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ABSTRACT

The hydromagnetic flow induced by torsional oscillations of a
porous disc in a rotating fluid under uniform injection, has been studied
in the presence of a transverse magnetic field. Hall effect has been
taken intc consideration. Assuming the frequency and the amplitude
oscillation to be small, the equations of motion have been solved by
using the expressions for velocity components and pressure in the ex-
ponential form of non-dimensional time. Amplitude and phase of axial
velocity at infinity, phase of the transverse shear stress at the disc and
boundary layer thicknesses against a non-dimensional parameter, depen-
ding on the injection velocity, the angular velocity and the kinematic
viscosity have been studied. It has been found that the oscillating
axial velocity at large distances from the disc has always a phase lead
for large values of this parameter.

1. Introduction :

Datta and Jana [1] have studied the Hall effects on the oscillating
MHD flow past a flat plate in the presence of a uniform transverse
magnetic field. The effects of Hall Current on the torsional oscillation
of a disc in a conducting fluid subjected to a uniform axial magnetic
field has been studied by Datta [2]. Gupta [3] has studied the flow
induced by the torsional oscillation of a disc about a state of rotation
with angular velocity @ i a semi-infinite electrically conducting fluid
which is also rotating with the same angular velocity.
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The objective of the present paper is to investigate the effect of
injection on the MHD flow induced by torsional oscillations of a porous
disc in a rotating fluid in the presence of a transverse magnetic field.
Hall effects have been taken into consideration. Considering the ampli-
tude and frequency of oscillation to be small, modified Navier-Stokes
cquations, Ohm’s law and Maxwell’s equations have been solved by
using the expressions for velocity and pressure in the exponential form
of non-dimensional time and neglecting the second order terms. The
efiects of injection on the flow have been investigated by calculating: the
results for various values of a non-dimensional parameter A (depending
on the injection velocity U, angular velocity of the disc and the
kinematic viscosity v). It has been observed that the axial velocity at
large distances from the disc has always a phase lead for large values

of ‘A. - Jana and Datta [4] have studied this flow geometry without

taking injection into account.

The Physical Problem and its Solution :

We suppose that an infinite porous disc located at z=0 executes
torsional oscillation with small amplitude ¢ and frequency n* about a
state of steady rotation with angular velocity @ about z-axis in a con-
ducting fluid which is also rotating with the same angular velocity.
Fluid of same density is injected through the disc with uniform velocity
2U,. We choose a cylindrical polar co-ordinates system (r, #, z) and
consider the flow to be axisymmetric so that all the physical quantities
are functions of r and z.. We also assume that the induced magnetic
field is negligible in comparison with the imposed uniform magnetic

A
field B, parallel to z-axis, which is justified for flows with small magne-
tic Reynolds number. In order to consider Hall effects the Ohm’s law

“is modified.” ‘The governing equations of the problem, are

div V=0 (D
SR e :
—+(V.grad) V=—=grad p+v+ A2 V — I XB )
ot [ p

=y Sy v (3)>

J=o(E+V xB)— " JxB

e -5 s
curl B=¢J, curl E=0, div B=0 4)
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Where V is the velocity vector, ¢ the time, B the magnetic induc-
—_

o
tion vector, E the electric intensity vector, J=(J,, J,, J;) the electric
current density vector, p the fluid pressure, o the density of the fluid.
v the kinematic viscosity, ¢ the electrical conductivity, e the electrio
charge, 7. the number density of electrons and g is the magnetic
permeability. On writing (3), the ion-slip and the thermoelectric effects
are neglected and further it is assumed that w;7; €1 where o; and <
are the cyclotron frequency and the collision time of ions respectively.
For partially ionised gases, the electron pressure gradient may be
neglected.

Under the above assumptions the basic equations (1)—(4) lead to

+ P(l%n-—) mo—re)-ul )
— eyl 1)+l (©6)
et ®

Here u, v, w are the velocity components of fluid, m=e, 7. where @,
and 7, are respectively the cyclotron frequency of electrons and the
collision time of electrons with ions.

Boundary conditions are

u=0, v=rQ+ren* cos n*t, w=2U, at z=0
u->0, v>rQ as z-> < 9

We seek a solution of (5)—(8) for u, v and w in the following form :

rf(z) Exp (in*t)
rQ-rg(z) Exp (in*t)

I

U

v

I
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w= 2U,+ A(z) Exp (in*t)
p= Do+ipr:02+p,(r,z) Exp (in*t)

Where p, is a constant. Substituting (10) in (5)—(8) and neglecting
2nd order terms, we get,

. : 10p ., QN?
% L AR e 0 o bl -
(in*) f+2U,f" —29g R 0 +vf +1+m,(mg f) (11a)
3 2

(in*)g+20 f+20 o8’ =ve" ~ L2 (g my) (11b)

G20 o = — %%Hh” (11¢)

2f+h' =0 (11d)
Where N2=¢B,?/(pR)
The boundary conditions (9) become, :

f=0, g=en*, h=0 at z=0

/>0, g>0 | as z—> o (12)

