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Ansrnacr

The aim of the present paper is to investigate the influence cf a time
dependent source on the Stokes flow past a sphere. The effect mani'
fests itself through the source parameter s(:QQllva), where Q(t)
represents the source strength and the analysis is valid for Re (s{1
Re being the Reynolds number. A special case s:,so(1 -r-n') is studied

in detail and it is found that while incipiently the drag gets increased,

ultimately it is reduced by the source.

1. lntroduction:

The theory of slow flow was initiated by Stokes paper [4] where
the motion produced by srnall rectilinear oscillation of a sphere in a
fluid at rest is investigated. The problern is sotrved by neglectireg the
inertia term under the assumption that it is small because of srnall
velocities involr,ed. In the present sturXy the unsteady motion of a
fluid of kinematic viscosity v about a pervious sphere of radius a is
investigated. The initial motion is the Stokes flow due to a uniform
stream U and the unsteadiness is generated by a time dependent source

Q placed at its centre. Far away frcrn the sphere the source flow is
neglegible so that the velocity is still thrrt of a uniform stream. trt can
be seen that if Q is iarge enough so that the non-dirnensional source
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parameter s (:Ql,lya) is not negligible, the inertia term being non-
linear cannot be altogether omitted; the equation, however, can still be
linearized it the Reynolds number Re (:Ualt) is small as compared
to s. This assumption which amounts to neglecting terms of order U2

while retaining terms of order QU is justiflable at least in the vicinity
of the sphere where the Stokes approximation is valid too.

2. Bosic Equations and Simplilication :

The equations of momentum and continuity governing the fluid
flow are

{*V. grad V--1 grad p*tVzY,6t " i b'**

div V:0,
where p is the density, p the pressure and Y(v* v r, vd) the velocity ;

r, 0, { being spherical polar coordinates with the pole at the centre of
the sphere and axis along the direction of the uniform stream.

On account of the axial symmetry vp, is taken to be zero and

then the following transformation

r:a/, ,:T, p_ou: tpo(r,, t,)+pt(r, ,1,) cos o),

,, _Q,,,,v,:1!**U{u(r,, /,)* l} cos 0,

Io:ulv(r" t')-l) sin o,

is made to non-dimensionalize the equations which can then be linearized
by assuming as in Stokes approximation that U is small and the quan-
tities involving square of it are negligible ; dropping the accent we
then get

';,. \! (# -'eP\ : - * * * *l u#,

0u , s(t) (Av , v - l\_p, .02v .2 Ov 2(u*v)
Att r" \47-f r /-T+d'?+} ai- rz ,

'fr*]s*,1:0,

where s(t):Q$)lua is the parameter determining the effect

The equation for po has not been included above as it
the drag.

(1)

. of the source.

does not affect
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The above equations are to be solved subject to the following
iririal anC bcundary conditions

r
| ,,(r, o):u.o: - ir* *, i

| ,(., o;:v^: ? *.1- [ 
t=''

rlr I '"' 'o 4r'F '

I ana
I

I ,,( l, /): -Y(1, l): - I, )

I ,,,y+'o as r-+* J ',.0,t:
\l'here uo, yo, represent the initial Stokes flow.

Eliminating p, and y inbetween equations (1) and then suitably
integrating twice, we get

(i) a^"=a-?*! !-trt11 0u *!*l 6ur,1*c(t)
. 0l o?'z f

*'here the other constant of integration has been put equal to zero as
far away from the sphere the contribution of the source dies down and
so ,r+ uo, afld with this value the terms occuring in (3) all tend to zero
3S l'->co.

Ncrw, by making the transformation

(4) ,:f, a*t,,,1+2,

the equation (3) can be put in the form

(s) 'il:Z+-'-{3?**"1t'{ +f,},

which is to be solved under the following conditions

Ia(r,0):0, r)1,(6) 
L,,(r"ll8 as r--+oo),=0.

Since in the absence of the source (s:0), u:uo &nd 7:0, therefore,
for small s, u and 4 can be approximated by uo and zero respectively
in the above equations. Thus, under this approximation, equation (5)
reduces to

(7) u#-#:*'u,.

I

I

Il

__._-,- - _ ,*J
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Also, by the
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help of equations (1), (3), (4) and (7) we get

l; *l',.r(x, 
t) ch -!12 r' - t),

p,-'#-,(,,t{l-***},
c(t)= - (*,), =, -, -!,1,y.

2. Solution :

The solution of equation (7) can
the method of Laplace transform [2].

(e) # - o;,:ftita,
where

i0, p):l* e-ot,t(r,t) dt andi(p): S*r-nrs1t1 dt.
Jo Jo

The solution of equation (9) subject to the transformed boundary
conditions

(ro) f il' ']:o' 
at r:t'

L ,t(r, p)-)0 as rlcrc,
is

(r 1) ;(r, p): *ifrlff-,tl\r' li r,O {il * "-r,'l 
p 

z ne r/ dl
-e-Q

' - D li 
{2 -,/i (r,/ 

pE,(,/ 
p) + "-,/ 

p 
z o (/D ))],

where

€Z
E,@)=[ lat ana r,ep[ la,

(8)

be obtained by an application of
The transformed equation is

_oo

are singled valued function in the z-plane cut along the negative
real axis.

