Mathematical Forum Vol.XX, 2007-2008

FILTER CHARACTERIZATION ON FUZZY G₈*-COMPACT SPACES

E. Roja, M.K. Uma^{*} and G. Balasubramanian^{**}

*Department of Mathematics, Sri Sarada College for Women Salem - 636 016, Tamilnadu, India

**Ramanujan Institute for Advanced Study in Mathematics University of Madras, Chennai - 600 005, Tamilnadu, India

(Received: September 2008, Accepted December 2008)

Abstract

In this paper the concepts of fuzzy G_{δ} - compact space, fuzzy G_{δ} - compact* space and fuzzy G_{δ} - filters are introduced and studied. Some interesting properties and characterizations are established. Filter characterization on fuzzy G_{δ} - compact* space is also discussed.

Keywords : Fuzzy G_{δ} - compact space, fuzzy F_{σ} - perfect mapping, fuzzy G_{δ} - quasi perfect mapping, fuzzy G_{δ} - Lindelöf space, fuzzy G_{δ} - compact* space and fuzzy G_{δ} -filter.

2000 Mathematics Subject Classification 54A40, 03E72

(Published : December, 2009)

E. Roja, M.K. Uma and G. Balasubramanian

1. Introduction and Preliminaries

Ever since the introduction of fuzzy set by L.A. Zadeh [12], the fuzzy concept has invaded almost all branches of Mathematics. The concept of fuzzy topological space was introduced in [6] by C.L. Chang. Since then many fuzzy topologists [1,3,8-11] have extended various notions in classical topology to fuzzy topological spaces. In this paper the concept of fuzzy G_{δ} -compact space is introduced based on the concept of fuzzy compact space by Bin Shahna [4] and fuzzy G_{δ} -sets by Balasubramanian [2]. Using the concept of covering property fuzzy G_{δ} -compact* space is introduced and studied. Some interesting properties and characterizations are also studied. The filter characterization on fuzzy G_{δ} -compact* space is discussed by making use of the concept of fuzzy G_{δ} -filters as in [5].

Definition 1.1: I denotes the unit interval [0,1] of the real line. Let X and Y be sets, α be an arbitrary member of the index set A and B of R.

For X, I^X denotes the collection of mapping from X into I. A member λ of I^X is called a fuzzy set of X. The union $\vee \lambda_{\alpha}$ (intersection $\wedge \lambda_{\alpha}$) of a family $\{\lambda_{\alpha}\}$ of fuzzy sets of X is defined to be the mapping sup $\lambda_{\alpha}(\inf \lambda_{\alpha})$. For any two members λ and μ of I^X , $\lambda \ge \mu$ iff $\lambda(x) \ge \mu(x)$ for each $x \in X$ and in this case λ is said to contain μ , or μ is said to be contained in λ . 0 and 1 denote constant mappings taking whole of X to 0 and 1 respectively.

Definition 1.2: Let λ and μ be any two fuzzy sets in the fuzzy topological space (X, T). Then we define $\lambda \lor \mu : X \to [0,1]$ as follows.

 $(\lambda \lor \mu) (x) = \max \{\lambda(x), \mu(x)\} \text{ for all } x \in X.$

Also we define $\lambda \wedge \mu : X \rightarrow [0,1]$ as follows:

 $(\lambda \wedge \mu) (x) = \min \{\lambda(x), \mu(x)\}$ for all $x \in X[6]$.

Definition 1.3: A fuzzy topology T on X is a collection of subsets of I^x such that

- (a) $0, 1 \in T$,
- (b) If $\lambda, \mu \in T$, then $\lambda \land \mu \in T$,
- (c) If $\lambda_i \in T$ for each $i \in I$, then $\vee \lambda_i \in T$.

The ordered pair (X,T) is called a fuzzy topological space [6]. Every member of T is called a T-open fuzzy set. A fuzzy set is T-closed iff its complement is T-open.

Definition 1.4: Let $f: (X,T) \rightarrow (Y,U)$ be a mapping from a fuzzy topological space X to another fuzzy topological space Y. f is called

- (a) a fuzzy continuous mapping [1] if $f^{1}(\lambda) \in T$ for each $\lambda \in S$ or equivalently $f^{-1}(\mu)$ is fuzzy closed set of X for each fuzzy closed set μ of Y.
- (b) a fuzzy open (fuzzy closed) mapping [1] if $f(\lambda)$ is fuzzy open (fuzzy closed) set of X for each fuzzy open (fuzzy closed) set λ of X.

Lemma 1.1: Let $f: X \to Y$ be a mapping and $\{\lambda_{\alpha}\}$ be a family of fuzzy sets of Y, then

(a) $f^{-1}(\lor \lambda_{\alpha}) = \lor f^{-1}(\lambda_{\alpha})$ and (b) $f^{-1}(\land \lambda_{\alpha}) = \land f^{-1}(\lambda_{\alpha})$ [1].

