\rangle=\langle b\rangle$ (by Theorem 3.4). Also we have a is an associate of b if and only if $a=u \gamma b$ for some unit u in M and some $\gamma \in \Gamma$ (by Theorem 3.5). Thus if \bar{a} denotes the equivalence class of a, then $\bar{a}=\{u \gamma b \mid u$ is a unit in M and some $\gamma \in \Gamma\}$.

Let M be a Γ-UFD. If a is a non-zero non-unit in M, then by part (i) of the above definition we have $a=c_{1} \gamma c_{2} \gamma \ldots \gamma c_{t}$ for some $\gamma \in \Gamma$, where $c_{1}, c_{2}, \ldots, c_{t}$ are irreducibles in M. If we collect all associates of these irreducibles together, then it is easy to see that we can write a as $a=u \gamma\left(k_{1} \gamma\right)^{m_{1}} k_{1} \gamma\left(k_{2} \gamma\right)^{m_{2}} k_{2} \gamma \ldots \gamma\left(k_{n} \gamma\right)^{n^{n}} k_{n}$, where u is a unit, $k_{1}, k_{2}, \ldots, k_{n}$ are irreducibles such that no two of these are associates. More precisely, $\bar{k}_{1}, \bar{k}_{2}, \ldots, \bar{k}_{n}$ are distinct equivalence classes. Further, part (ii) of the above definition says that these equivalence classes and positive integers $m_{1}, m_{2}, \ldots, m_{n}$ are uniquely determined by a. Thus if also $a=v \gamma\left(q_{1} \gamma\right)^{s_{1}} q_{1} \gamma\left(q_{2} \gamma\right)^{s_{2}} q_{2} \gamma \ldots \gamma\left(q_{h} \gamma\right)^{s h} q_{h}$ with v, a unit and $\bar{q}_{1}, \bar{q}_{2}, \ldots, \bar{q}_{k}$ distinct equivalence classes, then $h=n$ and for some $\sigma \in S_{n}$ we have $\bar{k}_{i}=\bar{q}_{\sigma(i)}$ for all $i=1$, $2, \ldots, n$.
4.2 Theorem : Let M be Γ-UFD. An element a of M is prime if and only if it is irreducible. Proof: By Theorem 3.8, if a is a prime element of M, then it is also irreducible.

If 1 is the gcd of A, then we say that the set A is relatively prime. Note that any two gcd's of A are associates. Thus the gcd, if it exists, is well defined up to multiplication by a unit.
4.5 Theorem : Let M be a Γ-UFD and let A be a non-empty subset of $M \backslash\{0\}$. Then there exists a gcd of A.

Proof: Since M is a Γ-UFD, each $a \in A$ can be written in the form $a=u \gamma\left(c_{1} \gamma\right)^{h_{1}} c_{1} \gamma\left(c_{2} \gamma\right)^{h_{2}} c_{2} \gamma \ldots \gamma\left(c_{r}\right)^{h_{r}} c_{r}$ for some $\gamma \in \Gamma$, where u is a unit, $c_{1}, c_{2}, \ldots, c_{r}$ are irreducibles in M with no two of these irreducibles being associates and $h_{i} \geq 1$ for all $i=1,2, \ldots, r$. Define $D(a)=\left\{\bar{c}_{1}, \bar{c}_{2}, \ldots, \bar{c}_{r}\right\}$, where \bar{c} is the equivalence class of c with equivalence relation \sim on M defined by $a \sim b$ if and only if a is an associate of b. Clearly $D(a)$ is finite. Observe that $D(a)$ is empty if and only if a is a unit. Let $D=\cap\{D(a) \mid a \in A\}$. Since each $D(a)$ is finite, so D is a finite set.

If $a^{\prime} \in A$ is a unit, then a gcd of A is 1 . Since if $e \in M$ and $e \mid a$ for all $a \in A$, then in particular $e \mid a^{\prime}$ and so e is a unit. Thus $e \mid 1$.

