Mathematical Forum Vol.XIX, 2006-2007

ALMOST CONTRA- $\Omega^* g \alpha$ -CONTINUOUS FUNCTIONS

By

I. Arockiarani* and J. Mercy** * Department of Mathematics, Nirmala College for Women, Coimbatore-18 (T.N.), India ** Department of Mathematics, Hindustan College of Arts & Science, Chennai (T.N.), India

Abstract

The notion of contra continuous functions was introduced by Dontchev. In this paper we apply the notion of Ω^* -open sets in topological space to present and study a new class of functions called almost contra- $\Omega^*g\alpha$ continuous functions as a new generalization of contra continuity. Futhermore, we obtain basic properties and preservation theorems of almost contra- $\Omega^*g\alpha$ -continuity and investigate the relationship between almost contra- $\Omega^*g\alpha$ -continuity and $\Omega^*g\alpha$ -regular graph.

Key words: M- $\Omega^* g\alpha$ -closed map, Almost contra- $\Omega^* g\alpha$ -continuity, $\Omega^* g\alpha$ -regular graph.

1. Introduction

Dontchev [3] introduced the notions of contra-continuity in topological spaces. He defined a function $f: X \rightarrow Y$ is contra continuous if the preimage of every open set of Y is closed in X. Recently Ganster and Reilly [6] introduced a new class

(Published : December, 2008)

of functions called regular set connected functions (in 1999). Jafari and Noiri [7] introduced contra-pre-continuous functions. Almost contra-pre-continuous functions were introduced by Ekici [4]. J. Mercy and I. Arockiarani [12] introduced On Ω^* -closed sets and Ωp -closed sets in topological spaces. In this paper we introduce and study a new class of functions called almost contra- $\Omega^*g\alpha$ -continuous functions which generalize classes of regular set connected [6] contra continuous [3] and perfectly continuous [13] functions. Moreover, the relationship between almost contra- $\Omega^*-g\alpha$ -continuity and $\Omega^*g\alpha$ -regular graphs are also investigated.

2. Preliminaries

Throughout this paper, spaces (X,τ) and (Y,σ) or (Simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicity stated. For a subset A of (X,τ) , cl(A) and int(A) represent the closure of A and interior of A with respect to τ respectively.

Definition 2.1: A subset A of a topological space (X,τ) is said to be preopen [11] (resp. preclosed) if $A \subset \text{Int}(cl(A))$ (resp.cl(int $(A) \subset A$)).

Definition 2.2: A subset A of a topological space (X,τ) is said to be regular open [15] (resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A))).

Definition 2.3: A subset A of a topological space (X,τ) is said to be α -closed [14] (resp. α -closed) if $Cl(Int(Cl(A))) \subset A$ (resp. $A \subset Int(Cl(Int(A)))$.

Definition 2.4: The intersection of all α -closed sets containing A is called α -closure of A and is denoted by α -cl(A).

Definition 2.5: The α -interior of A is defined by the union of α -open sets contained in A and is denoted by α -int(A).

Definition 2.6: A subset A of a topological space (X, τ) is said to be generalized α closed set [10] (briefly α -closed) if α -cl $(A) \subset U$ whenever $A \subset U$ and U is α -open.

Definition 2.7: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

- 1. Contra-continuous [3] if $f^{-1}(V)$ is closed in (X, τ) for every open set V of (Y, σ) .
- 2. Regular set connected [6] if $f^{-1}(V)$ is clopen in X for every $V \in RO(Y)$.
- 3. Perfectly-continuous [13] if $f^{-1}(V)$ is both open and closed in (X, τ) for every open set V of (Y, σ) .
- 4. Almost-continuous [16] if $f^{-1}(V)$ is open in X for every regular open set V of (Y, σ) .

Definition 2.8: A subset A of a topological space (X, τ) is said to be $\pi g \alpha$ -closed [1] if α -cl $(A) \subset U$ whenever $A \subset U$ and U is π -open.

Definition 2.9: A function $f: (X,\tau) \to (Y,\sigma)$ is called $\pi g \alpha$ -continuous [2] if $f^{-1}(V)$ is $\pi g \alpha$ -open in (X,τ) for every open set V of (Y,σ) .

Definition 2.10: A function $f: (X,\tau) \to (Y,\sigma)$ is said to be almost contra- $\pi g \alpha$ continuous [8] if $f^{-1}(V) \varepsilon \pi G \alpha C(X,\tau)$ for every $V \varepsilon RO(Y,\sigma)$.