Notation 1.1: 1- λ denotes the complement of any fuzzy set λ .

Definition 1.5: Let (X,T) be a fuzzy topological space and λ be a fuzzy set in X. λ is called a fuzzy G_{δ} - set [2] if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ where each $\lambda_i \in T$.

Definition 1.6: Let (X,T) be a fuzzy topological space and λ be a fuzzy set in X. λ is called a fuzzy F_{σ} - set if $\lambda = \bigvee_{i=1}^{\infty} \lambda_i$ where each $1 - \lambda_i \in T$.

Definition 1.7: A fuzzy filter F on the fuzzy topological space (X,T) is a non-empty collection of subsets of I^x with the following properties.

- (i) $\lambda \in F$ is a fuzzy open-set in X
- (ii) 0*∉F*
- (iii) $\mu_1, \mu_2 \in F$ then $\mu_1 \wedge \mu_2 \in F$
- (iv) If $\mu \in F$ and γ is a fuzzy open-set in X with $\mu \leq \gamma$, then $\gamma \in F$ [5].

Definition 1.8: A fuzzy filter F on a fuzzy topological space (X,T) is fuzzy ultra filter if there is no other fuzzy filter finer than F[5].

Definition 1.9: A fuzzy filter *F* on a fuzzy topological space (X,T) is a fuzzy prime filter, if γ and μ are two fuzzy closed sets such that $\gamma \lor \mu \in F$ then $\gamma \in F$ or $\mu \in F$ [5].

2. Fuzzy G_8 - Compact Space

In this section the concept of fuzzy G_8 -compact space and fuzzy G_8 -compact* space are introduced. Some interesting properties and characterization are studied.

S denotes the fuzzy space consisting of a single point with the fuzzy topology $\{0,1\}$ [4]. Friedler [7] shows that if (X,T) is a fuzzy topological space, then $S \times X$ is fuzzy homeomorphic to X [4].

Note 2.1: Let (X,T) be a fuzzy topological space. For any fuzzy topological space (Z,R), p_{2X} denotes the projection of $X \times Z$ to Z.

Definition 2.1: Let $f: (X, T) \rightarrow (Y, U)$ be a mapping from a fuzzy topological space (X,T) to another fuzzy topological space (Y,U).

- 1. f is said to be fuzzy G_{δ} , if $f(\lambda)$ is a fuzzy G_{δ} -set in (Y, U) for any fuzzy G_{δ} -set λ in (X, T).
- 2. *f* is said to be fuzzy F_{σ} , if $f(\lambda)$ is a fuzzy F_{σ} -set in (Y, U) for any fuzzy F_{σ} -set λ in (X, T).
- f is said to be M-fuzzy G_δ-continuous, if f⁻¹(λ) is a fuzzy G_δ-set in (X,T) for any fuzzy G_δ-set λ in (Y, U).

Definition 2.2: A fuzzy topological space X is called fuzzy G_{δ} -space if every fuzzy G_{s} -set of X is fuzzy open [4].

In 1979 Raha [8] studied the concepts of compact space, Lindelof space and G_{δ} -space. By using the concept of compact space [8], Bin Shahna [4] defined fuzzy compactness as follows. A fuzzy topological space X is said to be fuzzy compact if the projection $p_{2X}: X \times Z \rightarrow Z$ is fuzzy closed for any fuzzy topological space Z. Motivated by this concept fuzzy G_{δ} -compact space is introduced.

Definition 2.3: A fuzzy topological space (X, T) is said to be **fuzzy** G_{δ} -compact if the projection $p_{2X}: X \times Z \rightarrow Z$ is fuzzy F_{σ} for any fuzzy topological space (Z, R).

Proposition 2.1: An *M*-fuzzy G_{δ} -continuous image of a fuzzy G_{δ} -compact space is fuzzy G_{δ} -compact.

Proof: Let $f: (X, T) \rightarrow (Y, U)$ be a *M*-fuzzy G_{δ} -continuous mapping from a fuzzy G_{δ} compact space (X, T) onto a fuzzy topological space (Y, U) and l_Z , be the identity
mapping on a fuzzy topological space (Z, R). Then $f \times I_Z : X \times Z \rightarrow Y \times Z$ is *M*-fuzzy G_{δ} -continuous. Let μ be a fuzzy F_{σ} -set of $Y \times Z$. Then $(f \times I_Z)^{-1}(\mu)$ is fuzzy F_{σ} set of $X \times Z$. Since $p_{2X} : X \times Z \rightarrow Z$ is fuzzy $F_{\sigma} \cdot p_{2X} ((f \times I_Z)^{-1}(\mu)) = p_{2Y}(\mu)$ is a fuzzy F_{σ} set
of (Z,R) showing that p_{2Y} is a fuzzy F_{σ} - mapping. Hence (Y, U) is fuzzy G_{δ} -compact.

