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Abstract

In this paper we work on factorization in I' -integral domains,
factorization in I' -unique factorization domains and factorization in I" -
principal ideal domains. We have developed some characterizations of

these above domains.

1. Introduction

75

V. Sahai and V. Bist [6] worked on factorization in integral domains. They

have developed some characterizations. Haram Paley and Paul M. Weichsel [5]

characterized factorization in unique factorization domains and principal ideal

domains.

In this paper we generalize the above mentioned works in gamma rings due

to Barnes [1]. The main theorems we have proved are the following : A non-unit

element a of a I' -PID has a factorization into primes and every I'-PID is a I -UFD.

Some other characterizations are studied in this note.
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2. Preliminaries.
2.1 Definitions

Gamma Ring : Let M and I be two additive abelian groups. Suppose that there is a
mapping from Mx I'x M = M (sending (x, &, y) into xay) such that
(1) (x+y)oc~=x<xz+yocz
x(ow + B )z = xaz + xBz

xa(y +z)= xop + xoz

(i)  (xop)Bz=xo(ypz),

where x, y, ze€ M and «, B €' .Then M is called a I' -ring. This definition is due to
Barnes [1]. %

Ideal of T" -rings : A subset 4 of the I'-ring M is a left {right) ideal of M if 4 is an
additive subgroup of M and MI'4 = {coca{c eM,ael,ae A}(AF]LI) is contained

in A. If 4 is both a left and a right ideal of M, then we say that 4 is an ideal or two-
sided ideal of M.

If 4 and B are both left (respectively right or two-sided) ideals of M, then
A+B= {a +b\a eAdbe B} is clearly a left (respectively right or two-sided) ideal,

called the sum of 4 and B. We can say every finite sum of left (respectively right or
two-sided) ideal of a I -ring is also a left (respectively right or two-sided) ideal.

It is clear that the intersection of any number of left (respectively right or
two sided) ideal of M is also a left (resprectively right or two-sided) ideal of M.

If 4 is a left ideal of M, B is a right ideal of M and S is any non-empty

subset of M, then the set, A'S = [ aysla € Ay €l’,s, € S, nisapositive integer) is
1 l’Y 1 1 1 j

i=1

a left ideal of M and STB is a right ideal of M. ATB is a two-sided ideal of M.
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If a€e M, then the principal ideal generated by a denoted by <tz> is the

intersection of all ideals containing a and is the set of all finite sum of elements of
the form na + xaa + afy + uyalv, where n is an integer x, y, u, v are elements of M
and o, B, 7, u are elements of I". This is the smallest ideal generated by a. Let
a€ M. The smallest left (right) ideal generated by a is called the principal left (right)

ideal <a{(|a>>‘

Identity element of a I'-ring : Let M be a I'-ring. M is called a I'-ring with identity
if there exists an element e€ M such that

aye = eya = a for all ae M and some yeT.

We shall frequently denote e by 1 and when M is a ['-ring with identity, we shall
often write 1€ M. Note that not all I'-rings have an identity. When a I'-ring has an
identity, then the identity is unique.

Commutative I'-ring : Let M be a I'-ring. M is called a commutative I'-ring if
ayb = bya for alla, b €M and yeT.

Zero Divisor : Let M be a I'-ring. An element a # 0 in M is called a left zero divisor
if there exists an element b # 0 in M such that ayb = 0 for some y€ I'. Similarly, an
element b # 0 in M is called a right zero divisor if there exists an element a # 0 in
M such that ayb =0 for some Y€ I'. A zero divisor is an element that is either a left
or a right zero divisor. If M is a commutative I'-ring, then the concepts of left and
right zero divisor coincide.

[-integral domain : Let M be a commutative I'-ring such that 1€ M. If M has no

zero divisors, then we call M a I'-integral domain.

Principal ideal : An ideal 4 of a I'-integral domain M is called a principal ideal of
M if 4 is generated by a single element a€ M, that is, 4 = ay M for all yeT.

I"-Principal ideal domain : A I'-ring M is called a I"-principal ideal domain (I"-PID for
short) if M is I'-integral domain and every ideal of M is a principal ideal.



78 Md. Sabur Uddin and A.C. Pgul

Prime ideal : Let M be a commutative I'-ring. An ideal K in M is called a prime
ideal if whenever ay b€ K, ac M, be M and some y €I, then either a€ K or be k.