Definition 2.11: A subset A of a topological space (X,τ) is said to be Ω^* -closed [12] if $pcl(A) \subset Int(U)$, whenever $A \subset U$ and U is pre-open in (X,τ) .

3. Almost Contra- $\Omega^* g\alpha$ -Continuous Functions

Definition 3.1: A subset A of a topological space (X, τ) is said to be

(a) $\Omega^* g \alpha$ -closed if α -cl(A) $\subset U$ whenever $A \subset U$ and U is Ω^* -open.

(b) $\Omega^* g\alpha$ -open if X-A is $\Omega^* g\alpha$ -closed.

The family of all $\Omega^* g\alpha$ -closed sets of X (resp. $\Omega^* g\alpha$ -open sets) are denoted by $\Omega^* G\alpha C(X, \tau)$ (resp. $\Omega^* G\alpha O(X, \tau)$).

Definition 3.2: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

- 1. $\Omega^* g\alpha$ -continuous if $f^{-1}(V)$ is $\Omega^* g\alpha$ -open in (X, τ) for every open set V of (Y, σ) .
- 2. Almost- $\Omega^* g \alpha$ -continuous if $f^{-1}(V)$ is $\Omega^* g \alpha$ -open in X for every regular open set V of (Y, σ) .

ALMOST CONTRA- Ω^* ga-CONTINUOUS FUNCTIONS

- 3. Contra- $\Omega^* g\alpha$ -continuous if $f^{-1}(V)$ is $\Omega^* g\alpha$ -closed in (X, τ) for every open set V of (Y, σ) .
- 4. M- $\Omega^* g \alpha$ -open (resp. M- $\Omega^* g \alpha$ -closed) if image of each $\Omega^* g \alpha$ -open set (resp. $\Omega^* g \alpha$ -closed) is $\Omega^* g \alpha$ -open (resp. $\Omega^* g \alpha$ -closed).

Definition 3.3: A function $f: (X,\tau) \to (Y,\sigma)$ is said to be almost contra- $\Omega^* g\alpha$ continuous if $f^{-1}(V) \in \Omega^* G\alpha C(X,\tau)$ for every $V \in RO(Y,\sigma)$.

Theorem 3.4: Let (X,τ) and (Y,σ) be topological spaces. The following statements are equivalent for a function $f: X \to Y$.

- 1. *f* is almost contra- $\Omega^* g\alpha$ -continuous.
- 2. $f^{-1}(F) \in \Omega^* G \alpha O(X, \tau)$ for every $F \in RC(Y, \sigma)$.
- 3. for each $x \in X$ and each regular closed set F in Y containing f(x), there exists a $\Omega^* g \alpha$ -open set U in X containing x such that $f(U) \subset F$.
- 4. for each $x \in X$ and each regular open set V in Y not containing f(x), there exists a $\Omega^* g \alpha$ -closed set K in X not containing x such that $f^{-1}(V) \subset K$.
- 5. $f^{-1}(int(cl(G)) \in \Omega^* G \alpha C(X, \tau)$ for every open subset G of Y.
- 6. $f^{-1}(\operatorname{cl}(\operatorname{int}(F)) \varepsilon \Omega^* G \alpha O(X, \tau)$ for every closed subset F of Y.
- **Proof:** (1) \Rightarrow (2) : Let $F \varepsilon RC(Y)$. Then $Y F \varepsilon RO(Y, \sigma)$. By (1), $f^{-1}(Y F) = X f^{-1}(F) \varepsilon$ $\Omega^* G \alpha C(X, \tau)$. This implies $f^{-1}(F) \varepsilon \Omega^* G \alpha O(X, \tau)$.
 - (2) \Rightarrow (1) : Let $V \in RO(Y, \sigma)$. Then $Y V \in RC(Y, \sigma)$. By (2) $f^{-1}(Y V) = X f^{-1}(V) \in \Omega^* G \alpha O(X, \tau)$. This implies $f^{-1}(V) \in \Omega^* G \alpha C(X, \tau)$.
 - (2) \Rightarrow (3) : Let *F* be any regular closed set in *Y* containing *f*(*x*). By(2), *f*⁻¹(*F*) $\varepsilon \Omega^* G \alpha O(X, \tau)$ and $x \varepsilon f^{-1}(F)$. Take $U = f^{-1}(F)$. Then $f(U) \subset F$.
 - (3) \Rightarrow (2) : Let $F \in RC(Y,\sigma)$ and $x \in f^{-1}(F)$. From (3), there exists a $\Omega^* g \alpha$ open set Ux in X containing x such that $Ux \subset f^{-1}(F)$. We have

 $f^{-1}(F) = \bigcup_{x \in f^{-1}(F)} Ux$. Thus, $f^{-1}(F)$ is $\Omega^* g \alpha$ -open.