Definition 2.4: Let (X,T) and (Y,U) be any two fuzzy topological spaces. A fuzzy continuous map $f: (X, T) \rightarrow (Y, U)$ is fuzzy F_{σ} - perfect if $f \times I_Z : X \times Z \rightarrow Y \times Z$ is a fuzzy F_{σ} -map for any fuzzy topological space (Z, R).

Definition 2.5: An *M*-fuzzy G_{δ} -continuous mapping $f: (X,T) \to (Y,U)$ of a fuzzy topological space (X,T) into a fuzzy topological space (Y, U) is called a fuzzy G_{δ} -quasi perfect mapping if $f \times I_{z}: X \times Z \to Y \times Z$ is fuzzy F_{σ} for any fuzzy G_{δ} -space (Z,R).

Definition 2.6: A fuzzy topological space (X,T) is called fuzzy G_{δ} -Lindelöf if the projection $p_{2X}: X \times Z \rightarrow Z$ is a fuzzy F_{σ} -mapping for any fuzzy G_{δ} -space (Z,R).

Proposition 2.2: If $f: (X, T) \rightarrow (Y, U)$ is a fuzzy F_{σ} - perfect mapping of a fuzzy topological space (X,T) onto a fuzzy G_{δ} -compact space (Y,U) then (X,T) is fuzzy G_{δ} -compact.

Proof: Since f is fuzzy G_{δ} -perfect, $f \times I_Z : X \times Z \to Y \times Z$ is fuzzy F_{σ} -mapping for any fuzzy topological space (Z,R). For (X,T) to be fuzzy G_{δ} -compact we show that $p_{2X} : X \times Z \to Z$ is fuzzy F_{σ} . Noting that p_{2X} is the composition of two fuzzy F_{σ} -mappings $f \times I_Z$ and $p_{2Y} : Y \times Z \to Z$, the result follows. **Proposition 2.3:** Let (X,T) be a fuzzy topological space and (Y, U) be a fuzzy G_{δ} -compact space. Then the projection $p: X \times Y \to X$ is fuzzy F_{σ} - perfect mapping.

Proof: We show that $p \times I_Z : (X \times Y) \times Z \to X \times Z$ is a fuzzy F_{σ} - mapping for any fuzzy topological space (Z,R). Since (Y,U) is fuzzy G_{δ} -compact, $p_{2Y} : Y \times (X \times Z) \to (X \times Z)$ is fuzzy F_{σ} . Then $p \times I_Z$ is fuzzy F_{σ} follows by noting that it is the composition $p_{2Y} \circ h$, where $h : (X \times Y) \times Z \to Y \times (X \times Z)$ is a fuzzy G_{δ} -homeomorphism.

Proposition 2.4: A fuzzy topological space (X, T) is fuzzy G_{δ} -compact if and only if the constant mapping $c: X \to S$ is fuzzy F_{σ} - perfect.

Proof: Suppose (X, T) is fuzzy G_{δ} -compact. We show that $c \times I_Z : X \times Z \to S \times Z$ is fuzzy F_{σ} for any fuzzy topological space (Z, R). Since (X, T) is fuzzy G_{δ} -compact $p_{2X} : X \times Z \to Z$ is fuzzy F_{σ} . Note that $S \times Z$ is fuzzy G_{δ} -homeomorphic to (Z, R). Now $c \times I_Z = h \circ p_{2X}$, being a composition of a fuzzy F_{σ} -mapping p_{2X} and a fuzzy G_{δ} -homeomorphism $h : Z \to S \times Z$ is fuzzy F_{σ} . Hence c is fuzzy F_{σ} -perfect.

Conversely, if $c: X \to S$ is fuzzy G_{δ} -perfect, then $c \times I_Z: X \times Z \to S \times Z$ is fuzzy F_{σ} for any fuzzy topological space (Z, R). We show that $p_{2X}: X \times Z \to Z$ is fuzzy F_{σ} . Since $p_{2X} = h \circ (c \times I_Z)$, where $h: S \times Z \to Z$ is a fuzzy G_{δ} -homeomorphism, p_{2X} is fuzzy F_{σ} and hence (X,T) is fuzzy G_{δ} -compact.

Proposition 2.5: The product of two fuzzy G_8 -compact spaces is fuzzy G_8 -compact.