Differentiating equation ( 11c ) with respect to r we get %-;O,
. roz

which implies that %l.’ri is a constant, so that from equation (11a) with

the condition that f/~0 and g—}O as z—oo, we get %Brl:O. The equations

(11) then reduce to

(in* ) f 42U, £ =20g=0 "+ 20 (mg—/) (13)
(nt)e+208 +20 =g~ 2 eempy a9
2 f4+H=0 - (15)

To solve equations (13)—(14) we consider two functions F and F
such that : :

F=f+tig and F=f-ig ‘ ' ; (16)
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the equations (13) and (14) then become

vF'—2y oF’—[z’n*+2iQ+IQTA;:2 (im+1)]F=0

QN . “
T s (im=DIF=0

The boundary conditions (12) become

vF"—2U o F'4[—in*+2i0+

F=ien*, F=—jen* at z=0

F—0 , F50 as z—»

The solutions of (17) and (18) satisfying (19) are
F=ien* Exp [—{(«;—2)+i8,} Y2 2]
F= —ien* Exp[—{(x,—2)+iB;}v2[v 2]

where

=TT L@t
b=V AF D5 - @2 o)

<= VERTRES + (0 4ol

*;
e
2=U;,/\/IE a=N?2/(1+m?2), b=n+P, n=n*/Q

[VETF A+ (2040

ﬁz=

N2
oty L p
2+1+m2’ bs=n

Introducing
n= o/ z

and using definitions for F and F, we get :

J=3ten*[Exp{—((, — )+ 18, )0} — Exp{— (<3 — )+ i83)n}]
9=3en*[Exp{—((<1 =)+ By In}+Exp{—((x3 — )+ i8.)n}]

17)

(18)

(19)

(20)

(2D

(22)

(23)

(24)
(25)
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From (15), using (24), we get the expression for h(n) as

= jen*(v/Q)1 /2 Exp{—((«+ —A)+i,)n} Exp{—((«5 —4)+iB:)n}
h(ﬂ)'—lfn ( /Q) : [< (*1:(2)‘1'1'/31 o (42_]‘)""1.132) 3 )

+((ocz—;)+iﬁ2—(acl—ll)+i,31>] (26)

Substituting (24)—(26) in (10) we get the radial, a azimuthal and
axial velocities in real form as,

u="""[sin (3 =) Exp{—(; 1)} ~sin (30 —m)Exp
{~ (= Da}] @7

V—rQ= ig’f[cos (Byn—nv) Exp{—(«y — )y}

+cos (Byn—nt) Exp{— (%3 —4A)n}] (28)

w—2u, =en*(v/Q)1/2 Exp(—(x1—24)n)

(o( "‘12)2+ﬂ 2 [ﬁl Cos (m'—ﬁln)

: £ o
=) sin (re—fu)]—en*(ojay 1+ 220 o)

[82 cos (nz—Byn)— (<, —2) sin (nz—B,1)]

+en*(v/Q)L 2R sin (nr—yp) (29
where

R2*= (ty—«5)2+ (81 —85)?
{1 = D(x2 =)+ (818532 +{Bs (s, — ) — B (¢ — 2)}2

pmtant BB D), == =)
: (%1 —=2)(xg = A)(x3 =% 1)+ {Bs* (X1 — 4 — B, 2(x, —A)}

(30)

3. Results and Discussions :

The thicknesses of the boundary layers are given by 1/(x—A) and
1/(2a—A). From expressions (22) for «; and a., it is observed that both
the boundary layer thicknesses decrease with increase in NZ?: on the
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Amplitude (R) and phase of the (8) the axial velocity against A
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other hand, both of them increase with the increase of A. Values of
the boundary layer thicknesses 1/(«x;—A) and 1/(x;—A)} are given respec-
tively in the tables 1 and 2. It is clear from the tables that for any
value of n, their rate of increments with the increase of A are large and
small according as the Hall parameter m is large and small respectively.
Also boundary layer thicknesses increase with the increase of m when
other parameters are kept constant.

From equation (29) the axial velocity at infinity is given by

w(«, T)—2U0=6n*(v/9)“}R sin (nt—2) (31

Where R and y are given by equations (30).

The values of R and y have been plotted against A for different
values of N2, m and » in figure 1. It is observed that values of R
increase with A for all m, N? and n. With the increase of A, the
values of y gradually increase, reach maximum values and then remain
constant throughout for all other values of A. It is noted from the
figure that the oscillating axial velocity at infinity has always a phase
lead for large values of A.

The transverse shear stresses at the disc is given by

pv(g)z:m: — A cos (nt+¢) (32)
Where,

e
and

2222t [0
A=V (DN 2 = D) (5 5]

The values of ¢ have been given against A for different values of
N?, m and n in tables 3 and 4. It is seen that ¢ is much affected by
the small values of 4. As 2 increases ¢ tends to become constant so
that ¢ is not affected by large values of 4.
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