If all element of A are non-units, then $D(a)$ is non-empty for all $a \in A$. First assume that D is empty. In this case we claim that 1 is a god of A. For this, it is sufficient to show that if $e \in M$ and $e \mid a$ for all $a \in A$, then e is a unit. If e is not unit, then there exists an irreducible $c \in M$ such that $c \mid e$. Since $e \mid a$ for all $a \in A$, so $c \mid a$ for all $a \in A$. Thus $\bar{c} \in D$, a contradiction as D is empty.

Now assume that $D=\left\{\bar{q}_{1}, \bar{q}_{2}, \ldots, \bar{q}_{t}\right\}$, a non-empty set with t distinct elements. Then to each $a \in A$, there exists positive integers $m_{i}(a)$ such that $\left(k_{i} \gamma\right)^{m_{i}(a)} k_{i} \mid a$ and $\left(k_{i} \gamma\right)^{m_{i}(a)+1} k_{i}$ does not divide a for all $i=1,2, \ldots, t$ and some $\gamma \in \Gamma$. Clearly, then every $a \in A$ can be written as $a=\left(k_{1} \gamma\right)^{m_{1}(a)} k_{1} \gamma\left(k_{2} \gamma\right)^{m_{2}(a)} k_{2} \gamma \ldots \gamma\left(k_{t} \gamma\right)^{m_{t}(a)} k_{t} \gamma a^{\prime}$ for some $\gamma \in \Gamma$, where $a^{\prime} \in M$. Let $m_{i} \min =\left\{m_{i}(a) \mid a \in A\right\}$ for $i=1,2, \ldots, t$ and
$d=\left(k_{1} \gamma\right)^{m_{1}} k_{1} \gamma\left(k_{2} \gamma\right)^{m_{2}} k_{2} \gamma \ldots \gamma\left(k_{i} \gamma\right)^{m_{t}} k_{t}$ for some $\gamma \in \Gamma$. Then $d \mid a$ for all $a \in A$. Now we will show that d is a gcd of A. Let $e \in M$ and $e \mid a$ for all $a \in A$. If e is a unit, then clearly $e \mid d$. If e is a non-unit, then $e=v \gamma\left(q_{1} \gamma\right)^{s_{1}} q_{1} \gamma\left(q_{2} \gamma\right)^{s_{2}} q_{2} \gamma \ldots \gamma\left(q_{n} \gamma\right)^{s_{n}} q_{n}$ for some $\gamma \in \Gamma$, where v is a unit, $q_{1}, q_{2}, \ldots, q_{n}$ are irreducible such that no two of these are associates an $s_{i} \geq 1$ for $i=1,2, \ldots, n$. Since $q_{j} \mid e$ so $q_{j} \mid a$ for all $a \in A$. Thus $\bar{q}_{j} \in D$ for all $j=1,2, \ldots, n$. Therefore, $\left\{\bar{q}_{1}, \bar{q}_{2}, \ldots, \bar{q}_{n}\right\} \subseteq D$ so $n \leq t$. Also, it shows that each q_{j} is an associate of some $k_{i j}$. Thus $q_{j}=u_{j} \gamma k_{i_{j}}$ for some unit u_{j} in M and $\gamma \in \Gamma$.

Now $e=v \gamma\left(q_{1} \gamma\right)^{s_{1}} q_{1} \gamma \ldots \gamma\left(q_{n} \gamma\right)^{s_{n}} q_{n}=w \gamma\left(k_{i_{1}} \gamma\right)^{s_{1}} k_{i_{1}} \gamma\left(k_{i_{2}} \gamma\right)^{s_{2}} k_{i_{2}} \gamma \ldots \gamma\left(k_{i_{n}} \gamma\right)^{s_{n}} k_{i_{n}}$, where $w=v \gamma\left(u_{1} \gamma\right)^{s_{1}} u_{1} \gamma\left(u_{2} \gamma\right)^{s_{2}} u_{2} \gamma \ldots \gamma\left(u_{n} \gamma\right)^{s_{n}} u_{n}$, a unit in M. Now again as $\left(k_{i_{j}} \gamma\right)^{\beta_{j}} k_{i_{j}} \mid a$ for all $a \in A$ and $j=1,2, \ldots, n$, by definition of $m_{i, j}$, we get $s_{j} \leq m_{i_{j}}$. Therefore eld. Hence the theorem is proved.