Proof: Let (X,T) and (Y,U) be any two fuzzy G_{δ} -compact spaces. Then $p_{2X}: X \times (Y \times Z) \to (Y \times Z)$ and $p_{2Y}: Y \times Z \to Z$ are fuzzy F_{σ} -mappings for any fuzzy topological space (Z,R). We show that $p_{2(X \times Y)}: (X \times Y) \times Z \to Z$ is fuzzy F_{σ} . Since $p_{2(X \times Y)} = p_{2Y} \circ p_{2X} \{X \times (Y \times Z) \text{ and } (X \times Y) \times Z \text{ are fuzzy homeomorphic}\}$, being a composition of two fuzzy F_{σ} -mappings, is fuzzy F_{σ} and hence $X \times Y$ is fuzzy G_{δ} -compact.

Note 2.2: The finite product of fuzzy G_8 -compact spaces is fuzzy G_8 -compact.

Proposition 2.6: Let (X_i, T_i) , i = 1, 2, 3 be any three fuzzy topological spaces. The composition $g \circ f : (X_1, T_1) \rightarrow (X_3, T_3)$ of fuzzy G_{δ} -quasi perfect mappings $f : (X_1, T_1) \rightarrow (X_2, T_2)$ and $g : (X_2, T_2) \rightarrow (X_3, T_3)$ is fuzzy G_{δ} -quasi perfect.

Proof: Let (Z, R) be a fuzzy G_{δ} -space. Then the mapping $(g \circ f) \times I_Z : X_1 \times Z \to X_3 \times Z$ is fuzzy F_{σ} follows from the identify $(g \circ f) \times I_Z = (g \times I_Z) \circ (f \times I_Z)$ by noting that f and g are fuzzy G_{δ} -quasi perfect mappings.

Proposition 2.7: Let (X_i, T_i) , i = 1, 2, 3 be any three fuzzy topological spaces.

Let $f: (X_1, T_1) \rightarrow (X_2, T_2)$ and $g: (X_2, T_2) \rightarrow (X_3, T_3)$ be M-fuzzy G_8 -continuous mappings. Then

- (a) if $g \circ f$ is fuzzy G_{δ} -quasi perfect and f is surjective, then g is fuzzy G_{δ} quasi perfect.
- (b) if $g \circ f$ is fuzzy G_{δ} -quasi perfect and g is injective, then f is fuzzy G_{δ} quasi perfect.

Proof: (a) We show that $g \times I_Z : X_2 \times Z \to X_3 \times Z$ is fuzzy F_{σ} - mapping for any fuzzy G_{δ} -space (Z, R). Let μ be a fuzzy F_{σ} - set of $X_2 \times Z$. Then $(f \times I_Z)^{-1}(\mu)$ is a fuzzy F_{σ} -set of $X_1 \times Z$. Because $(g \circ f) \times I_Z$ is fuzzy F_{σ} and $((g \circ f) \times I_Z) (f \times I_Z)^{-1}(\mu) = (g \times I_Z)(\mu)$, it follows that $(g \times I_Z)(\mu)$ is fuzzy F_{σ} -set of $X_3 \times Z$.

(b) We show that $f \times I_Z : X_1 \times Z \to X_2 \times Z$ is fuzzy F_{σ} - mapping for any fuzzy G_{δ} space (Z, R). Let μ be a fuzzy F_{σ} - set of $X_1 \times Z$. Then $((g \circ f) \times I_Z)$ (μ) is a fuzzy F_{σ} - set of $X_3 \times Z$. Because $g \times I_Z$ is M-fuzzy G_{δ} -continuous and $(g \times I_Z)^{-1} ((g \circ f) \times I_Z)$ (μ) = $(f \times I_Z)$ (μ), it follows that $(f \times I_Z)$ (μ) is fuzzy F_{σ} - set of $X_2 \times Z$.

Proposition 2.8: An M-fuzzy G_{δ} -continuous image of a fuzzy G_{δ} -Lindelöf space is fuzzy G_{δ} -Lindelöf.

Proof: Let f be a M-fuzzy G_{δ} -continuous mapping from a fuzzy G_{δ} -Lindelöf space (X, T) onto a fuzzy G_{δ} -Lindelöf space (Y, U), and I_z , be the identity mapping on a fuzzy topological space (Z, R). Then $f \times I_z : X \times Z \to Y \times Z$ is M-fuzzy G_{δ} -continuous. Let μ be a fuzzy F_{σ} - set of $Y \times Z$. Then $(f \times I_z)^{-1}$ (μ) is a fuzzy F_{σ} - set of $X \times Z$. Since $p_{2x} : X \times Z \to Z$ is fuzzy F_{σ} - mapping $p_{2x}((f \times I_z)^{-1})$ (μ) = $p_{2y}(\mu)$ is a fuzzy F_{σ} - set of (Z, R) showing that P_{2y} is fuzzy F_{σ} - mapping. Hence (Y, U) is fuzzy G_{δ} -Lindelöf. **Proposition 2.9:** If $f: (X, T) \rightarrow (Y, U)$ is a fuzzy G_{δ} -quasi perfect mapping of a fuzzy topological space (X, T) onto a fuzzy G_{δ} -Lindelöf space (Y, U), then (X, T) is fuzzy G_{δ} -Lindelöf.