75

- (3) \Rightarrow (4) : Let V be a regular open set in Y not containing f(x). Then Y-V is a regular closed set containing f(x). By (3) there exists a $\Omega^* g \alpha$ -open set U in X containing x such that $f(U) \subset Y$ -V. Hence $U \subset f^{-1}(Y-V) \subset X - f^{-1}(V)$ and then $f^{-1}(V) \subset X - U$. Take K = X - U. We obtain a $\Omega^* g \alpha$ -closed set K in X not containing x.
 - (4)⇒(3) : Let F be regular closed set in Y containing f(x). Then Y-F is a regular open set in Y not containing f(x). By (4) there exist a Ω*gα-closed set K in X not containing x such that f⁻¹(Y-F) ⊂ K. This implies X-f⁻¹(F) ⊂ K⇒X-K ⊂ f⁻¹(F)⇒f(X-K) ⊂ F. Take U = X-K. Then U is a Ω*gα-open set in X containing x such that f(U) ⊂ F.
 - (1) \Rightarrow (5) : Let G be an open subset of Y. Since int(cl(G)) is regular open, then by (1) $f^{-1}(int(cl(G))) \in \Omega^* G\alpha C(X, \tau)$.
 - (5) \Rightarrow (1) : Let $V \in RO(Y,\sigma)$. Then V is open in Y. By (5) f^{-1} (int(cl(V))) ϵ $\Omega^*G\alpha C(X,\tau) \Rightarrow f^{-1}(V) \in \Omega^*g\alpha$ -closed in (X,τ) .
 - $(2) \Rightarrow (6)$: The proof is obvious from the definitions.

Remark 3.5: The following diagram holds.

Perfectly continuous	\Rightarrow	Contra continuous	\Rightarrow	Contra- $\Omega^* g \alpha$ -continuous

Regular set connected

Almost Contra $\Omega^* g\alpha$ -continuous

None of the implications is reversible for almost Contra $\Omega^* g\alpha$ -continuity as shown by the following examples.

Example 3.6: Let $X = \{a, b, c\}, \tau = \{\Phi, X, \{a\}\}$ and $\sigma = \{\Phi, X, \{b\}, \{c\}, \{b, c\}\}$. Then the identity function $f: (X, \tau) \rightarrow (X, \sigma)$ is almost contra- $\Omega^* g \alpha$ -continuous but not regular set connected. **Example 3.7:** Let $X = \{a,b,c,d\}, \tau = \{X, \Phi, \{a\}, \{a,c\}, \{a,d\}, \{a,c,d\}\}$ and $\sigma = \{X, \Phi, \{a\}, \{a,b\}, \{a,c,d\}\}$. Then the identity function $f : (X,\tau) \rightarrow (X,\sigma)$ is almost contra- $\Omega^*g\alpha$ -continuous but not contra- $\Omega^*g\alpha$ -continuous.

Example 3.8: Let $X = \{a, b, c\}, \tau = \{X, \Phi, \{a, b\}\}$ and $\sigma = \{X, \Phi, \{a\}, \{a, b\}\}$. Then the identity function $f : (X, \tau) \rightarrow (X, \sigma)$ is contra- $\Omega^* g \alpha$ -continuous but not contracontinuous.

Theorem 3.9 : Suppose that $\Omega^* g \alpha$ -closed sets are closed under finite intersection. If $f: X \to Y$ is almost contra- $\Omega^* g \alpha$ -continuous function and A is $\Omega^* g \alpha$ -open subset of X, Then the restriction $f/A: A \to Y$ is almost contra- $\Omega^* g \alpha$ -continuous.

Proof: Let $F \in RC(Y)$. Since f is almost contra- $\Omega^*g\alpha$ -continuous then $f^1(V) \in \Omega^*G\alpha O(X,\tau)$. Since A is $\Omega^*g\alpha$ -open in X if follow that $(f/A)^{-1}(F) = A \cap f^{-1}(F) \in \Omega^*G\alpha O(A,\tau)$. Therefore, f/A is almost contra- $\Omega^*g\alpha$ -continuous function.

Remark 3.10: Every restriction of an almost contra- $\Omega^* g\alpha$ -continuous function is not necessarily almost contra- $\Omega^* g\alpha$ -continuous.