5. Factorization in G-Principal ideal domains

5.1 Theorem : Let c be a non-zero element in a Γ-PID M. Then c is irreducible if and only if $\langle c\rangle$ is a maximal ideal of M.
Proof : Let $c \in M$ is irreducible. Then $\langle c\rangle \neq 0$ and $\langle c\rangle \neq M$ as c is non-zero and nonunit. Now suppose that there exists a in M such that $\langle c\rangle \subseteq\langle a\rangle \subseteq M$ and $\langle c\rangle \neq\langle a\rangle$. Then $c=a \gamma x$ for some $x \in M$ and $\gamma \in \Gamma$. If x is a unit, then c and a are associates (by Theorem 3.4), so $\langle c\rangle=\langle a\rangle$, a contradiction. Hence a must be a unit. Therefore $\langle a\rangle=M$. Hence $\langle c\rangle$ is a maximal ideal of M.

Conversely, let $\langle c\rangle$ is a maximal ideal in M . Then c is not a unit. If $a \in M$ with $\langle c\rangle \subseteq\langle a\rangle \subseteq M$ and $\langle c\rangle \neq M$. Then $\langle c\rangle=\langle a\rangle$. Therefore $c=a \gamma u$ for some unit u in M and $\gamma \in \Gamma$ (by Theorem 3.5). Hence c is irreducible. Thus the theorem is proved.
5.2 Theorem : Let M be a Γ-PID and A be a non empty subset of $M\{0\}$.
(i) An element d of M is a gcd of A if and only if d is a generator of $\langle a\rangle$, an ideal of M generated by A.
(ii) If $A=\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}$ is finite, then every gcd of A is of the form $m_{1} \gamma a_{1}+m_{2} \gamma a_{2}+\ldots m_{s} \gamma a_{s}$, where $m_{1}, m_{2}, \ldots, m_{s} \in M$ and some $\gamma \in \Gamma$.

Proof: (i) Suppose that d is generator of $\langle A\rangle$. Then for any $a \in A, d \mid a$. Also as $d \in\langle A\rangle$, so $d=m_{1} \gamma a_{1}+m_{2} \gamma a_{2}+\ldots m_{t} \gamma a_{t}$, for some $m_{1}, m_{2}, \ldots, m_{t} \in M, a_{1}, a_{2} \ldots, a_{t} \in A$ and some $\gamma \in \Gamma$. Therefore, if $e \mid a$ for all $a \in A$ then $e \mid d$. Hence d is gcd of A.

Conversely, let d is gcd of A and $\langle A\rangle=\langle c\rangle$, then as $d \mid a$ for all $a \in A$ so $a \in\langle d\rangle$. Therefore $\langle A\rangle \subseteq\langle d\rangle$, that is, $\langle c\rangle \subseteq\langle d\rangle$. Now if $a \in A$, then as $a \in\langle A\rangle=\langle c\rangle$ so $c \mid a$. Since d is a gcd of A, we have $c \mid d$, that is, $\langle d\rangle \subseteq\langle c\rangle$. Therefore $\langle d\rangle=\langle c\rangle=\langle A\rangle$. Hence d is a generator of $\langle A\rangle$.
(ii) is a straightforward consequence of (i). Thus the theorem is proved. 5.3 Theorem : Let M be a Γ-PID. Then an element k of M is prime if and only if k is irreducible.