Maximal ideal : An ideal R in a I'-ring M is called a maximal ideal in M if (i) RcM
and (ii) whenever L is an ideal in M such that Rc L ¢ M, then either L= Ror
L=M.

Division gamma ring : Let M be a I'-ring. Then M is called a division I'-ring if it
has an identity element and its only non-zero ideal is itself. A commutative division
I-ring is called a I'-field.

Multiplicatively closed sub setof a [-ring : A non empty sub set Sof a [-ring M is
said to be multiplicatively closed if xy y€ S whenever x, y&€ S and some yeI'.

We need the following three Theorems due to V. Sahai and V. Bist [6] in
ring theory. We modify these theorems in gamma rings which are needed to our

next works.

2 2 Theorem : Let M be a commutative I'-ring with identity and let 4 be an ideal of
M. If S is a multiplicatively closed subset of M with ANS is empty, then the family
F of all ideals B of M which contain 4 and BNS is empty possesses a maximal

clement; and such a maximal element is a prime ideal of M.
7 3 Theorem : Let M be a commutative I'-ring with identity. An ideal K of M is
prime if and only if MA( is a I'-integral domain.
2 4 Theorem : Let M be a commutative I'-ring with identity. Let K be maximal
ideal in M. Then K is a prime ideal.

The proof of the above three theorems are similar to that of the ring theories.
3. Some Factorization in I'-integral Domains

3 1 Definition : Let M be a [-integral domain. If m and s are elements of M, then
we say m divides s (in symbols m]s) if there exists an element t€ M such that s = myt

for some y €. In this case m is called a factor or a divisor of s.
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3.2 Definition : Let M be a I'-integral domain. An element a€ M is called a unit in
M if there exists b€ M such that ay b =1 for some yeTI.

3.3 Definition : Let M be a I'-integral domain. Non-zero elements a and b are
called associates if a|b and b|a. Note that 1|m for every m in M. Also, if u is a unit

in M, then u and 1 are associates.

3.4 Theorem : Let a and b non-zero elements in a I'-integral domain. Then
()  adivides b if and only if (b) = ({a)
(i1) a and b are associates if and only if <a> = <b>

(iii)  ais a unit in M if and only if (a)=M .

Proof : (i) If alb, then b= ayx for some x€ Mand yeI'. Thus b € <a> and so <b> c <a> .

Conversely, if <b> = <a> ,then be <a> and so b = ay x for some xe M and y €I,
that is, alb.

(ii) follows easily from the definition 3.3 and (i)
(iii) follows from (ii) as a and 1 are associates and <a> =M.

3.5 Theorem : Let a and b be non-zero elements in a ['-integral domain M. Then a
and b are associates if and only if there exist a unit  in M such that b = ay u for
some yYeTl.

Proof : Suppose that a and b are associates. Then a|b and b|a, there exist u, v in M

such that 5 = ayu and a = byv for some y€I'. Now,
a=byv

= (ayu)yv

=ay (uyv)
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So, a—ay(uyv):O.
Thus ay(l—uyv):O .
This implies that 1-uyv = 0, since a # 0. Hence wyv = 1. Therefore u is a unit.

Conversely, let b = ayu for some y eI, where u is a unit in M. Then we

have alb.
Therefore,
byu = (ayu)yu_1

= byu" =ay (uyu_l)

1

=byu =ayl

1

=byu" =a. Hence a = byu'.Thus b|a. Hence a and b are

associates. Thus the theorem is proved.

3.6 Definition : Let M be a I'-integral domain.

(1) An element a of M is irreducible if a is a non-zero, non-unit element and if
a = xyy for some y €T, then either x or y is unit.

(i) An element k of M is prime if k is a non-zero, non-unit element and if kjxyy for

some yel, then k|x or k|y.

It follows immediately from the above definition that every associate of a

prime (respectively irreducible) element is also prime (respectively irreducible).

3.7 Theorem : Let k be a non-zero element of a I'-integral domain M. Then k is a
prime if and only if <k> is prime ideal.

Proof : Let k be prime, then k is a non-zero non-unit. So <k> #0and <k> #M . If
x,y€ M such that xyy e (k) for some yeT, then kjxyy and so kJx or kly. Thus x <k>
or ye <k> . Therefore <k> is a prime ideal.
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Conversely, let <k> be a prime ideal, since k£ # 0 and <k> #M , so kis not

a unit. If klxyy for some ye I, then xyy € <k> and so x € <k> or ye <k> . Hence k|x

or kly. Therefore k is a prime element of M. Thus the theorem is proved.