Proof: Since f is fuzzy G_{δ} -quasi perfect mapping, $f \times I_Z : X \times Z \to Y \times Z$ is fuzzy F_{σ} for any fuzzy G_{δ} -space (Z, R). For (X, T) to be fuzzy G_{δ} -Lindelöf we show that $p_{2X} : X \times Z \to Z$ is fuzzy F_{σ} . Noting that p_{2X} is the composition of two fuzzy F_{σ} -mappings $f \times I_Z$ and $p_{2Y} : Y \times Z \to Z$, the result follows.

Proposition 2.10: Let (X, T) be a fuzzy G_{δ} -space and (Y, U) be a fuzzy G_{δ} -Lindelöf space. Then the projection $p: X \times Y \to X$ is a fuzzy G_{δ} -quasi perfect mapping.

Proof: We show that $p \times I_Z : (X \times Y) \times Z \to X \times Z$ is a fuzzy F_{σ} - mapping for any fuzzy G_{δ} -space (Z, R). Since (Y, U) is fuzzy G_{δ} -Lindelöf, $p_{2Y} : Y \times (X \times Z) \to (X \times Z)$ is fuzzy F_{σ} . That $p \times I_Z$ is fuzzy F_{σ} follows by noting that it is the composition $p_{2Y} \circ h$, where $h : (X \times Y) \times Z \to Y \times (X \times Z)$ is a fuzzy G_{δ} -homeomorphism.

Proposition 2.11: A fuzzy topological space (X,T) is fuzzy G_{δ} -Lindelöf iff the constant mapping $c: X \to S$ is fuzzy G_{δ} - quasi perfect.

Proof: Suppose (X, T) is fuzzy G_{δ} -Lindelöf. We show that $c \times I_Z : X \times Z \to S \times Z$ is fuzzy F_{σ} - mapping for any fuzzy G_{δ} -space (Z, R). Since (X, T) is fuzzy G_{δ} -Lindelöf, $p_{2X} : X \times Z \to Z$ is fuzzy F_{σ} . Note that $S \times Z$ is fuzzy G_{δ} -homeomorphic to Z. Now $c \times I_Z = h \circ p_{2X}$, being the composition of fuzzy F_{σ} -mapping p_{2X} and a fuzzy G_{δ} -homeomorphism $h : Z \to S \times Z$ is fuzzy F_{σ} . Hence c is fuzzy G_{δ} -quasi perfect.

Conversely, if $c: X \to S$ is fuzzy G_{δ} -quasi perfect, then $c \times I_{Z}: X \times Z \to S \times Z$ is fuzzy F_{σ} for any fuzzy G_{δ} -space (Z, R). We show that $p_{2X}: X \times Z \to Z$ is fuzzy F_{σ} . Since $p_{2X} = h \circ (c \times I_{Z})$, where $h: S \times Z \to Z$ is a fuzzy G_{δ} -homeomorphism, p_{2X} is fuzzy F_{σ} and hence (X, T) is fuzzy G_{δ} -Lindelöf.

Proposition 2.12: A product of two fuzzy G_{δ} -Lindelöf fuzzy G_{δ} -spaces is a fuzzy G_{δ} -Lindelöf G_{δ} -space.

Proof: Let (X, T) and (Y, U) be any two fuzzy G_{δ} -Lindelöf G_{δ} -spaces. Then $X \times Y$ is a fuzzy G_{δ} -space. It remains to show that $X \times Y$ is fuzzy G_{δ} -Lindelöf. Since (X, T) and (Y, U) are fuzzy G_{δ} -Lindelöf spaces, $p_{2X} : X \times (Y \times Z) \rightarrow Y \times Z$ and $p_{2Y} : Y \times Z \rightarrow Z$ are fuzzy F_{σ} - mappings. Clearly, $p_{2(X \times Y)} = p_{2Y} \circ p_{2X} ((X \times (Y \times Z) \text{ and } X \times (Y \times Z) \text{ are fuzzy homeomorphic})$, being a composition of two fuzzy F_{σ} - mappings, is fuzzy F_{σ} and hence $X \times Y$ is fuzzy G_{δ} -Lindelöf.

Proposition 2.13: Let (X, T) be a fuzzy G_{δ} -compact space. If (Y, U) is fuzzy G_{δ} -Lindelöf space, then $X \times Y$ is a fuzzy G_{δ} -Lindelöf.

Proof: It is similar to that of Proposition 2.5.

Using the concept of **covering property** we shall give the following definition.