Example 3.11: Let $X = \{a,b,c,d\}, \tau = \{\Phi, X, \{a\}, \{d\}, \{a,d\}, \{c,d\}, \{a,c,d\}\}$ and $\sigma = \{\Phi, X, \{b\}, \{c\}, \{b,c\}\}$. Then the identity function $f : (X,\tau) \to (X,\sigma)$ is almost contra- $\Omega^*g\alpha$ -continuous but if $A = \{a,b,c\}$, where A is not $\Omega^*g\alpha$ -open in (X,τ) and $\tau_A = \{\Phi, \{a,b,c\}, \{a\}, \{c\}, \{a,c\}\}$ is the relative topology on A induced by τ , then $f|A: (A,\tau_A) \to (X,\sigma)$ is not almost contra- $\Omega^*g\alpha$ -continuous. Note that $\{a,b,d\}$ is regular closed in (X,τ) but that $(f|A)^{-1}\{a,b,d\} = A \cap \{a,b,d\} = \{a,b,c\} \cap \{a,b,d\} = \{a,b\}$ is not $\Omega^*g\alpha$ -open in (A,τ_A) .

Definition 3.12: A cover $\Sigma = \{U\alpha : \alpha \in I\}$ of subsets of X is called a $\Omega^* g\alpha$ -cover if $U\alpha$ is $\Omega^* g\alpha$ -open for each $\alpha \in I$.

Theorem 3.13: Suppose that $\Omega^* G \alpha O(X, \tau)$ sets are closed under finite intersection. Let $f: X \to Y$ be a function and $\Sigma = \{U\alpha : \alpha \in I\}$ be a $\Omega^* g \alpha$ -cover of X. If for each $\alpha \in I$, $f/U\alpha$ is almost contra- $\Omega^* g \alpha$ -continuous, then $f: X \to Y$ is almost contra- $\Omega^* g \alpha$ -continuous.

Proof: Let $V \in RC(Y)$. Since $f/U\alpha$ is almost contra- $\Omega^*g\alpha$ -continuous function, $(f/U\alpha)^{-1}(V) \in \Omega^*G\alpha O(U\alpha)$. Since $U\alpha \in \Omega^*G\alpha O(X)$, by the result if U is $\Omega^*g\alpha$ -open in X and V is $\Omega^*g\alpha$ -open in X, it follows $(f/U\alpha)^{-1}(V) \in \Omega^*G\alpha O(X)$ for each $\alpha \in I$. Then $f^{-1}(V) = \bigcup (f/U\alpha)^{-1}(V) \in \Omega^*G\alpha O(X)$. This gives f is almost contra- $\Omega^*g\alpha$ -continuous $\alpha \in I$ function.

Theorem 3.14: Let $f: X \to Y$ and let $g: X \to X \times Y$ be the graph function of f defined by g(x) = (x, f(x)) for every $x \in \in X$. If g is almost contra- $\Omega^* g \alpha$ -continuous then f is almost contra- $\Omega^* g \alpha$ -continuous.

Proof: Let $V \in RC(Y)$, then $X \times V = X \times cl(int(V) = cl(int(X) \times cl(int(V) = cl(int(X \times V)))$. Therefore $X \times V \in RC(X \times Y)$. Since g is almost contra- $\Omega^*g\alpha$ -continuous, $g^{-1}(X \times V) \in \Omega^*g\alpha$ -open in X. This implies $f^{-1}(V) = g^{-1}(X \times V) \in \Omega^*g\alpha$ -open in X. Thus, f is almost contra- $\Omega^*g\alpha$ -continuous.

Theorem 3.15: Let $f: X \to Y$ and $g: Y \to Z$ be function. Then, the following properties hold:

- 1) If f is almost contra- $\Omega^* g \alpha$ -continuous and g is regular set connected, then gof: $X \rightarrow Z$ is almost contra- $\Omega^* g \alpha$ -continuous and almost $\Omega^* g \alpha$ -continuous.
- 2) If f is almost contra- $\Omega^* g \alpha$ -continuous and g is perfectly continuous then gof: $X \rightarrow Z$ is $\Omega^* g \alpha$ -continuous and contra- $\Omega^* g \alpha$ -continuous.
- If f is almost contra-Ω*gα-continuous and g is regular set-connected then gof: X → Z is almost contra-Ω*gα-continuous almost Ω*gα-continuous.

Proof: Let $V \in RO(Z)$ Since g is regular set connected $g^{-1}(V)$ is clopen in Y. Since f is almost contra- $\Omega^* g \alpha$ -continuous, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is $\Omega^* g \alpha$ -open and $\Omega^* g \alpha$ -closed. Therefore gof is almost contra- $\Omega^* g \alpha$ -continuous and almost $\Omega^* g \alpha$ -continuous. (2) and (3) can be obtained similarly.