3.8 Theorem : Let M be a I'-integral domain.

(i) Ifkisa prime element of M and kl(alyazy .. .ya,) for some ye 1, then

kla for some index r.

(ii) Every prime element is irreducible.

(iii) If kykyy ...vk, = qyq,y ...vq, for some yel’, where elements &, and

g;are primes, then s = t. Further, there exists a permutation ¢ € S, such
that k£, and 94 are associates. This means that the decomposition into
primes is unique upto rearrangement of factors or multiplication of

factors by units.

Proof': (i) By induction on ¢. The case =2 is trivial. Now & (alyazy s Tl 4 )ya[ implies

that k& (a;{az’y ...ya, ) or kla,. If kla, then we have proved the statement; other wise

klalyazy ...Ya,_; and so by induction hypothesis k|a for somer=1, 2, ..., ¢-1.

(ii) Let k€ M be a prime. If k= ay b for some ye I, then kja or k|b. Without any loss
we can assume that k|b. Then b = kyx for some xe M. Therefore,
ayb = aykyx

=k = aykyx

= k—aykyx=0

= k — kyayx =0, since M is commutative

= ky (1 - ayx) ={)

= 1—ayx =0, since k # 0.Thus ayx = 1. Hence a is a unit. Thus k is irreducible.
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(iii) Without any loss we can assume that s < . Suppose first that s < ¢. Then
kykyy ...vk, = qyq,y ...yq, for some y eI’ with s < ¢. Since each k, divides

q.,Yq,Y -..Yq, by (i) there exists q, such that k,-]‘I,I and so BT kyx, for some xe M
and yeT. Therefore

kyky ..vyk, =(kyky.. vk, (xyxy...vx, g
where ¢'is product of remaining primes from {g,, q,, . . ., ¢,}. But then it implies

that (xly XY ¥ X, )y q' =1, thatis, ¢'is a unit. This is a contradiction. Hence s = ¢.

Now we prove by iduction on ¢ that if kykyy ...k, = qyq,Y ...vq, , then there
exists o€ S, so that k£ and 9, are associates. If t=1, then the hypothesis is clearly true.

Suppose that the hypothesis is true for all » < ¢. Now if kyk,y ...vk, = q,yq,y -..vq, ,

then k,|q;Yq,Y ---Yq, . Thus k| g, for some index 4 and so g, = uyk, for some ue M.

Since g, is prime and so irreducible, u is a unit in M. Therefore g, and %, are
associates. Now

kiykyy vk Yk, = ayayy - Y4LY 4Y QY -4
=> kyykyy - vk, ik, = qivasy g, (erk, )Y 4y ¥4,

= kiykyy vk vk, =wyqy g5y a4, YkYqu.y --vq,» since M is

commutative. Dividing by k, on both sides, we get.

ky kY .Yk =wyqygsy Y @Y @Y ---Y4,

By induction hypothesis, there exists a one-one and onto mapping o from {1,2, ..., ¢}
to {1,2,...h-1,h+1,...,1} suchthat k, and g, are associates. Now define
o(t) = h, to obtain the claim. Thus the theorem is proved.

3.9 Theorem : Let k be a prime in a I'-integral domain. If ¢ is an associate of &, then
q 1s a prime.

The proof is obvious.
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4. Factorization in I'-Unique Factorization domains

4.1 Definition : A I'-integral domain M is a ['-unique factorization domain (I'-UFD) if

it satisfies followin conditions :

(i) every non-zero, non-unit element a of M can be written as a =k, yk,)y. .. vk, for

some yeI', where k, k,, . . ., k, are irreducible elements in M and
(i) ifa=k,yky...yk,anda=q,7q,Y. .. vq, forsome ye I, where k. k,, .. .. k,
4,4, - - -» 4, are irreducibles, then n = ¢ and for some permutation o € S, each g, is

an associate of k.

If we define a relation ~ on a I'-integral domain M by a~b, if a is an associate
of b, then ~ is an equivalence relation. Since a is associate of b if and only if
(a) = (b} (by Theorem 3.4). Also we have a is an associate of b if and only if a = uyb
for some unit # in M and some y €I’ (by Theorem 3.5). Thus if a denotes the
equivalence class of @, then @ = {uyb |u is a unit in M and some yeI'}.

