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ABSTRACT

A new variation method based on the governing principle of
dissipative processes is developed to obtain an approximate analytical
description of tlie boundary layer flou, for a power-law variation of the
external stream velocity. The principle is forn-rulated for the borindarv
layer equations and a third order profile is assumed lor the loagitudrnal
velocity inside the boundary layer region. The skin friction at the u ail
is found to be quite close to the numerical values.

Introtlu.ction:

The governing principle of dissipative processes uhich ciescriL':s the

evolution of linear, quasi-linear and non-linear irreversible pr..cesses u'as

formulated by Gyarrnati (1969). The principle in its mcst general ftrrn-t

is written as

d I ("-,/, -d) dY:0
Y

where Z is the volume of the system. o denotes the entropy production

which is expressed as a bilinear function of thermodynamic forces Xi

and the conjugated fluxes li, i,e.,

Jo: ! Jt,X;)0.
d=l- -

According to the linear Onsager theory the fluxes and forces are

by linear constitutive relations
J

L: 2 Ltt X*t' k=r

or
IXi: D R*, Jx

h=t
(3)

(1)

(2)

related
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where the coefficients Li16 and' R67o are the conductivities and resistancesrespectively' the matrices of which are mutually reciprocal and symmetric( le3l, a, b). rhe local dissipation ,"i."iJrr-J'";-;ill o.uo.u u,the homogeneous quadratic forms of thermodynamic forces and fluxesrespectively, i.e.,

which correspond to the entropy production (2). Using (2), (3) and (4),the principle (l) becomes

(4)

' ,, [ ,:, 
/, - ]', - J, 

,,*=,r,r xr - xi,-l 
,,#=, Rr* * . Jkl dv:6.

(5)

. This principle has already been used to derive the governing equa-tion of fluid flow and heat transfer by Vincze (lg7l), *]ril" th" use ofthe principle to get the solution oi Benard convection in hydro-
dynamic stability was made by Singh (1976). The aim of the presenr
investigation is to see the appricability 

"f this genuine variational formu-Iation of irreversible processes to boundary rayer flow. The principle isformulated for the boundary rayer along a sorid surface when the freestream velocity varies as a power function of 71y1:r*^) *;;; r mea_sures the distance aiong the surface of the body. A third order trialfunction is chosen for the longitudinal vel0city component which hasboundary layer thickness as a. variationar parameter. The Euler-Lagrangeequation associated to_the principle giues'an algebraic equation in termsof boundary layer thickness which cln be-sorved easiry r", 
"rv varue ofm' The skin friction obtained by the present method is very cl0se tothe numerical values.

Boundary Layer Equations and the Actual Form ol the Frinciple :

fnterest in the theory of boundary layer flows is due to numerousengineering probrems it occurs in. ac.oroing to this theo-ry i# io"u"._sible process of momentum transfer in flows around bodies o""u^ mainryinside a very thin layer next to the war. Therefore, ttre naturar way tostudy this non-equilibrium process is bf using the method of irreversiblethermodynamics.

After apprying the usuar bound ary rayer approximations, the con-servation equations of mass und mom"ntum for i*o oi*"rrionat st.uayflows reduce to I see Schtichting irqo;il. 
"'

**--*....-,. -."+,".
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!*!:oox oy

,Y+,!:u9+,*dx 0y dx dy'

(6)

(7)

(e)

equations play

(10)

(11)

Here the fluid is considered to be incompressible. u and y are the
velocity components inside boundary layer along x and y directions
respectively where x measures the distance along the body and y is
normal to the wall. U denotes the free stream velocity and is assumed
of the form

U:Cxm.

The boundary conditions of the problem are

i:y', 
uu.-or.':''

In the formulation of Gyarmati's principle, the balance
the basic role which in this case are

V- t:0
(v 'V) v* V' P:0

(8)

where (*l ..nor.nts the mass balance and (11) is the momentum
balance. P is the pressure tensor and is written as

op:p[* Por

Here p denotes the hydrostatic pressure and .f" is the viscous part of

the pressure tensor and its trace is zero. u is the velocity vector

v:ui*vj.

In the case of viscous fluid flow, the energy picture of the principle

is preferable to that of entropy picture, we therefore use the energy dissi-

pation 7 a instead of entropy production o. The energy dissipation in this

case is [Gyarmati (1970)]

ro : -b", (+r': -r,,*,r0,
o,

where (Vv.)r, is the symmetric part of the gradient of the velocity with

zeto trace and in this case it has only one component

r$,li . -?!.dy

(12)
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P* denotes the non-zero component of the viscous pressure tensor -&,r.