Definition 2.7: A collection $\{\lambda_i\}_{i \in J}$ of fuzzy sets of fuzzy topological space (X, T) is called fuzzy G_{δ} -cover of (X,T) if λ_i 's $(i \in J)$ are fuzzy G_{δ} -sets of (X, T). A fuzzy topological space (X, T) is called **fuzzy** G_{δ} -compact* if every fuzzy G_{δ} -cover of (X, T) has a finite subcover.

Example 2.1: Let *n* be any positive integer. Let (X_n, T_n) be a fuzzy topological space, where $T_n = \{0x_n, 1x_n, \lambda_n\}$. Define $\lambda_n : X_n \to [0,1]$ as $\lambda_n(x) = 1 - 1/n$ for all $x \in X_n$. Then (X_n, T_n) is fuzzy G_{δ} - compact* (countably fuzzy G_{δ} - compact*) sapce.

Proposition 2.14: The following are equivalent for a fuzzy topological space (X, T).

- (a) (X, T) is fuzzy G_s compact*.
- (b) For any family of fuzzy F_{σ} sets $\{\lambda_i\}_{i \in J}$ with the property that $\bigwedge_{j \in F} \lambda_j \neq 0$ for any finite subset *F* of *J*, we have $\bigwedge_{i \in J} \lambda_i \neq 0$.

Proof (a) \Rightarrow (b)

Assume that (X, T) is fuzzy G_{δ} - compact*. Let $\{\lambda_i\}_{i\in J}$ be the family of fuzzy F_{σ} - set with the property that $\bigwedge_{j\in F} \lambda_j \neq 0$ for any finite subset F of J. Let $\mu_i = 1 - \lambda_i$. The collection $\{\mu_i\}_{i\in J}$ is a family of all fuzzy G_{δ} -sets in (X, T). If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are finite number of fuzzy F_{σ} -sets in $\{\lambda_i\}_{i\in J}$, then

E. Roja, M.K. Uma and G. Balasubramanian

$$\bigwedge_{i=1}^{n} \lambda_{i} = 1 - \bigvee_{i=1}^{n} \mu_{i} \qquad (2.1)$$

Similarly,

 $\bigwedge_{i \in I} \lambda_i = 1 - \bigvee_{i \in I} \mu_i$

By hypothesis, $\bigwedge_{i=1}^{n} \lambda_i \neq 0$. Therefore, $\bigvee_{i=1}^{n} \mu_i \neq 1$. Since (X, T) is fuzzy G_{δ} -compact $\bigvee_{i=J} \mu_i \neq 1$. From (2.2) it follows that $\bigwedge_{i=T} \lambda_i \neq 0$.

(b)
$$\Rightarrow$$
 (a).

Let us assume that (X,T) is not fuzzy G_{δ} -compact. Let $\{\mu_i\}_{i\in J}$ be a family of fuzzy G_{δ} -sets which is a cover for (X,T). Since (X,T) is not fuzzy G_{δ} -compact, there is no finite subset F of J such that $\{\mu_j\}_{j\in F}$ is a cover for (X,T). i.e., $\bigvee_{i\in F} \mu_j \neq 1$. From this it follows that $\bigwedge_{j\in F} (1-\mu_j) = 1 - \bigvee_{i\in F} \mu_j \neq 0$. By hypothesis, $\bigwedge_{i=J} (1-\mu_i) \neq 0$. This implies that $\bigvee_{i\in J} \mu_i \neq 1$. Contradiction. Hence (X,T) is fuzzy G_{δ} -compact*.

Proposition 2.15: Let $f: (X, T) \to (Y, U)$ be an M-fuzzy G_{δ} -continuous surjective function of a fuzzy G_{δ} -compact* space (X, T) onto a fuzzy topological space (Y, U). Then (Y, U) is fuzzy G_{δ} -compact*.

Proof: Let $\{\lambda_i\}_{i \in J}$ be a collection of fuzzy G_{δ} sets of (Y, U) such that

$$_{y} \leq \bigvee_{i \in I} \lambda_{i}$$
 (2.3)

Since f is M-fuzzy G_{δ} -continuous and each λ_i is fuzzy G_{δ} in $(Y, U), f^{-1}(\lambda_i)$ is fuzzy G_{δ} in (X, T). From (2.3) $1x = f^{-1}(1_y) \leq \bigvee_{i \in J} f^{-1}(\lambda_i)$. That is, $\{f^{-1}(\lambda_i)\}_{i \in J}$ is a fuzzy G_{δ} cover of (X, T). Since (X, T) is fuzzy G_{δ} -compact*, there exists a finite subset F of J such that

 $1_{X} \leq \bigvee_{i \in F} f^{-1}(\lambda_{i}) \Longrightarrow f(1_{X}) = 1_{Y} \leq \bigvee_{i \in F} \lambda_{i}.$

Therefore, (Y, U) is fuzzy G_{δ} -compact*.