Let M be a T-UFD. If a is a non-zero non-unit in M, then by part (i) of the
above definition we have a=c,yc,y. . . yc, forsome yeT, where ¢, ¢,, . . -, ¢, are

irreducibles in M. If we collect all associates of these irreducibles together, then it
is easy to see that we can write a as a = uy (ky )" kpy (kyy )2 koy .y (ky 7 &

where u is a unit, &k, k,, . .., k, are irreducibles such that no two of these are
associates. More precisely, l;l,lgz,...,l;n are distinct equivalence classes. Further,
part (ii) of the above definition says that these equivalence classes and positive

integers m, m,, . . ., m_are uniquely determined by a. Thus if also
a=v(qy ) ay(ay Y2 gy -v(gy )" q, with v, a unit and 7,.7,.....7, distinct
equivalence classes, then = n and for some €S, we have k= g aforalli=1,
2t i M

4.2 Theorem : Let M be I'-UFD. An element a of M is prime if and only if i is imeducible.

Proof : By Theorem 3.8, if a is a prime element of M, then it is also irreducible.
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If 1 is the gcd of 4, then we say that the set 4 is relatively prime. Note that any two
ged’s of 4 are associates. Thus the gcd, if it exists, is well defined up to

multiplication by a unit.

4.5 Theorem : Let M be a T-UFD and let 4 be a non-empty subset of M\{0}. Then
there exists a ged of 4.

Proof : Since M is a I-UFD, each ae 4 can be written in the form

a=uy (cly )hl ¢y (czy )hz o O (Cr )”" ¢, for some ye I', where uisaunit, ¢, ¢y - - - €

are irreducibles in M with no two of these irreducibles being associates and h; > 1 for
alli=1,2,...,r Define D(a): {a,Ez,..,,E,,}, where ¢ is the equivalence class of
¢ with equivalence relation ~ on M defined by a~b if and only if @ is an associate of

b. Clearly D(a) is finite. Observe that D(a) is empty if and only if @ is a unit. Let

D= ﬁ{D(a}za € A}. Since each D(a) is finite, so D is a finite set.

If o' € Ais a unit, then a ged of 4 is 1. Since if ee M and e|a for all

a € A, then in particular e[af and so e is a unit. Thus e|l1.

If all element of A4 are non-units, then D(a) is non-empty for all ae 4. First
assume that D is empty. In this case we claim that 1 is a ged of 4. For this, it is
sufficient to show that if ee M and e|a for all ae 4, then e is a unit. If e is not unit,

then there exists an irreducible ce M such that cle. Since e|a for all ae 4, so cla for
all ae 4. Thus ¢ € D, a contradiction as D is empty. '
Now assume that D = {@1,21—2,...,@}, a non-empty set with ¢ distinct

elements. Then to each ae 4, there exists positive integers m(a) such that

(kiy )mi (a)kila and (kiy )mi (a}t k,does not dividea foralli=1,2,...,1 and some yeT. .

Clearly, then every a€ 4 can be written as a= (kly )ml(a)kly (k2y )'"Z(a)kzy Y (kt'y )"" (a)ktya'

for some yeT, where a' e M . Let m, min = {m(a)lac A} fori= 1,2,...,tand

————————————————————— e e

et
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d= (kly )ml ky (kzy )mz ky..y (kly )m' k, for some yeT. Then d|a for all ae 4. Now

we will show that d is a gcd of 4. Let ee M and ela for all ac 4. If e is a unit, then

clearly e|d. If e is a non-unit, then e =vy (qy J" g1y (¢57 V> v v (g,¥ )" g, for some

yel, where vis aunit, q,,q,, ..., g, are irreducible such that no two of these are
associatesan s, >1fori=1,2,...,n. Since qjle SO qjia forall ae 4. Thus ¢, € D for

allj=1,2,...,n Therefore, {ql, 3 ...,ﬁn}g D so n<t.Also, it shows that each

g;is an associate of some &, . Thus ¢, = uj}/ki_ for some unit u, in M and yeTl.
J J

Now e=vy (gt " a1 -1 (@1 )" g, =y (e kv oy J ey oy ey Jk,  where
w=vy (uxy )Sl uy (uz’y )Sz uyy ...y (uny‘ )s" u, ,aunitin M. Now again as (kij"/ } A a
forallacdandj=1,2,...,n, by definition ofmij_, we get 5, < m . Therefore eld.

Hence the theorem is proved.
5. Factorization in G-Principal ideal domains

5.1 Theorem : Let ¢ be a non-zero element in a T-PID M. Then c is irreducible if
and only if Qc\, is a maximal ideal of M.

