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ABSTRACT

Aim of this paper is to study the unsteady flow of a viscous
liquid through a porous medium between two parallel flat plates under
the influence of pressure gradient, (i) varying linearly with time, and
(ii)decreasing exponentially with time using the generalized momentum
equation. In the first case it is seen that the symmetrical points have
the same velocity.

1. Introduction :

Flow of a viscous liquid in a porous medium is of great
importance in the study of percolation through soils in hydrology,
petroleum industry and in agricultural engineering, etc. Flows of
different fluids through various types of porous media are studied
employing the classical Darcy’s law which states that the seepage velo-
city of the fluid is proportional to the pressure gradient. This law
tails to explain the phenomena occuring in highly porous media such
as fibreglass. The viscous stress at the surface is able to penetrate into
the medium and produces the flow near the surface even in the absence
of the pressure gradient. Brinkman (1947) generalized the Darcy law
taking into account the effect of viscous stress. Brinkman’s law gave
good results in the case of highly porous media. Yamamoto (1971,
1973) investigated the flow past porous bodies using the generalized law.

The present paper consists of two parts. In part A4 the flow
through a porous medium between two parallel flat plates under
pressure gradient varying linearly with time is discussed. An expression
for the velocity is obtained in dimensionless form. This consists of two

parts, the one varies linearly with the parameter T =yi2 and the other
0

is the transient part of the velocity which vanishes in the limit as ¢
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tends to infinity. It is seen that the contribution of the transient part
is insignificant when 7> 1.5.

In part B the flow of a viscous liquid through a porous medium
between two parallel flat plates under exponentially decreasing pressure
gradient is studied. An expression for the velocity has been obtained
taking '

o0

gf_;zao + Z g€,

m=1

D=

which has been compared with that of Dube’s result (1969) where he
has obtained the velocity of a viscous liquid in a channel bounded by
two parallel flat plates under exponentially decreasing pressure gradient.

2. Equations of Motion :

The equations of motion of a viscous liquid through a porous
medium as proposed by Brinkman is

aq ( . ) = =) )
where q is the velocity vector whose components are u, v and w
parallel to the axes respectively p the density of the liquid, v, k are
the kinematic co-efficient of viscosity of the liquid and the permeability

constant of the medium respectively. The equation of continuity is
div ¢=0. (2)

for the present problem we have

u=u(x, y, t), v=0, w=0, ]
P=P(x, 7,1, 2( )=0 ¢ (2
’ 2 563 b J

The last equation holds because the motion is two-dimensional.
Furthermore, the equation of continuity (2) and the conditions (3) give
ou

ﬁ:—o so that u=u(y, t) “

Substituting equations (3) and (4) into the equations of motion
(1), we have

ou_ 10P 0%u v

ot P 6x+v3?—? )
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and
Bn o P=P(x, t) (6)
dy

From equations (5) and (6) we see that %’ must be a constant or a

function of time only in the present problem because P is not a
function of y and u is not a function of x.

PART A

3. Pressure gradient varies linearly with time :

We now assume that
10P

P 7% a, +at. Q)
Equation (5) then becomes
a7 0%y ) 8
g—t—a3+at+ua—y-2—ku. i ®)

Fig. 1




FTOT—

e B

UNSTEADY FLOW BETWEEN TWO PARALLEL FLAT PLATES 25

o0

Let ﬂ=§ etudt be the Laplace transform of u and let u, be the
0

initial value of u.

Multiplying equation (8) by exp: ( —st) and integrating between
the limits O to «, we get

@5 .. 1 a, , a
cTy—z pru= U[uo"l"s +S2J, (9)

where p2=1{s+3}.
no ok
We shall now find u,.

Initially the pressure gradient is @, and the motionis steady in
the channel.
)

Hence g° =0 and we obtain

t
: |
%;To_%uﬁ_?. (10)

The boundary conditions are
u,=0 when y=—Yy,,

and
u,=0 when y=Y,.