Theorem 3.16: If $f: X \to Y$ is a surjective $M \cdot \Omega^* g \alpha$ -open and $g: X \to Z$ is a function such that $gof: X \to Z$ is almost contra- $\Omega^* g \alpha$ -continuous, then g is almost contra- $\Omega^* g \alpha$ -continuous.

ALMOST CONTRA-Ω*gα-CONTINUOUS FUNCTIONS

Proof: Let V be any regular closed set in Z. Since gof is almost contra- $\Omega^* g\alpha$ continuous, $(gof)^{-1}(V)$) $\varepsilon \Omega^* g\alpha$ -open in (X,τ) . Since f is surjective, $M \cdot \Omega^* g\alpha$ -open
map, $f((gof)^{-1}(V)) = f(f^1(g^{-1}(V)) = g^{-1}(V)$ is $\Omega^* g\alpha$ -open. Therefore g is almost contra- $\Omega^* g\alpha$ -continuous.

Theorem 3.17: If $f: X \to Y$ is a surjective $M \cdot \Omega^* g \alpha$ -closed map and $g: X \to Z$ is a function such that $gof: X \to Z$ is almost contra- $\Omega^* g \alpha$ -continuous, then g is almost contra- $\Omega^* g \alpha$ -continuous.

Proof: Similarly as the previous theorem.

Theorem 3.18: If a function $f: X \to Y$ is almost contra- $\Omega^* g \alpha$ -continuous and almost continuous then f is regular set-connected.

Proof: Let $V \in RO(Y)$. Since f is almost contra- $\Omega^* g \alpha$ -continuous and almost continuous $f^{-1}(V)$ is $\Omega^* g \alpha$ -closed and open. Hence $f^{-1}(V)$ is clopen. Hence f is regular set-connected.

Definition 3.19: A filter base Λ is said to be $\Omega^* g \alpha$ -convergent (resp. rc-convergent) to a point x in X if for any $U \varepsilon \Omega^* g \alpha$ -open in X containing x (resp. $U \varepsilon RC(X)$) there exist a $B \varepsilon \Lambda$ Such that $B \subset U$.

Theorem 3.20: If a function $f: X \to Y$ is almost contra- $\Omega^* g\alpha$ -continuous, then for each point $x \in X$ and each filter base Λ in $X \Omega^* g\alpha$ -converging to x, the filter base $f(\Lambda)$ is rc-convergent to f(x).

Proof: Let $x \in X$ and Λ be any filter base in $X \Omega^* g\alpha$ -converging to x. Since f is almost contra- $\Omega^* g\alpha$ -continuous then for any $V \in RC(Y)$ containing f(x) there exist $U \in \Omega^* g\alpha$ -open in X containing x such that $f(U) \subset V$. Since Λ is $\Omega^* g\alpha$ -converging to x, there exist a $B \in \Lambda$ such that $B \subset U$. This means that $f(B) \subset V$ and therefore the filter base $f(\Lambda)$ is rc-convergent to f(x).

Note that a function $f: X \to Y$ is almost contra- $\Omega^* g\alpha$ -continuous at x if each regular closed set F in Y containing f(x), there exist $\Omega^* g\alpha$ -open set U in X containing x such that $f(U) \subset F$.

Theorem 3.21: Let $f: X \to Y$ be a function and $x \in X$. If there exist $U \in \Omega^* g \alpha$ -open in X such that $x \in U$ and the restriction of f to U is almost contra- $\Omega^* g \alpha$ -continuous at then f is almost contra- $\Omega^* g \alpha$ -continuous at x.

Proof: Suppose that $F \in RC(Y)$ containing f(x). Since f/U is almost contra- $\Omega^*g\alpha$ continuous at x, there exists $V \in \Omega^*g\alpha$ -open set U in X containing x such that $f(V) = (f/U) \ (V) \subset F$. Since $U \in \Omega^*g\alpha$ -open in X containing x it follows that $V \in \Omega^*g\alpha$ -open in X containing x. This shows clear that f is almost contra- $\Omega^*g\alpha$ continuous at x.

4. The Preservation Theorems

In this section, we investigate the relationships among almost contra- $\Omega^*g\alpha$ continuous functions, separation axioms, connectedness and compactness.

Definition 4.1: A space X is said to be weakly Hausdorff [19] if each element of X is an intersection of regular closed sets.

Definition 4.2: A space X is said to be $\Omega^* g \alpha$ -To if for each pair of distinct points in X there exists a $\Omega^* g \alpha$ -open set of X containing one point but not the other.