Proof : By Theorem 3.8, we get if k is prime then it is irreducible. By Theorem 5.1, we get if k is irreducible, then $\langle k\rangle$ is maximal. So, $M /\langle k\rangle$ is a Γ-field. In particular $M /\langle k\rangle$ is a Γ-intergral domain. Therefore $\langle k\rangle$ is a prime ideal (by Theorem 2.3). By Theorem 3.7 we get, k is prime. Hence the theorem is proved.
5.4 Lemma : Let M be a Γ-PID. Let k be a prime and suppose that k does not divide a. Then there exist elements s and t in M such that $1=s \gamma k+t \gamma a$ for some $\gamma \in \Gamma$.

Proof : Let A be the ideal generated by k and a, that is, $A=\{x \gamma k+y \gamma a \mid x \in M, y \in M$ and some $\gamma \in \Gamma\}$. Since A is a principal ideal, there exists $c \in A$ such that $A=\langle c\rangle$ and so we can find s and t such that $s \gamma k+t \gamma a=c$. Since $\langle k\rangle \subseteq A=\langle c\rangle$, by Lemma 3.4, $c \mid k$. Similarly $c \mid a$. Since k is a prime, c is either a unit or an associate of k. In the later case $c=u \gamma k, u$ a unit for some $\gamma \in \Gamma$. Hence $c \mid a$ implies $k \mid a$. This is impossible, so c is a unit. Thus there exists $e \in A$ such that $e \gamma_{c}=1$. Now

$$
(s \gamma k+t \gamma a)=c
$$

Therefore, $\quad e \gamma(s \gamma k+t \gamma a)=e \gamma c$

$$
\Rightarrow e \gamma s \gamma k+e \gamma t \gamma a=e \gamma c
$$

$$
\Rightarrow(e \gamma s) \gamma k+(e \gamma t) \gamma a=1
$$

$\Rightarrow s \gamma k+t \gamma a=1$, since e is the identity of M. Thus the lemma is proved.
5.5 Lemma : Let M be a Γ-PID. Let $\left\{A_{n} \mid n=1,2, \ldots\right\}$ be a chain of ideals in M, that is, $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots$. Then there exists an integer t such that. $A_{s}=A_{t}$ for all $s \geq t$.

Proof : Let $A_{n}=\left\langle a_{n}\right\rangle$ and let $A=\bigcup_{n=1}^{\infty} A_{n}$. Since $A_{s} \subseteq A_{h}, s \leq h$, we can prove easily that A is an ideal of M. For let $a, b \in A$. Then clearly there exists s such that $a \in A_{s}$ and $b \in A_{s}$. Since A_{s} is an ideal of $\mathrm{M}, a-b \in A_{s}$. Hence $a-b \in A$. It is also easy to prove that if $a \in A, m \in M$ and $\gamma \in \Gamma$, then $m \gamma a, a \gamma m \in A$. Since A is an ideal of M, there exists an element $c \in A$ such that $A=\langle c\rangle$. But since A is the union of sets, $c \in A$ for
some t. Thus $A \subseteq A_{t}$. Hence $A_{s} \subseteq A_{t}$ for all $s \geq t$. Since also $A_{s} \subseteq A_{t}$ for all $s \geq t$. Hence $A_{s}=A_{t}$ for all $s \geq t$. Thus the lemma is proved.
5.6 Lemma : Let M be a Γ-PID. Let B be an ideal of $M, B \neq M$. Then there exists a maximal ideal R of M such that $B \subseteq R$. Moreover, $R=\langle k\rangle$, where k is a prime.