Proposition 2.16: Let $f: (X, T) \rightarrow (Y, U)$ be a fuzzy G_{δ} , bijective function and (Y, U) be a fuzzy G_{δ} -compact* space. Then (X, T) is fuzzy G_{δ} -compact*.

Proof: Let $\{\lambda_i\}_{i \in J}$ be a collection of fuzzy G_{δ} -sets of (X, T) such that,

$$1_x \leq \bigvee_i \lambda_i$$
 (2.4)

Since f is bijective $f(1_x) = 1_Y \le f(\underset{i \in J}{\searrow} \lambda_i) = \underset{i \in J}{\bigvee} f(\lambda_i)$. Since λ_i is fuzzy G_{δ} in (X, T) and f is fuzzy G_{δ} , $f(\lambda_i)$ is fuzzy G_{δ} in (Y, U). That is, $\{f(\lambda_i)\}_{i \in J}$ is a fuzzy G_{δ} -cover of (Y, U). Since (Y, U) is fuzzy G_{δ} -compact*, there exists a finite subset F of J such that $1_Y \le \underset{i \in F}{\bigvee} f(\lambda_i)$, $1x = f^{-1}(1_Y) \le f^{-1}(\underset{i \in F}{\bigvee} f(\lambda_i)) = \underset{i \in F}{\bigvee} (\lambda_i)$. Therefore (X, T) is fuzzy G_{δ} -compact*.

The following example shows that the Tychonoff product theorem for fuzzy G_{δ} -compact* (countably fuzzy G_{δ} -compact*) space is not valid.

Example 2.2: Let *n* be any positive integer. Let (X_n, T_n) be a fuzzy topological space, where $T_n = \{0x_n, 1x_n, \lambda_n\}$. Define $\lambda_n : X_n \to [0, 1]$ as $\lambda_n(x) = 1 - 1/n$ for all $x \in X_n$. Then (X_n, T_n) is fuzzy G_{δ} -compact* (countably fuzzy G_{δ} -compact*) space. Let p_n be the projection of the product fuzzy topological space $X = \prod_{n=1}^{\infty} X_n$ onto X_n . Then $p_n^{-1}(\lambda_n(x)) = 1 - 1/n$ for $x \in X$. By the definition of the product fuzzy topological space $X = \prod_{n=1}^{\infty} X_n$ onto X_n . Then $p_n^{-1}(\lambda_n(x)) = 1 - 1/n$ for $x \in X$. By the definition of the product fuzzy topological space the family $T_1 = \{0x, 1x, p_n^{-1}(\lambda_n), n = 1, 2 \dots\}$ is used to generate the product fuzzy topology T by taking the finite intersection and then the arbitrary union of these intersections. Clearly, the product fuzzy topology generated is exactly T_1 itself. The family $\{p_n^{-1}(\lambda_n)\}$ $n = 1, 2 \dots$ is a fuzzy G_{δ} -cover (countably fuzzy G_{δ} -cover) of (X, T) which has no finite subcover.

3. Fuzzy Filter Characterization on Fuzzy G_8 -Compact* Space

In this section fuzzy G_{δ} -filters are introduced. Filter characterization on fuzzy G_{δ} -compact* space is studied by making use of fuzzy G_{δ} -filters as in [5].

Definition 3.1: A fuzzy $G_{\delta}(F_{\sigma})$ -filter F on the fuzzy topological space (X,T) is a non-empty collection of subsets of I^{X} with the following properties.

- (i) $\lambda \in F$ is a fuzzy $G_{\delta}(F_{\sigma})$ -set in X
- (ii) 0∉F
- (iii) $\mu_1, \mu_2 \in F$ then $\mu_1 \wedge \mu_2 \in F$
- (iv) If $\mu \in F$ and γ is a fuzzy $G_{\delta}(F_{\sigma})$ -set in X with $\mu \leq \gamma$ then $\gamma \in F$.

Definition 3.2: A fuzzy $G_{\delta}(F_{\sigma})$ -filter F on a fuzzy topological space (X, T) is fuzzy $G_{\delta}(F_{\sigma})$ -ultra filter if there is no other fuzzy $G_{\delta}(F_{\sigma})$ -filter finer than F.

Definition 3.3: A fuzzy F_{σ} -filter F on a fuzzy topological space (X, T) is a fuzzy F_{σ} -prime filter, if γ and μ are two fuzzy F_{σ} -sets such that $\gamma \lor \mu \in F$ then $\gamma \in F$ or $\mu \in F$.

Example 3.1: Define $X = \{a\}$. Let $T = \{0, 1, \lambda_n\}$ where $\lambda_n : X \to [0, 1]$ $(n = 2, 3, ..., \infty)$ is such that $\lambda_n(a) = 1 - 1/n$, n = 2, 3, ... Therefore (X, T) is a fuzzy topological space.

