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ABSTRACT

In this paper we derive the minimum variance unbiased (MVU)
eitimates of BR-Prxe 1) using  Rao-Blackwell and Lehmann-
Scheffe theorems, where X and Y are two-parameter exponential
strength and stress random variables respectively. The two parameters

are minimum Stress (strength) parameter and reciprocal of mean. We
have considered censored samples of X and Y for the purpose. Three
cases are considered viz., when (1) only minimum stress and strength
are known, (2) only reciprocal of means are known and (3) all parame-
ters are unknown.

The maximum likelihood estimators of R are also obtained for
the above three cases.

Introduction :

Let X and Y be two random variables representing strength of a
component and stress working on it, respectively.  Then reliability of
the component is defined as

R=Pr(X>Y) (1)

In this paper we have considered the problem of estimation of R
when X and Y have two paranmieter exponential distributions given 1€s-
pectively by

P A,e)=%exp (= (x—A)/0} @
ov; B, 1= gexp (—(r— B} 3)

*This paper is presented at the 68th session of the Indign Science Congress
Association, 1981,
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where 4 and B represent minimum admissible strength and stress res-
pectively ; and 6 and u represent reciprocal of means of strength and
stress respectively. We have found MVU estimators of R from cen-
sored samples of X and ¥, using Rao-Blackwell and Lehmann-Scheff’e
theorems (4). We have considered three cases: (1) When the para-
meters 4 and B are known but means of the distributions are unknown,
(2) when reciprocal of means i.ec., gand # are known but 4 and B are
unknown and (3) when all the parameters are unknown.

The estimators of R are also obtained using maximum likelihood
methods in the above cases.

Basu (1) used Rao-Blackwell and Lehmann-Scheffe theorems to
derive the estimates of reliability for life time distributions from cen-
sored sample. Beg (2) obtained the MVUE for censored samples from
truncated life time distributions. For stress-strength model, Tong (5-8)
obtained MVU estimates of R for one parameter exponential, Gamma
and Exponential family of distributions ; but he has considered it for
complete samples not for censored samples. The results of Tong (5)
and (6) [equation 5 and 3] can be obtained as a special case of our
mode]l when A=B=0 and samples are complete.

Notations :

X : strength of the component, a r.v.

Y : stress on the component, another r.v.

n and m: complete sample sizes on X and 3

XNL<XR)< enne. S X(n) : ordered sample from X,

TSV oo <Y(m): ordered sample from Y,
p and v : sizes of ordered samples from X and Y which are available,
i.e., sizes of censored samples.

The samples on X and Y are independent. Following Epstein
and Sobel [3], let us define some quantities for sample on strength, as

W.'=(n—l'+ 1) (in) _x(i—1))

U.= '2=1 (xXiy—A)+(n—r) (x(r)_A)

r r
2= 2 (Xiy=x)+ (1 =r) (xn—x1))= Z w;
“

7=

Similarly - w/;, j=1, 2. v, Uy and 2z, may be defined
for stress.
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Now, when X and Y are distributed as (2) and (3) then

.
6+

7 exp{— (B—A)/6}. -

A<e, B<p.

A
The MVU estimator, R, of R is obtained as

A 0 A A o A A
R=( s(e1 B w)[[, r(ee1 4 0)dec s (5)
o Sy
or
A o0 A A o A A
R=t-{ g(et 4 o) s(e 1 B s )| )
0 : =
Where &, and &, are any one of the observations x;’s, i=1, 2...... A
A A A
and s =1 2, ... , v from (2) and (3) respectively and 4, B, 0,

A
and g are the complete sufficient statistics for 4, B, 0 and p respectively.

If any of these are known, the parameter is taken instead of its estimate
in (5) or (5).

Minimum Variance Unbiased Estimation :

Epstein and Sobel [3] have shown that wi’s and w'si=1, 2,...... L
and j=1, 2,...... , v, are mutually independent with common p.d.fs. (2)
and (3) respectively.

Here for all the following three cases we consider that we have
two independent random samples (Wy, Wgsee---- Weiniooe Wy), Wy, Waenen. :
Wi ,w’,) from (2) and (3) respectively and we find the appropriate
conditional distributions to obtain the MVU estimates of R.