Definition 4.3: A space X is said to be $\Omega^* g \alpha \cdot T_1$ if for each pair of distinct points x and y in X there exists a $\Omega^* g \alpha$ -open sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$.

Definition 4.4 : A space X is said to be $\Omega^* g \alpha$ -Hausdorff if for each pair of distinct points x and y in X there exists $U \varepsilon \Omega^* g \alpha$ -open in (X, x) and $V \varepsilon \Omega^* g \alpha$ -open in (Y, y) such that $U \cap V = \phi$.

Theorem 4.5: If $f: X \to Y$ is an almost contra- $\Omega^* g \alpha$ -continuous injection and Y is weakly Hausdorff then X is $\Omega^* g \alpha - T_1$.

Proof: Suppose that Y is weakly Hausdorff. For any distinct points x and y in X there exist V, $W \in RC(Y)$ such that $f(x) \in V$, $f(y) \in W$, $f(x) \notin W$, $f(y) \notin V$. Since f is almost $\Omega^*g\alpha$ -continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are $\Omega^*g\alpha$ -open subsets of X such that

 $x \in f^{-1}(V)$ and $y \in f^{-1}(W)$, $y \notin f^{-1}(V)$, $x \notin f^{-1}(W)$, This shows that X is $\Omega^* g \alpha - T_1$.

Definition 4.6: A topological space X is called $\Omega^* g \alpha$ -ultra connected if every two non-void $\Omega^* g \alpha$ -closed subsets of X intersect.

Definition 4.7: A topological space X is called hyper connected [20] if every open set is dense.

Theorem 4.8: If X is $\Omega^* g \alpha$ -ultra connected and $f: X \rightarrow Y$ is almost contra- $\Omega^* g \alpha$ continuous and surjective, then Y is hyper connected.

Proof: Assume that Y is hyper connected. Then there exist an open set V such that V is not dense in Y. Then there exist disjoint non-empty regular open subsets B_1 and B_2 in Y namely $B_1 = \text{int } \operatorname{cl}(V)$ and $B_2 = Y \cdot \operatorname{cl}(V)$. Since f is almost contra- $\Omega^* g \alpha$ continuous and surjective, $A_1 = f^{-1}(B_1)$ and $A_2 = f^{-1}(B_2)$ are disjoint non-empty $\Omega^* g \alpha$ closed subsets of X which is a contradiction to the fact that X is $\Omega^* g \alpha$ -ultra
connected. Hence Y is hyper connected.

Definition 4.9: A space X is called $\Omega^* g \alpha$ -connected provided that X is not the union of two disjoint non-empty $\Omega^* g \alpha$ -open sets.

Theorem 4.10: If $f: X \to Y$ is almost contra- $\Omega^* g \alpha$ -continuous surjection and X is $\Omega^* g \alpha$ -connected then Y is connected.

Proof: Suppose that Y is not connected. Then there exist non-empty disjoint open sets V_1 and V_2 such that $Y = V_1 \cup V_2$. Therefore V_1 and V_2 are clopen in Y. Since f is almost contra- $\Omega^*g\alpha$ -continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint and $X = f^{-1}(V_1) \cup f^{-1}(V_2)$ which is a contradiction to the fact that X is $\Omega^*g\alpha$ -connected. Hence Y is connected.

Definition 4.11: A space X is said to be

- a) $\Omega^* g\alpha$ -closed if every $\Omega^* g\alpha$ -closed cover of X has a finite subcover.
- b) Countable $\Omega^* g \alpha$ -closed if every countable cover of X by $\Omega^* g \alpha$ -closed sets has a finite subcover.
- c) $\Omega^* g\alpha$ -Lindelof if every cover of X by $\Omega^* g\alpha$ -closed sets has a countable cover.
- d) Nearly compact if every regular open cover of X has a finite subcover. [17]

- e) Nearly countably compact if every countably cover of X by regular open sets has a finite subcover. [5, 18]
- f) Nearly Lindelof [4] if every cover of X by regular open sets has a countable subcover.

Theorem 4.12: Let $f: X \to Y$ be an almost contra- Ω -continuous surjection. Then the following statements hold.

- a) If X is $\Omega^* g\alpha$ -closed then Y is nearly compact.
- b) If X is $\Omega^* g \alpha$ -lindelof then Y is nearly lindelof.
- c) If X is countably- $\Omega^* g\alpha$ -closed, then Y is nearly countably compact.