Proof : Let ce M is irreducible. Then <c> #0and <c> # M as c is non-zero and
nonunit. Now suppose that there exists a in M such that <c>g<a>gh‘ and
<c> # <a> . Then ¢ = ayx for some xe M and y eI If x is a unit, then ¢ and a are

associates (by Theorem 3.4), so <c> = <a> , a contradiction. Hence a must be 2 unit

Therefore <a> =M . Hence <c> is a maximal ideal of M.

Conversely, let <c> is a maximal ideal in M. Then c is not a unit. If @ € M with

<c> c <a> c M and <c> # M . Then <c> = <a_> . Therefore ¢ = ayu for some unit  in

M and yeT (by Theorem 3.5). Hence c is irreducible. Thus the theorem is proved.
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5.2 Theorem : Let M be a I'-PID and 4 be a non empty subset of M\{0}.
(1) An element d of M is a gcd of 4 if and only if d is a generator.of

<a> , an ideal of M generated by 4.

(ii) A= (0.8, 0055 a} is finite, then every ged of 4 is of the form

mya, +mya,+...mya,wherem,m, ...,m, € M and some yeT.

Proof : (i) Suppose that d is generator of (A) Then for any ac 4, dla. Also as

de <A>, sod=mya,+mya,+...mya,forsomem,m,..., meM,a,a,...,acd

and some y eI Therefore, if e|a for all ae 4 then e|d. Hence d is gcd of 4.

Conversely, let d is ged of 4 and (4)=(c), then as dja for all ae4 so
we(d). Therefore (A)<(d), that is, {)={d). Now if acd, then as
ae(A4)=(c) socla. Since d is a ged of 4, we have cld, that is, (d) < (c) . Therefore
(d)={c)=(A). Hence d is a generator of (4).

(i)  isa straightforward consequence of (i). Thus the theorem is proved.

5.3 Theorem : Let M be a I'-PID. Then an element k of M is prime if and only if &
is irreducible.

Proof : By Theorem 3.8, we get if k is prime then it is irreducible. By Theorem 5.1,

we get if k is irreducible, then <k> is maximal. So, A%k) is a I'-field. In particular

A% k> is a I'-intergral domain. Therefore <k> isa prime ideal (by Theorem 2.3).

By Theorem 3.7 we get, k is prime. Hence the theorem is proved.
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5.4 Lemma : Let M be a T-PID. Let k be a prime and suppose that & does not divide a.
Then there exist elements s and t in M such that 1 = syk+ t}/a for some yeT.

Proof : Let 4 be the ideal generated by k and a, that is,
A= {xyk+yva1x€M yeMandsomey ET} Since 4 is a prmc1pal ideal, there

exists c€ 4 such that 4 =< > and so we can find s and ¢ such that syk+tya=c.

Since <k> c A :<c>, by Lemﬁxa 3.4, clk. Similarly c|a. Since k is a prime, c is

either a unit or an associate of k. In the later case ¢ = uyk, u a unit for some y€I.
Hence cla implies kla. This is impossible, so c is a unit. Thus there exists e€ 4 such
that eyc = 1. Now

| (syk + tya) =c
Therefore, ey (syk + tya) =eyc

= eysyk + eytya = eyc

= (eys),vk + (eyt)ya =1

= syk + tya =1, since e is the identity of M. Thus the lemma is proved.

55Lemma:Let MbeaI-PID.Let {4 |[n=1,2,.. .} be a chain of ideals in M, that
is, 4 < A, € 4, <.... Then there exists an integer ¢ such that 4 = 4, for all

s>t

Proof: Let 4, = <an> andlet A=U A, . Since 4, € A,,5 <h,we can prove easily

n=l

that 4 is an ideal of M. For let a, be A. Then clearly there exists s such that a€ 4,
and be 4. Since 4 1s an ideal of M, a-be A . Hence a-b€ 4. It is also easy to prove
that if aeA meM and yeTl, then mya, a}/meA Smce 4 is an ideal of M, there

ex1sts an element c€ 4 such that A < > . But smceA 1s ihe union of sets, cE 4, for
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some ¢. Thus 4 € 4,. Hence 4 o A, for all s 2 ¢. Since also 4, C A, for all s>t
Hence 4, = 4, forall s 2 1. Thus the lemma is proved.

5.6 Lemma : Let M be a T-PID. Let B be an ideal of M, B # M. Then there exists a

maximal ideal R of M such that B  R. Moreover, R= <k> , where k is a prime.