Proof : Let $A_{1}=B$. If B is not a maximal ideal, then there exists an ideal A_{2} such that $A_{1} \subseteq A_{2} \subseteq M$. If A_{2} is not maximal, then there exists and ideal A_{3} such that $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq M$. By Lemma 5.5 , this process must stop after a finite number of steps. Thus there does not exist a maximal ideal R in M such that $\mathrm{B} \subseteq R$. By Theorem $2.4, R$ is a prime ideal. Now let $R=\langle k\rangle$. If k is not a prime, then $k=a \gamma b$ for some non-zero non-units a and b and some $\gamma \in \Gamma$. Also $b \notin\langle k\rangle$, for if $b \in\langle k\rangle$, then $b=c \gamma k$; for some c. Therefore,

$$
\begin{aligned}
k & =a \gamma b \\
& =a \gamma(c \gamma k) \\
& =(a \gamma c) \gamma k
\end{aligned}
$$

Then $k-(a \gamma c) \gamma k=0$

$$
\begin{aligned}
& \Rightarrow(1-a \gamma c) \gamma k=0 \\
& \Rightarrow 1-a \gamma c=0, \text { since } k \neq 0
\end{aligned}
$$

Hence $1=a \gamma c$. Therefore a is a unit, a contradiction. Thus $b \notin\langle k\rangle$ and similarly $a \notin\langle k\rangle$. But this contradicts that $\langle k\rangle$ is a prime ideal. Thus k is a prime. Hence the lemma is proved.
5.7 Lemma : Let M be a Γ-PID. Let $a \in M, a \neq 0$, a not a unit. Then there exists a prime $k \in M$ such that $k \mid a$.

Proof : Since a is not a unit, $\langle a\rangle \subseteq M$. Hence by Lemma 5.6, $\langle a\rangle \subseteq\langle k\rangle$ for some ideal $\langle k\rangle$, where k is a prime. Then by Theorem 3.4(i), $k \mid a$. Hence the lemma is proved.
51 Thearem = Let M be a Γ-PID. Let $a \in M, a \neq 0$, a not a unit. Then a has a Sunuriution into primes in M.
Froof : By Lemma 5.7, there exists a prime k_{1} such that $k_{1} \mid a$, that is, $a=k_{1} \gamma a_{1}$ for some unique $\gamma \in \Gamma$.

If a_{1} is a unit, then a is a prime by Theorem 3.9 and the proof is completed.
If a_{1} is not a prime, by Lemma 5.7, there exists a prime k_{2} such that $a_{1}=k_{2} \gamma a_{2}$. Again if a_{2} is a unit, then $k_{2} \gamma a_{2}$ is a prime. Hence $a=k_{1} \gamma\left(k_{2} \gamma a_{2}\right)=k_{1} \gamma k_{2} \gamma a_{2}$ is a product of primes.

If a_{2} is not a prime, we find that $a_{2}=k_{3} \gamma a_{3}, k_{3}$ is a prime. Continuing, we find primes $k_{1}, k_{2}, \ldots, k_{n}, \ldots$ and elements $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ such that $a a_{10}$ $i=2,3, \ldots$, . Thus by Theorem 3.4(i), $\left\langle a_{1}\right\rangle \subseteq\left\langle a_{2}\right\rangle \subseteq\left\langle a_{3}\right\rangle \subseteq \ldots$. .By Lemma 5.5, there exists an integer t such $\left\langle a_{t}\right\rangle=\left\langle a_{t+1}\right\rangle=\ldots$. Thus $\left.a_{t+1}=u \gamma a_{t}=u r^{k}\right]_{2} a_{s e s}$ Hence $u \gamma k_{t+1}=1$. Thus k_{t+1} is a unit, which contradicts that k_{t+1} is a prime. Therefore a_{t} must be a prime. Hence $a=k_{1} \gamma k_{2} \gamma \ldots \gamma k_{t} \gamma a_{t}$ is a factorization of a into prines fir some unique $\gamma \in \Gamma$. Thus the theorem is proved.
5.9 Theorem : Every Γ-PID is Γ-UFD.

Proof : Let M be a Γ-PID. Theorem 5.8, established the existence of ane prine factorization for an element $a \in M, a \neq 0$, a not a unit.

