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ABSTRACT

A new variation method based on the governing principle of
dissipative processes is developed to obtain an approximate analytical
description of the boundary layer flow for a power-law variation of the
external stream velocity. The principle is formulated for the boundary
layer equations and a third order profile is assumed for the longitudinal
velocity inside the boundary layer region. The skin friction at the wall
is found to be quite close to the numerical values.

Introduction :
The governing principle of dissipative processes which describes the
evolution of linear, quasi-linear and non-linear irreversible processes was

formulated by Gyarmati (1969). The principle in its mest general form
is written as
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where V is the volume of the system. o denotes the entropy production.
which is expressed as a bilinear function of thermodynamic forces X;
and the conjugated fluxes J;, i.e.,
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According to the linear Onsager theory the fluxes and forces are related
by linear constitutive relations
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where the coefficients Ly and Ry, are the conductivities and resistances
respectively, the matrices of which are mutually reciprocal and symmetric
(1931, a, b). The local dissipation potentials ¥ and ¢ are defined as

the homogeneous quadratic forms of thermodynamic forces and fluxes
respectively, i.e.,
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which correspond to the entropy production (2). Using (2), (3) and (4),
the principle (1) becomes
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This principle has already been used to derive the governing equa-

tion of fluid flow and heat transfer by Vincze (1971), while the use of
the principle to get the solution of Benard convection in hydro-
dynamic stability was made by Singh (1976). The aim of the present
investigation is to see the applicability of this genuine variational formu-
lation of irreversible processes to boundary layer flow. The principle is
formulated for the boundary layer along a solid surface when the free
stream velocity varies as a power function of X(U=cx™) where x mea-
sures the distance along the surface of the body. A third order trial
function is chosen for the longitudinal velocity component which has
boundary layer thickness as a variational parameter. The Euler-Lagrange
equation associated to the principle gives an algebraic equation in terms
of boundary layer thickness which can be solved easily for any value of

m. The skin friction obtained by the present method is very close to
the numerical values.

Boundary Layer Equations and the Actual Form of the Principle :

Interest in the theory of boundary layer flows is due to numerous
engineering problems it occurs in. According to this theory the irrever-
sible process of momentum transfer in flows around bodies occurs mainly
inside a very thin layer next to the wall. Therefore, the natural way to

study this non-equilibrium process is by using the method of irreversible
thermodynamics.

After applying the usual boundary layer approximations, the con-
servation equations of mass and momentum for two dimensiona] steady
flows reduce to [ see Schlichting (1968) 1
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Here the fluid is considered to be incompressible. u and v are the
velocity components inside boundary layer along x and y directions
respectively where x measures the distance along the body and y is
normal to the wall. U denotes the free stream velocity and is assumed
of the form

U=cx™. (8)
The boundary conditions of the problem are

y=0 : u=0, v=0,

y—oo . u—U, )

In the formulation of Gyarmati’s principle, the balance equations play
the basic role which in this case are

Z:y=0 (10)
a7y e Y P-0 (1)

where (10) represents the mass balance and (11) is the momentum
balance. P is the pressure tensor and is written as

P=ps+ B

0
Here p denotes the hydrostatic pressure and P*™ is the viscous part of

the pressure tensor and its trace is zero. v is the velocity vector
v=ui+vj.
In the case of viscous fluid flow, the energy picture of the principle
is preferable to that of entropy picture, we therefore use the energy dissi-

pation T ¢ instead of entropy production ¢. The energy dissipation in this
case is [Gyarmati (1970)]
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where (V/v),, is the symmetric part of the gradient of the velocity with
zero trace and in this case it has only one component
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> 0
P, , denotes the non-zero component of the viscous pressure tensor P™,

The double dots represent the scalar product of two tensorial quantities.
The constitutive equation in this case are

ou 2 1
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where « Cenotes the coefficient of viscosity. (Vv)'1, and P, are the

3 ¢ and current respectively. The dissipation poten-
uals ¥ and ¢ in energy picture are

L (14)

Using (12) and (14) in (1), the actual form of the principle for the
problem under consideration becomes :
i B
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where L denotes the characteristic length of the surface and d is the
visccus boundary layer thickness. This principle with the balance equa-
tions (10) and (12) describes the steady two dimensional boundary layer
flow along a rigid body. To solve the equations describing the boundary
layer flow, we assume the thermodynamic current Py, in term of an

approximate constitutive relation [Singh (1976)]
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where #* is an approximate velocity component and satisfies the same
conditions as u. In exact theory u=u* and the Lagrangian density in
(15) is zero. To get the approximate variational solution of (10) and
(11) we introduce (16) in (11) and (15) to get
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Using the similarity transformations
u=Uf'(y), w*=Uf*(y),

1+m ¢ A= 1 2
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the equation (17) and the principle (18) result to
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where ﬁ=ﬁim. We assume the following polynomial for velocity
profile
E=r=IN- Nt pa( N N2+ INY) (22)

which satisfies the conditions
n=0: f=0, f'=0, f"'=—p
y>d: fl>1. f250 (23)

In (22), d is the variational parameter which is determined with the
help of principle (23) and N=y/d. Using (22) in (20). we get f*" as
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which satisfies the condition f*'(d)=0 since P,,=0 at the edge of the
boundary layer. Substituting f*” and f” from (22) and (24) into (21)
and integrating with respect to n, we get

L
5} [6%‘) — (107.811 4 190.6248)d+ (4.904+20.6298+ 29.87252)d
) ;

—(0.2958+1.333p% —2.06588)d°® —(0.0418% +0.07953
—0.04584)d” 4 (0.0028° +0.007p* +0.00464°)d° +-(0.8684*

+0.746° + 1.021,36)10—40111];—’*"‘:?l dx=0. (25)
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The Euler-Lagrange equation of (25) is
6004 (107.8114190.624p)d® — (14.712+61.8878+89.6168%)d*
+(1.4758+6.66562 +10.3256%)d® +(0.287p* +0.5535°
—0.31584)d® —(0.0188% +0.06384 +0.04145°)d* °
—(9.548p%+8.14p° +11.2318°)1073d** =0. (26)
This is a very general analytical expression from which boundary layer
thickness for various values of 8 or m can be obtained. Thus the im-
portant physical characteristics of the boundary layer flow can be studied
now. The solution of equation (26) for =0, 0.5 and 1 are obtained as
d=3.321, 2.802 and 2.426 respectively. The most important physical

quantity of boundary layer flow is the skin friction at the wall. The
non-dimensional skin friction, S* defined as

ou U
S*=<4> e
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is calculated for 8=0, 0.5 and 1 and the present result is compared with
that of exact one in Table I.

TABLE 1
B Exact S* Present S*
0.332 0.319
0.5 0.755 0.723
1 1.234 1.225

It is clear from the table that the present method is quite satisfac-
tory for boundary layer flows. The result differ from exact solution by
less than 4 per cent which is quite satisfactory for engineering
applications.
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