Proof : Let 4, = B. If B is not a maximal ideal, then there exists an ideal A, such

that 4 c 4, c M . If 4, is not maximal, then there exists and ideal 4, such that

doAhcdc M . By Lemma 5.5, this process must stop after a finite number

of steps. Thus there does not exist a maximal ideal R in M such that B € R. By

Theorem 2.4, R is a prime ideal. Now let R = (k) .If k is not a prime, then k= ayb

for some non-zero non-units @ and b and some y€I'. Also be <k> ,forif be (k> ,

then b = cyk; for some c. Therefore,
k=ayb
=ay(cyk)
= (ayc)rk
Then k—(ayc)yk =0
= (1-ayc)yk=0"

=1-ayc=0, since k#0.

Hence 1 = ayc. Therefore a is a unit, a contradiction. Thus b ¢ (k) and similarly
a¢ <k> . But this contradicts that (k) is a prime ideal. Thus & is a prime. Hence the
lemma is proved.

5.7 Lemma : Let M be a I'-PID. Let ae M, a#0, a not a unit. Then there exists a
prime ke M such that kja.
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Proof : Since a is not a unit, <a> < M . Hence by Lemma 5.6, <a> = k for some

ideal <k> , where k is a prime. Then by Theorem 3.4(i), kla. Hence the lemma is

proved.
“eore— - Let M be 2 T-PID. Let ae M, a#0, a not a unit. Then a has a
Btriton mto primes in M.

Proof - By Lemma 5.7, there exists a prime £, such that ka, that is, a = k,ya, for

some unique YeT.
If a, is a unit, then a is a prime by Theorem 3.9 and the proof is completed.

If a, is not a prime, by Lemma 5.7, there exists a prime &, such that a, = k,ya,.
Again if @, is a unit, then k,ya, is a prime. Hence a = ky (kzya2)= kykyya,is 2

product of primes.

If a, is not a prime, we find that a, = k,Ya,, k, is a prime. Continuing, we
find primes k, k,, . . . , k,, . . . and elements a,, a,, . . . , @, - - . such that ala
i=2,3,...,.Thus by Theorem 3.4(i), {a,) = (a,) ={ay) < .- -- By Lemma 5.5
there exists an integer ¢ such (a,) =(am> =....Thus a,, =uwya =we s

Hence uyk,,, =1. Thus k,,, is a unit, which contradicts that k _, is a prime. Thesefoes
a, must be a prime. Hence a = kjyk;y ...Yk;ya, is a factorization of 2 info prmes S
some unique y € ['. Thus the theorem is proved.

5.9 Theorem : Every I'-PID is I'-UFD.

Proof : Let M be a I-PID. Theorem 5.8, established the existemos oo fms e
factorization for an element ae M, a#0, a not a unit.

Suppose now that k is a prime and klayb for some ¥= [ I & does mr girvge
a, by Lemma 5.4, we get 1 = syk + tya for somes, [ € M zad yel_ Thew
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1= (syk + tya)
| =N m = (syk + tya)yb
= b = sykyb + tyayb
— b = sy (byk)+ tyayb, since M is commutative
— b =syb)yk +1y(ayb). Since K|(syb)yk and Kley (ayb), k{(syb )k + v (ayb)
Thus kb.

Now let a=kyky..vk, = quqzy.‘.yan for some y € be two prime
factorizations for a. Then k1|(quq2 --'an) and so k|q, for some 7. We may assume
that i = 1. Since g, is a prime, k, and g, must be associates. The theorem now
follows by induction. If m=1, then a is a prime. Hence we have n=1and also k,=q,.
Thus, we may assume m >1 and n>1. Now it is clear that k1\(¢1ﬂ"]z _..yq") and so by
Theorem 3.8(1), k,|g, for some h. But since g, is a prime, k, = g,. We may assume

that the g’s are so arranged that 2= 1. Thus kykyy ...vk,, =kyq>Y -4, -

Since k, # 0, we may cancel and get kykyy..vk,, =4,Yq5Y Y4, =a . But
1< d' < a and by our induction hypothesis we may conclude (i) that m-1=n- 1 and
(ii) that the factorization kykyy - .. vk, isjusta rearrangement of ¢’s i=2,3, ..., m.
Thus m = n and yis also unique, since k, = g,, we have proved the theorem for m.
Hence the expression a = kyky ...vk,, into primes is unique. Therefore Mis a T-UFD.

Thus the theorent is proved.
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