Proof: Let $\{V\alpha : \alpha \in I\}$ be any regular open cover of Y. Since f is almost contra- $\Omega^*g\alpha$ -continuous, then $\{f^{-1}(V\alpha) : \alpha \in I\}$ is a $\Omega^*g\alpha$ -closed cover of X. Since X is $\Omega^*g\alpha$ -closed there exist a finite Io of I such that $X = \bigcup \{f^{-1}(V\alpha) : \alpha \in I_0\}$. Thus we have $Y = \bigcup \{V\alpha : \alpha \in I_0\}$ and Y is nearly compact.

Proof of b) and c) are analogue to a).

Definition 4.13 : A space X is said to be

- (a) Mildly $\Omega^* g \alpha$ -compact if every $\Omega^* g \alpha$ -clopen cover of X has a finite subcover.
- (b) Mildly countably- $\Omega^* g \alpha$ -compact if every $\Omega^* g \alpha$ -clopen countable cover of X has a countable subcover.
- (c) Mildly $\Omega^* g \alpha$ -Lindelof if every $\Omega^* g \alpha$ -clopen cover of X has a countable subcover.

Theorem 4.14: If $f: X \to Y$ is an almost contra- $\Omega^* g \alpha$ -continuous and almost contra- $\Omega^* g \alpha$ -continuous surjection. Then

- (a) If X is mildly $\Omega^* g\alpha$ -compact then Y is nearly compact.
- (b) If X is mildly countably- $\Omega^* g \alpha$ -compact then Y is nearly countably compact.
- (c) If X is mildly $\Omega^* g \alpha$ -lindelof then Y is nearly Lindelof.

Proof: (a) $V \in RO(Y)$. Then since f is almost contra- $\Omega^* g \alpha$ -continuous almost $\Omega^* g \alpha$ continuous, $f^{-1}(V)$ is clopen. Let $\{V\alpha : \alpha \in I\}$ be any regular open cover of Y. Then $\{f^{-1}(V\alpha) : \alpha \in I\}$ is a clopen cover of X. Since X is mildly $\Omega^* g \alpha$ -compact, there exist a finite subset Io of I such that $X = \bigcup \{f^{-1}(V\alpha) : \alpha \in I\}$ Hence Y is nearly compact.

Proof of (b) and (c) are similar to (a).

5. Ω*ga-Regular Graphs

In this we define $\Omega^* g \alpha$ -regular graphs and investigate the relationships between $\Omega^* g \alpha$ -regular graphs and almost contra- $\Omega^* g \alpha$ -continuous functions.

Definition 5.1: For a function $f: X \to Y$ the subset $\{(x, f(x)/x \in X\} \subset X \times Y \text{ is called the graph of } f \text{ and is denoted by } G(f) [4].$

Definition 5.2: A graph G(f) of a function $f: X \to Y$ is said to be $\Omega^* g \alpha$ -regular if for each $(x,y) \in X \times Y - G(f)$, there exist a $\Omega^* g \alpha$ -closed set U in X containing x and $V \in RO(Y)$ containing y such that $(U \times V) \cap G(f) = \Phi$.

Lemma 5.3: The following properties are equivalent for a graph G(f) of a function

- 1. G(f) is $\Omega^* g \alpha$ -regular.
- 2. for each point $(x,y) \in X \times Y G(f)$ there exist a $\Omega^* g \alpha$ -closed set U in X containing x and $V \in RO(Y)$ containing y such that $f(U) \cap V = \Phi$.

Proof: It follows from definition and the fact that for any subsets $U \subset X$, $V \subset Y$ $(U \times V) \cap G(f) = \Phi$ iff $f(U) \cap V = \Phi$.

Theorem 5.4: If $f: X \to Y$ is almost contra- $\Omega^* g \alpha$ -continuous and Y is T_2 , then G(f) is $\Omega^* g \alpha$ -regular graph in $X \times Y$.

Proof: Let $(x,y) \in X \times Y$ -G(f). It follows that $f(x) \neq y$. Since Y is T_2 , there exist open sets V and W containing f(x) and y respectively such that $V \cap W = \Phi$. We have $int(cl(V)) \cap int(cl(W)) = \Phi$. Since f is almost contra- $\Omega^*g\alpha$ -continuous, $f^{-1}(int(cl(V)))$

is $\Omega^* g \alpha$ -closed in X containing x. Take $U = f^{-1}$ (int(cl(V))). Then $f(U) \subset$ int(cl(V)) Therefore $f(U) \cap$ int(cl(W)) = Φ . Hence G(f) is $\Omega^* g \alpha$ -regular.

Theorem 5.5: Let $f: X \to Y$ have $\Omega^* g \alpha$ -regular graph G(f). If f is injective, then X is $\Omega^* g \alpha - T_1$.