The solution of equation (10) under the above boundary conditions are

COSh{—;/J—,TC}

ka
Ho—

' co sh{y—‘;’l;}

Substituting this value of u, in (9), we get

q cosh{,;/ik}]
—pra=— g Hedl———t % Bl (11)

v cogh{_v)j%}) s s?

aza
dy*

The boundary conditions for @ are
#=0 when y=—y,,
and
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The solution of equation (11) under the above boundary condi-
tions is

= : cosh{*\%{}

+__t_l___ l_cosh py. |
Sz{s_,__l_:}[ COShpyo}

Now applying Laplace inversion theorem, we get

kao_ %_

u=-20| 1-—

. % cosh{ Jk}
cosh{i_}—
+k;q {t—%} 1 _coj—{;ii}
i _L

{y ¥, tan h( Vk> cot h< ,J/c) s1n h(\/k)

20’3 cosh (y 0) ‘

ot o (Drexr [‘{(2n+4ly?f s }]' s [___(2,,2?:)@]- (12)
T (@n+1 [@_—;%ziiv_l_%]a

Now we make equation (12) dimensionless by introducing
e vt

=
e
where U, is a characteristic velocity.

cosh( _)

éosh( >

cosh(%)
FEAT kAL =7 7 ¢ i

cosh( ~w>

vk

1

We then get

U=abk,| 1o Vi
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owmb ] e o B
COSh(VI/?D {V tanh( ‘/k1>00th(\/k1> Smh(\/k)

+ IZSbi( e exp' [‘l{(—%ﬁj‘?ﬂv‘k kz,}] cos<(2_”+_2%’>
T aso (2n+1) [(2n+1)27r‘3+]:i]2

. (13)

where

s ; i
bo=2Yo" | a non-dimensional number,
2vU,

ay.4 8 .
b="o , a non-dimensional number,
2v2U,

e
K,= <2
o

, the permeability number.

We now take U=U,+U,, where
0 h( y_>——
cos e l

1
cosh<f =

\/k)__
cosh —Y— T

(Jk,) \
1

cosh< =

76) L

= ;o_sbh—k(_;%')[{y —tanh<7li:1> coth(vykz)} sinh(\/—%:)]

[Tl ool

1

U,=2boK1l i
I

+2bk(T—K,)| 1—

and

2, (—Drexp
128 b
v, -85
i n=0

@n+ 1) @0+ 1)2n2+f4;]2




28 MATHEMATICAL FORUM

The values of U for different values of y and T have been tabulated
below when b,=4, b=1.

Table I. K, =9

s 0.5 | 1.0 | 1.5
9T :
o !
0.0 1.7846 1.8828 1.9948
0.4 3.2302 3.3140 3.4090
0.8 1.4439 1.4830 1.5264

Table II. K, =16

y\T] 0.5 1.0 1.5
0.0 | 0.1499 0.2518 0.3682
04 330 3.4051 3.5029

s 10 14673 1.5099

Table III. K, =25

N\ 0.5 1.0 \ 1.5
00 | —20643 YW At
& | 34335 | 3.5319
8 0 TR

The values of U for negative values of y have not been given
here because of the fact that the velocity will not change whether y is

' negative or positive. It means that the symmetrical points have the

same velocity. The value of U beyond T=1.5 have also not been
given because Ug is very small compared to U; when T > 1.5, hence
the transient part is insignificant and U varies linearly with T in this
range. From the tables it is observed that U increases with T for
fixed y. It is also seen from these tables that the maximum of U
does not occur at the axis of the channel, but is shifted towards the
walls in the present case.
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PART B
4. Pressure gradient decreases exponentially with time :
We take
T
- ax—ao+Zame (14)

Equation (5) then becomes

ou = 0%u v
97_a0+?a e "“—’ruay2 s (15)

Let To=jwe‘“udt be the Laplace transform of u and let u, be the initial
o

value of u. Multiplying equation (15) by exp(—st) and integrating

between the limits 0 to o, we get

U = 1 a
— 2= =1 0.k
e A L’i u°+s

i (16

= 1(S+m

where
: :1( z).
Pealty
Here again

Ka
Uyg=—""0

l—cosh(\/ > l

: L cosh( VK

The solution of the equation (16) under the boundary conditions

#%=0 when y=-—y,,
and

%=0 when y=y,

Ka wl ( %E)T

U=—0 1— ———
- cosh(%)_\

i [ _ cosh py]
( U) cosh py, (s+m)
stz =

is

a7
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Now applying Laplace inversion theorem we get

cosh(VJ)?

-

K
+4\ i i (—1)"an exP[—{(z—n%zzZm+§—%] .cos [(2’21;; 1)7ry] :
(18)

The expression (18) for the velocity is similar to the expression
obtained by Dube (1969) where he has found the velocity of a viscous

liquid in a channel bounded by two parallel flat plates under exponen-
tially decreasing pressure gradient.

Also, (13) and (18) reduce to the usual laminar flow between two
paralle] flat plates discussed by Dube for K;—co (K > 0).
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