The double dots represent the scalar product of two tensorial quantities.
The constitutive equation in this case are

Pr. : - ,,'1. ( I,'.),, ,: -ri ,r *
.i.--.::3 1r ;3::t3r i:e coeficient of viscosiry. {S9r* and pr, are the
:::----:-'_:::,-- ^r':--3 and current respectively. The dissipation poten-
- : - :-.j : i:. energl picture are

. = _-r,' _tlt.__:ti:,(VDrrz,

?-:r.!:j,r,,,. (r4)
Using (12) and (14) in (i), the actual form of the principle for the

problem under consideration becomes
lld z

, 
JJ'[-u',H-;e) -*r'.,f dy dx:,, (r5)

where r denotes the characteristic Iength of the surface and d is the
visccus boundary layer thickness. This principle with the barance equa-
tions (10) and (12) describes the steady iwo dimensionar boundary layer
flow along a rigid bod.y. fo solve the equations describing the boundary
Iayer flow, we assume the thermodynu*i" current pr, in term of an
approximate constitutive relation [Singh (1976))

P,":-uU,'Lz- *Ay, (16)

where z* is an approximate velocity component and satisfies the same
conciitions as rr. In exact theory u-u* and the Lagrangian clensity in
(15) is zero. To get the approximate variational solution of (10) and
(11) we inrroduce (16) in (11) and (15) to get

u!+,9.!:r'au ' ozux
u.x oy '' a**' ay, ,

Ld,

,i i tr #-;c:)'-\ff)'1dv dx:o

Using the similarity translormations
u:Uf'(n), u*:Uf*'(n),

,,:('\* |'''-')'',,
,: - (-,1;''l 'tm- ')'t'(ry1f f+Trt')

( l3)

(1e)

(t7)

( l8)

H

H
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the equation (17) and the principle (18) result to

f*,,' + f f, + P(t -.f,'):0,

L Q 6tn-,

aJJ [r-,r, -y,'-Lr-,,)*u d, dx:o,

where F:1,\-. We assume the following polynomial' I*m
proflle

which satisfies the conditions

,t:0 : f :0, f':0, .f "': - fi

r1->d: fl-+1, f',-+0

L:y,:?rN -lN, + aa,(or-lr, *1r') (22)

(20)

(21)

for velocity

/. i)

In (22), d is the variational parameter which is determjned u'ith the
help of principle (23) and N:nld. Using (22\ in (20). we get /*" as

f .,, : d (#- l.^r' * # r' - # ", ) 
+ pd(* - r* lo v, - fi r' -',\n )

- pr, (**f - f . # n' + ff - t'u,^r,)

- 82 dsl12 - 
N' + 3-Nn 

-No -ry -ry|'- \840-4 '8" 10 t2 281

-B'd6l 
1_ -,l|l-ry'+lllr'-{'+ 1{')" - \toso+x 24 '960" 32 ' 448 I

-f da(,,l.-fJ*,{.-#. y;- rY:"), Q4)

which satisfies the conditionf*"(d):Q since Prn:0 at the edge of the

boundary layer. Substituting fx" and f" ftom (22) and (24) into (21)

and integrating with respect to 4, we get

L

a 

J [0]a - t ro7. 8 1 I + tsl. 624 p) d + (4.s04 + 20.62e fi + 2e.87 Zpz) ds

-(0.295P+ 1.333fr2.-2.065 /i8)d6 - (0.04I F'? * 0.07963

-0.045pL)d1 + (0.0026s + 0.007p4 + 0 .0046P6)d' + (0.86884

+0.7486 + 1.0218s)10-na")*w# dx:O. (25)

--
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The Euler-Lagrange equation of (25) is

600 + ( 107.81 t* 190.6248)d'z - (14.712* 61.8878+89.6t6p',)dn

+ (1.47 5 p + 6.665 p2 + 10.325 ps) d6 + (0.287p' + 0. 553p 3

- 0.3t5 p4) d8 - (0.0 I 8B 3 + 0.063p4 + 0 .0414 B6) dt o

-(9.54864+8.14P8 +tr.rrrpo)l0-sd1'2 -O- (26)

This is a very general analytical expression from which boundary layer

thickness for various values of 6 or tn call be obtained. Thus the im-

portant physical characteristics of the boundary layer flow can be studied

now' The solution of equation (26) for B:0' 0'5 and I' are obtained as

d:3.321, 2.802 andr 2.426 respectively. The most important physical

quantity of boundary layer flow is the skin friction at the wall. The

non-dimensional skin friction, S* defined as

Exact S* Presefi S*

0

0.5

1

0.332

0.755

t.234

0.319

0.723

1.225

&
il

It is clear from the table that the present method is quite satisfac-

tory for boundary layer flows. The result difier from exact solution by

less than 4 per cent which is quite satisfactory for engineering

applications.
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