The functior 0(r, t) can be obtained from ,le, D by the well
known inversion formula

c+ico
lf(12) ,tQ, r):# 

I . 
,o' ,t?, p) dp.
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Ex:li..ir solurion in the special case s(r)-so(l-r-nr), (4>0) will now
be gi'en. For finite < this describes a source which strating from zero
initial r'alue establishes itself to ultimate value Jo i and for ,(-) oo

corresponds to an impulsive source since initially the flow corresponds

to Stokes flow. The corresponding value (p;: 
#4when substituted

in (11) shows that the integrand in (12) has a branch point at p:g
and a single pole at p- -a ; therefore, the integral can be evaluated
by the help of the closed contour c along the negative real axis and
indented above and below -<, as shown in Fig. l, we thus obtain

(13) ,7(r, r):2 r, [],, -"-n')-<e-at !' 
,.trrfrfiat

+ f ae-<t lrtr,t;l:iri, (;- r)y'a sin /<

_cos (r_ t),/i r( al+*i #,1;*, "

+r(z) ) sin (r- r)u duf,

and so

(r4) (#),=,:3," f,-*, -r n1lio1,/{)+4e-q,tof V*l- \,i,tr;}
:

.?l #{}cos z + r'1,0}a"),

where Il]
F(z):Ci(z) sin z- Si(z) cos z,

G(z):g;1.1cos z+Si(z) sin z,

P .2.'
Ci(z):-l !9!_!il, si(z):J Yo,

and. D(z)i, tn. ou*ron,s integral trlp, grqt ,- r' ("r'ar.
b

In order to calcurate the drag the cauchy's principar varue of the
Improper integral occuring in {lg has to be evaluated numerically, but
useful estimates [2] for small and rarge varues of time can be made byusing the asymptotic expansions and series expansions for large and
small values of p respectively.
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Thus for large p, using the asymptotic expansions for Er(p) and E,
(p) [1], we have

iQ, p)- i'fl['-u- t) /'-+]
and so for small values of time, we get on using convolution theorem [3]

t

,u, r -|ls(r - r){errc #-I,\0,'
This reduces for the case s (t):so(l-e-<'), to

,,(" t)-2,oli{lt -,-n')-r}+tr+ u;r)' e'rcff

_(r- 1)'

-(r- l) e-4tt -!-(t-e4

and so we have

( I 5) (z:),=,- ?* ['t - ] 6 - e- <t 1\- z

which for <+ oo becomes

(16) (3i),=, -20',(2, -zl*)
Similarly using series expansions for Er(p)
large values of time

(17) (fu),=, :3,,(-,.#,-*)

4. Drag :

sphere can be calculated for

2r. -w+*)ri', ,1 sin o do
O0 r or/ Jt=a

(r 8) - 6zp u u,l +\(ar1),=, *',9].

It is easily seen ofltakiog into account equation (17) that for large l, the

drag remains unaffected by <. The following table shows that variation
of drag coefficient D o: D l6nPvUa for small and large time when so: 1 .

Now the drag force experienced by the

small s as follows

D :2,(rt",l(- * z ,,ra;.) .o, o - r,(1

-n,)+ ,- n 
\rn' "rt ff)a,

h,2D(V;*J; .

and

,/a),

EJil Ul we have for
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Table 1

for small time for large time

tT
Drag coefficient D,

7<: to ,/<--*
Drag coeffi.cient D,

'\/t (independent

of 4)

0.00
o.a2
0.04
0.05
0.08
0.10
4.12
4.14
0.16
0.18
0.20

1.0000
1.0028

1.A092

1.01s9
1.0205

l.o2t9
1.0242
r.0165
l.0t2t
1.0075

1.0060

1

1.0673
1.0531

1.0380

1.0325
l.a2t2
1.0t42
1.0090

1.0056
1.0039

1.0041

5

10

15

20

25

30

40
50

100
200
to

0.743r
0.7276
4.7217

0.7t84
0.7165
0.714.5

0.7135
0.7r25
0.7104
0.7a94
0.7083

It is interesting to note that while for small time D" gels increased on
account of source. it is reduced for large time attaining its ultimate
value 0.7083. When I is small, the behaviour for y'<:10 and t/i-*
is also widely different. In the fi.rst case there is an increase upto a
certain maximum value followed by a decrease which should be there
as ultimately D.(1. In the second situation the maximum increase
occurs immediately at the start of the source and then there is a gradual
decrease upto 1/t-ll3 Ji. As the ultimate value of D, is less than unity
this turning point suggests that for this case the small time analysis
breaks down here. The different behaviour for < finite and < infinite
is expected as the sources described by them are quite different ; at the
start while the source strength is zero for the former, it is at its maximuhr
value s, for the latter.
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