() If 4 and B are known, U, and U, are complete sufficient
estimators for ¢ and g, respectively.

(ii) If g and g are known, X¢;) and yq) are complete sufficient
estimators for 4 and B, respectively.

(i) 1f (4, 8) and (B, 1) are unknown, (¥, Zs) and (vays z)
are complete sufficient estimators for (4, 0) and (B, w) respectively.

Here we shall consider three cases in the following sections. In
Section 1 we assume that 4 and B are known and in section 2, ¢ and

7
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¢ are known. In section 3 we take all 4, B, 9 and w are unknown.

In section 4 we consider the m.l.e. of R for all the above three cases.

1. A and B are known 0 and p are unknown :

Here, ]/;:jw(g(g, |- B, AI:)”:me | 4, ;)Sw] dgy. (5")
(] Y

Since 4 and B are known and U, and U, are the respective complete
sufficient estimators of § and g therefore we shall consider the conditional
distributions f(§, | U,) and g{¢, | U,) as:

fee | U= 1S A1, ace<aq, ©)

= v—23
8 | U=0=nU;1=22E] 7, A<t <B+U,. ()
Yy

Now here may arise four situations viz.

(i) A<B<B+U,<A+U,

(i) B<A<<A4U,<B+U,
(ii) A<B<A+U,<B+U,

() B<A<B+U,<A+U,

In the following subsections we shall consider all the cases.

1.1 A<B<B+U,<A+U,:
From (5”), (6) and (7) we have

Re(r=1) U (1+—)r_1 rz( (A+U)
B+U, v—2
(1—51/[]‘”3) £ a, ®)
=0—1) U;1<1+in>r—l(l+l% S

SIS UGN o spe

o4 (AFU)U(B+U,Y (i+j+1)

)
Tong’s [5] result (eq. 5) can be obtained putting in eq. ®)
A=B=0, r=n, y=m, U,=nx and U, =my.
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1.2 B<A<A+U,<B+U,:
Then from (5"), (6) and (7) we have

v-—l

§=1—(r~l)U;1<l+£)v <1+U > Z( .(B+Uy)7

X;E e g (10)

e . B 'v—1< i)r—z
1—(r—1) U- <1+U;> 1t

r—o p_q L (7‘—1,2) (1;1) A+ YT+ fititl }
i 1+J s - z '
<2 Z)( D oy ATty @7+ D)

(1D

Toﬁg’s [6] result can be obtained putting in eq. (10) A=B=0,
r=n, v=m, Uy=nx and U,=my.

13 A<B<A+U,<B+U,:

Then from (5”), (6) and (7) we have

Rl (r _1< E)'v—l( é r—2

i e Sl i+ _ RitjH1)
xy‘ Z( 1)i+f (1 <] ) AU, 2t B i

(A+U)(B+U,)° {+j+1)
(12)
14 B—A-B+tU —A+0,:
From (57), (6) and (7) we have
R=(=1)U-* (1+5 ) 1(1+B)
= T‘.l\(”'-'z) iHItL _ gitiee
[ LAY {B+U,) }
x; ; ! J(A+Ux)z(B+Uy)’ (i1}
(13)
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2. 9 and p are known, A and B are unknown :

A o0 oD

A A
Hore, R=| g1 B o[ [ 7. | 4, 0)az.1ds,. (54
. &y
Since, for known ¢ and #; x(;) and y(,) are the respective com-

plete and sufficient estimators for 4 and B, therefore we find the condi-
tional distributions f (&, | x(,y) and g(&, | y(,)) as:

1/n s if £Z=X(1)

£ | x()= { (1= 3 exp{—(s—5:) )0}, Xy <bo<x  (149)
0 , otherwise
1Um 1 Af &=y(1)

g(¢, ly(l))={ (1—;); exp{—(§, =y DIt} W)<b<ee (15)

0 , otherwise.