Proof: Let x and y be any two distinct points of X. Then we have $(x, f(y)) \in X \times Y$ -G(f). By definition of $\Omega^* g \alpha$ -regular graph, there exist a $\Omega^* g \alpha$ -closed set U of X and $V \in RO(Y)$ such that $(x, f(y)) \in U \times V$ and $U \cap f^{-1}(V) = \Phi$. Therefore we have $Y \notin U$. Thus $y \in X - U$. $x \notin X - U$. $X - U \in \Omega^* g \alpha$ -open in (X, τ) implies X is $\Omega^* g \alpha - T_1$.

Theorem 5.6: Let $f: X \to Y$ have $\Omega^* g \alpha$ -regular graph G(f) If f is surjective, then Y is weakly T_{γ} .

Proof: Let y_1 and y_2 be any two distinct points of Y. Since f is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in X \times Y$ -G(f). By lemma 5.3, there exist a $\Omega^* g \alpha$ -closed set U of X and $F \in RO(Y)$ such that $(x, y_2) \in U \times F$ and $f(U) \cap F = \Phi$. Hence $y_1 \notin F$. Then $y_2 \notin Y$ -F $\in RC(Y)$ and $y_1 \in Y$ -F. This implies that Y is weakly T_2 .

References:

- [1] Arockiarani. I and Janaki. C, $\pi g \alpha$ -closed sets and quasi- α -normal spaces. Acta Ciencia Indica, Vol. XXXIII M, No. 2 (2007), 657-666.
- [2] Arockiarani. I, Balachandran. K and Janaki. C, In Contra- $\pi g \alpha$ -continuous functions, Kochi J. Math. 3(2008), 201-209.
- [3] Dontchev J. 1996. Contra continuous functions and strongly-closed spaces, Internet J. Math. Math. Sci 19 : 303-310.
- [4] Ekici E. 2004. Almost contra-pre continuous functions. Bull. Malayas. Math. Sci. Soc 27 : 53-65.

ALMOST CONTRA- $\Omega^* g \alpha$ -CONTINUOUS FUNCTIONS

- [5] Ergun N. 1980. On nearly Para compact spaces, Istanbul univ Fen. Mec. Ser. A. 45: 65-87.
- [6] Ganster M. and Reilly I. 1999. More on almost-s-continuity. Indian. J. Math 41 : 139-146.
- Jafari. S and Noiri. T, 2002. On contra-pre continuous functions. Bull Malayas Math. Sci-Soc (2) 25(2) : 115-128.
- [8] Janaki. C and Arockiarani, I, On $\pi g \alpha$ -continuous functions in topological spaces, Journal of Indian Academy 29(2) (2007), 433-454.
- [9] Jafari S. and Noiri. T 2001. On contra-α-continuous functions between topological spaces, Iran-Int, J. Sci 2(2): 153-167.
- [10] Maki H. Devi. R and Balachandran. K. Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser, A, Math., 15(1994), 51-63.
- [11] Mashour A. S, Abd El-Monsef M.E, and El-Deebs N, On pre-continuous and weak pre-continuous mappings, Proc. Math and Phys. Soc. Egypt, 53(1982), 47-53.
- [12] Merc y. J and Arockiarani. I, On Ω^* -closed sets and Ω_p -closed sets in topological spaces., Acta Ciencia Indica Vol. XXXIII M, No. 2. 509(2007), 509-515.
- [13] Noiri. T, 1989. Super continuity and strong forms of continuity, Indian J. Pure Appl. Math 15 : 241-250.
- [14] Njastad. O, 1965. On some classes of nearly open sets, Pacific J. Math 15:961-970.
- [15] Palaniappan. N and Rao R. C, Regular generalized closed sets, Kyungpook Math, J. 33(1993), 211-219.

85

- [16] Singal M. K. and Singal A. R. 1968. Almost continuous mapping Yokohama. Math. J., 16: 63-73.
- [17] Singal M. K. Singhal A. R. and Mathur A. 1969. On nearly compact spaces Boll. UNI 4 : 702-710.
- [18] Singal M. K. and Mathur A. 1969. A note on mildly compact spaces Kyungpook Math. J. 9 : 165-168.
- [19] Soundarajan. T, 1971. Weakly Hausdorff spaces and the cardinality of topological spaces in general topology and its relation to modern analysis and algebra. III proc.conf. Kanpur (1968) Academic, Prague (1971) 301-306.
- [20] St een L. A and Seeback Jr. J. A, Counter examples in topology, Hol Rinen hart and Winston New York, 1970.