Define $F = \{\lambda_n\}_{n=2}^{\infty}$. Clearly F is a fuzzy G_{δ} -filter and also a fuzzy G_{δ} -ultra filter.

Example 3.2: Define $X = \{a\}$. Let $T = \{\lambda_n\}$ where $\lambda_n : X \to [0,1]$ $(n = 2, 3, ..., \infty)$ is such that $\lambda_n(a) = 1/n$, n = 1, 2, 3, ... Therefore (X, T) is a fuzzy topological space.

Define $F = \{1 - \lambda_n\}_{n=2}^{\infty}$. Clearly F is a fuzzy F_{σ} -filter and also a fuzzy F_{σ} -prime filter.

Proposition 3.1: The following are equivalent for a fuzzy topological space (X, T).

- (a) (X, T) is fuzzy G_s -compact*.
- (b) Every fuzzy F_{σ} -filter F satisfies $\bigwedge_{\mu \in F} \mu \neq 0$.
- (c) Every fuzzy F_{σ} -prime filter F satisfies $h \neq 0$.
- (d) Every fuzzy F_{σ} -ultra filter U satisfies $\bigwedge_{\mu \in U} \mu \neq 0$.

Proof (a) \Rightarrow (b): Suppose $\bigwedge_{\mu \in F} \mu = 0$. Then, $\bigvee_{\mu \in F} (1-\mu) = 1$. Since $(1-\mu)$ is fuzzy G_{δ} and (X,T) is fuzzy G_{δ} -compact*, there must exist a finite sub collection $\{1-\mu_1, 1-\mu_2, \ldots, 1-\mu_n\}$ such that $1 = (1 - \mu_1) \lor (1 - \mu_2) \lor \ldots (1 - \mu_n)$, that is $\mu_1 \land \mu_2 \land \ldots \land \mu_n = 0$ contradiction.

(b) \Rightarrow (c). Follows from the fact that every fuzzy F_{σ} -prime filter is fuzzy F_{σ} -filter.

(c) \Rightarrow (d). Obvious.

(d) \Rightarrow (a). Suppose *H* is a family of fuzzy F_{σ} -sets with finite intersection property. For each $\gamma \in H$ consider a family in the $G_{\gamma} = \{\mu : \mu \text{ is a fuzzy } F_{\sigma}\text{ -set}, \mu \geq \gamma\}$.

Clearly, $\gamma \in G_{\gamma}$. Let $G = \bigcup_{\gamma \in H} \{G_{\gamma}\}$. Since *H* has the finite intersection property, *G* also has the property. Thus, there exists a fuzzy F_{σ} -ultra filter *U* such that $H \subset G \subset U$. Hence, $\bigwedge_{\mu \in H} \mu \ge \bigwedge_{\mu \in G} \mu \ge \bigwedge_{\mu \in U} \mu$. By hypothesis, $\bigwedge_{\mu \in U} \mu \neq 0$ and therefore $\bigwedge_{\mu \in H} \mu \neq 0$. This proves that (X, T) is fuzzy G_{s} -compact*.

References:

- [1] Azad, K.K. (1981) : On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82, 14-32.
- [2] Balasubramanian, G. (1995): *Maximal fuzzy topologies*, KYBERNETIKA, 31, 459-464.
- [3] Balasubramanian, G. (1997): On fuzzy β -compact spaces and fuzzy β extremally disconnected spaces, KYBERNETIKA, 33, 271-277.
- [4] Bin Shahna, A.S. (1991) : On fuzzy compactness and fuzzy Lindelöfness, Bull. Cal. Math. Soc., 83, 146-150.
- [5] Blasco Mardones, N. and DE PRADA VINCENTE, (1991) : On fuzzy compactification, Fuzzy Sets and Systems, 43, 189-197.
- [6] Chang, C.L. (1968): Fuzzy topological spaces, J.Math. Anal. Appl., 24, 182-190.

E. Roja, M.K. Uma and G. Balasubramanian

- [7] Friedler, L.M. (1987) : Fuzzy closed and fuzzy perfect mappings, J. Math. Anal. Appl., 125, 451.
- [8] Raha, A.B. (1979) : Lindelof spaces and closed projections, Jour. Indian Math. Soc., 43, 105.
- [9] Rodabaugh, S.E. (1983) : Separation axioms and fuzzy real lines, Fuzzy Sets and Systems, 11,163-183.
- [10] Rodabaugh, S.E. (1983) : A categorical accommodation of various notions of fuzzy topology, Fuzzy Sets and Systems, 9, 241-265.
- [11] Warren, R.H. (1978) : Neighbourhoods, bases and continuity in fuzzy topological spaces, Rocky mountain J. Math., 8, 459-470.
- [12] Zadeh, L.A. (1965) : Fuzzy sets, Information and control, 8, 338-353.

* * *