2 A
To obtain the MVUE, R, the limits of &, and £, are taken as:

X(1)<€x<oe and y(,)<<¢,<oo. Here also two cases may be considered
viz.,, (i) y(1)>X(I) (i7) X(1)>_}’(1)
2.1 y(1)>.X(1)Z

Then from (5*), (14) and (15) we have

A

= 1 1\ 6

R—-(1~,71><1 e v e (16)
22 x0y>¥a:

Then from: (5*), (14) and (15) we have

A
S ] Slvee = = 17
Rl <1 3;;)(1 n>;z+e exp {—(x@)=ya)/r} (17)
3. (4, 6) and (B, 1) are unknown :

The conditional distributions of f(&, | X(1)» z,) and g(&, | Y1) )

are :
1n

if &, =xq
flt |5y 2= | (=)= (1-EzZw)™ 1,

x(1)<&e<¥(1)FZs (18)
0 , otherwise
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1("" if &=y1)
V=3
i lven= -l -5 an A
i ( m) e ( T) .
E yo<&<yntz. (19
, otherwise.

A
R is derived only for the cases when x(1)<£,<<¥(1)+Zr and

Y <& <ya)tz,
Here also four cases may arise viz.,
() x<W<Y)tH<¥ntz
(1) yy<x(1)<xaytz<¥ym)+Z
(iii) x(l)<y(1)<x(1)+zx<y(1)+zy
i y<x)<yaytz<xn)tz
Here we shall consider the above cases in the following subsections.
3.1. x(1)<y(1)<y(1)+zy<x(1)+zm:

Then from (5), (18) and (19) we have

L R e
R=(1—a)(l—;’) Zy (1+ Zy ) (1+ Zy )
r—0 V—38 'T-‘_2 17—'_3 -
XZ Z(—l)iﬂ' 4_(_£f)( J )”_"{(J’(m—i-zy)"’”l =Yyt +1},
= =0 (¥ 22) (1) +20) (i+j+1)
20)
3.2 yay<xy<*ytz=<y)tz
Then from (5'), (18) and (19) we have
- 1 w27 S ET e P\
rei- (-5 ) (7))
7r—8 v~-82 i A i "
XZ (.__1)i+j : ( i )( ]2) {(x(l)+zx)1+.7+1_x(1)1+_7+1}.
=0 770 (1) +22)" Oy + 20 G+j+D
(21)

e ———
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3.3 XO)<Va)<X(1)+z,<y)+z, :

Then from (5'), (18) and (19) we have

v—2

A r—38
R=1-(1-1)(1-1) =2(14+3) ) (1+M> x

SIS e C0D yenitn gty

i=0 7=0 (x(l)+zx)i (y(1)+zy)j. (i+j+1)
(22)
34 y(1)<x(1)<y(”+zy<x(1)+zx:

Then from (5), (18) and (19) we get

r—2 v—8

£=(1_L)(1_1)v;2(1+>@) (1+200)

m n’ zy z. Z

. r_g 1]—3(__1)i+f ("';2)(”;3) ..{(y(l)-*-zy)?ii:‘:l_x(l)i+j+1}.
Zi:g Z,:Q (1 +22)' 1y +2y) (i+j+1)
(23)

4. Maximum likelyhood estimator of R :

The ML estimator of R can be obtained by substituting the ML
A
estimates of 4, B, # and g in (4). It is known (9) that if ¢ is a ML
A A
estimator for ¢ then U (g) is a ML estimator for U(g). Here we consider
the following three cases :

4.1 A and B are known but § and p are unknown :

The ML estimator of ¢ and g are

A
o=U,/r 24)
A

r=Uy[v
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4.2 0 and i are known but A and B are unknown :
The ML estimator of 4 and B are

A
A=x(1)
A (25)

4.3 (A4, 0) and (B, p) are unknown :

The ML estimator of (4, #) and (B, #) are

A L
i Xny 9= -
(26)

Substituting the ML estimates (24) of § and ¢ in (4) we canobtain
the ML estimator of R for the case 4.1 as

A

U,v
e = -
o i exp{—(A—B)r/U,} 27

Similarly the ML estimators of R for the case 4.2 and 4.3
are respectively given by

A

R=9-3 - exp{—(xX(1)—y)/6}. . o
- ZsV

Lo i (29)

Ilustrative Examples :

Let the available ordered samples from X and Y be (2, 6, 10, 14, 18)
and (3, 4, 5, 6) respectively. For n=6 and m=5, we have x(1)=2,
Y1=3, z,=56 and z,=9. From (20) the MVU estimate of R is
0.537713 and from (29) the ML estimate of R is 0.761586.
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