Suppose now that k is a prime and $k \mid a \gamma b$ for some $\gamma \in \Gamma$. lfkdies andinide a, by Lemma 5.4 , we get $1=s \gamma k+t \gamma a$ for some $s, t \in M$ and $\gamma \in \mathbb{R}$ The

$$
\begin{aligned}
& 1=(s \gamma k+t \gamma a) \\
\Rightarrow & 1 \gamma b=(s \gamma k+t \gamma a) \gamma b \\
\Rightarrow & b=s \gamma k \gamma b+t \gamma a \gamma b \\
\Rightarrow & b=s \gamma(b \gamma k)+t \gamma a \gamma b, \text { since } M \text { is commutative } \\
\Rightarrow & b=(s \gamma b) \gamma k+t \gamma(a \gamma b) . \text { Since } k \mid(s \gamma b) \gamma k \text { and } k|t \gamma(a \gamma b), k|(s \gamma b) \gamma k+t \gamma(a \gamma b)
\end{aligned}
$$

Thus $k \mid b$.
Now let $a=k_{1} \gamma k_{2} \gamma \ldots \gamma k_{m}=q_{1} \gamma q_{2} \gamma \ldots \gamma q_{n}$ for some $\gamma \in \Gamma$ be two prime factorizations for a. Then $k_{1} \mid\left(q_{1} \gamma q_{2} \ldots \gamma q_{n}\right)$ and so $k_{1} \mid q_{i}$ for some i. We may assume that $i=1$. Since q_{1} is a prime, k_{1} and q_{1} must be associates. The theorem now follows by induction. If $m=1$, then a is a prime. Hence we have $n=1$ and also $k_{1}=q_{1}$. Thus, we may assume $m>1$ and $n>1$. Now it is clear that $k_{1}\left(q_{1} \gamma q_{2} \ldots \gamma q_{n}\right)$ and so by Theorem 3.8(i), $k_{1} \mid q_{h}$ for some h. But since q_{h} is a prime, $k_{1}=q_{h}$. We may assume that the q_{i} 's are so arranged that $h=1$. Thus $k_{1} \gamma k_{2} \gamma \ldots \gamma k_{m}=k_{1} \gamma q_{2} \gamma \ldots \gamma q_{n}$.

Since $k_{1} \neq 0$, we may cancel and get $k_{2} \gamma k_{3} \gamma \ldots \gamma k_{m}=q_{2} \gamma q_{3} \gamma \ldots \gamma q_{n}=a^{\prime}$. But $1<a^{\prime}<a$ and by our induction hypothesis we may conclude (i) that $m-1=n-1$ and (ii) that the factorization $k_{2} \gamma k_{3} \gamma \ldots \gamma k_{m}$ is just a rearrangement of q_{i} 's $i=2,3, \ldots, m$. Thus $m=n$ and γ is also unique, since $k_{1}=q_{1}$, we have proved the theorem for m. Hence the expression $a=k_{1} \gamma k_{2} \gamma \ldots \gamma k_{m}$ into primes is unique. Therefore M is a Γ-UFD. Thus the theorem is proved.

Bames, W. E. (1966). "On the gamma rings of Nobusawa", Pacific J.
Math 18 (1966) 411-422.
11. Coppage, W. E. and Luh, J. (1971). "Radicals of gamma rings", J. Math. Soc. Japan, Vol 23, No. 1 (1971), 40-52.
[3] Jacobson, N. (1964). "Structure of Rings", revised Amer. Math. Soc. Colloquim oubl. 37, providence, 1964.
[4] Nobusawa, N. (1964). "On a generalization of the ring theory", Osaka J. Math. 1 (1964), 81-89.
[5] Paley, H. and Weichsel, P. M. (1996). "A First Course in Abstract Algebra", Holt, Rinehart and Winston, Inc. 1966.
[6] Sahai, V. and Bist, V. (1999). "Algebra", Narosa Publishing House, New Delhi. 1999.

