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Asstn.{cr

In this paper we clerive tirc minimum variance unbiase'l (MVU)

cstimates of O:rr.<i) n, usiug Riio-Blackweil and Lehmann-

Scheffe theore:ms, *i"'" X and y are two-parameter exponential

strenglh and stress random "'ariablcs 
respectively' The trvo parameters

are minimum stress (strength) parameter and reciprocal of meln' We

have ccnsid.r.a ..nroriJ uluoipl.5 ol X- and Y for the purpose' Three

cases are considercd 
-'it' 

*ftt' (l) only minitnum stress anrj strength

are known, (2) only reciprocal of means are known and (3) ail parame-

ters are unknown'

The maximum likelihood estirirators of R are also obtained for

the above I'itree ca:cs'

Introduction :

Let X and Y be tlvo random

compcnent aud stress working on

the comPonent is defined as

variables representing strength of a

it, respcctiveiv. Theri reliability of

(1)

In this paper we have considered the prcblern of estimation of R

whenXandYhavetwopaian-ieterexpcnentiaidistributionsgivenres-
pectively bY

A,o):LexP {-(x-A)lo\

n, p):)exp{-(Y-s)lP}

R:Pr.(X2Y\

*.fhi, pup", is presented at the 68th session of the Indi3n Science Congress

Association, l981.

(2\

(3)
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where I and B represent minimum admissible strength and stress res-
pectively : and A and i,. represenl reciprocal of means of strength and
stress respectively. We have found MVU estimators of R from cen-
sored samples of X and I, using Rao-tsiackwell and Lehmann-Scheff,e
theorems (4). We have considered rhree cases : (1) Wiien the para-
meters A and B are known hut means of the distributions are unknown,
(2) when reciprocal . of means i.e., I and g are known but A and B are
unknown and (3) when ali the parameters are unknown.

The estimators of R are also obtained using maximum
methods in the above cases.

Basu (1) used Rao-Blackwell and Lehmann-Scheff,e theorems toderive the estimates of reliability for life time distribution, rru- c"n_
sored sample. Beg (2) obtained the MVUE for censored sampres from
truncated life time distributions. For stress-strength model, Tong (5-g)
obtained MVU estimares .f R for one parameter exponertial, Gamma
and Exponential family or distributions ; but he has considered it forccmplete samples not for censored samples. The results of Tong (5)
and (6) [equation 5 and 3] can be obLined as a special case of ourmcdel when A: B:O and samples are complete.

X: strength of the component, a
I: stress on the component, another
n and m : complete sample sizes on X and, y,

xlty(x12y(......9x12) : ordered sample from X,

.l1r;(.t(zy( ......4!6) : ordered sampte from I,
p and v : sizes of ordered samples from x and r which are available,
f.e., sizes of censored samples.

The samples on x and y are independent. Following Epstein
and Sobel [3], let us define some quantities for sample on strength, as

Wi:(n - i { l) (xul - x<i-r) )

(1,: { (x11y -,4)*( n-r) (x6y- A)
d=1

z*: ? (x1r;-x11y* @-r) (x1r1-x1r1):
i=L

Similarly wl1, j:1,2r...... v, Us and zy may be defined
for stress.

\t;
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Now, when X and I are distributed as (2) an<l (3) then

P:!-exp{-\B-A)lo\
o-f lt

A<0, B<p.

The MVU estimr,tor, R is obtained its

R-

Where {, and {, are any one of the observations xi's, i :l' 2"""' t

and lJ's, i:1,2,..."', v from (2) and (3) respectively and A' B' 0'

and, p are the complete sufflcient statistics for A, B, 0 and p respectively'

If any of these are known, the parameter is taken instead of its estimate

in (5) or (5/).

Minimum Variance Unbiased Estimation :

Epstein and Sobel [3] have shown that wt's and tr'1's i:l' 2'"""'r
and j:1,2,'.'..., v, are mutually independent with common p'd'fs' (2)

and (3) resPectivelY.

Here for all the following three cases we consider that we have

two independent random samples (w r., w r, " " " tri " " " w')' (w''' w'' " " "'
w' i, . . . .. . , w', ) from (2) and (3) respectively and we find the appropriate

conditional distributions to obtain the MVU estimates of R'

(,) lf A and B are known, Uo and U, are complete sufficient

estimators for 0 and p, respectively.

(rr) If p and p are known, x(r) and y1r; are comp'lete sufficient

estimators for A and B, respectively.

tiii) lf (A,0) and (8, p) are unknown, (x(r)' zn) and (y<i' zu)

are complete sufficieni estimators for (A, d) and (8, p) respectively'

Here we shall consiCer three cases in the following sections' In

Section 1 we assume that A and B are known and in section 2' 0 and

49

(4).'

R, of

If. r(
Sy

t,l A,s(e, I i, i)

a.@,AnFi:, - I ,G. r z, ?)[f 
u, 

s(e, r

i)aulat,

i, i)at,loe,

(s)

(5',)

or
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p are known. In section 3 we take all A, B, 0 and p, are unknown.
In section 4 we consider the m.l.e. of R for all the above three cases.

1. A and B are known 0 and p are unknown:

n.,., i: [-(rre, , ,, i)ll 
r{G,, 

n,i)e.1*,. (s.)
J

Since I and B uri Uoo*o and U, and Un are the respective complete
sufficient estimators of 0 and p therefore we shall consider the conditional
distributions f(€* | U.) and g((, | (Ir) as:

fG.l u.):(r-r)u-'[r-t"Auf" , A44n4Aqun (6)

sg, I ur1:1u- ryu;rfl- €-u!]'-' , A<Eu<B+ua. (7)

Now here may arise four situations viz.
(,) A<B<B+tlr<A+U*
(ri) B<A<A+(rn<B+uy
(iii) A<B<A+Uo<B+u*u
(rr) B<A<B+Ur<A+Un

In the following subsections we shall consider all the cases.

1.1 A<B<B+Uu<A+(1,:

From (5"), (6) and (7) we have

i:1,-r) u;,(r **) f,- D,;#

i.''(,-Ti'ei,e,
: (u - r) u;, ( + {)'-' 1, 

* ft)"
*i I,-,',n*i ('l') 

- 
('i') 

-.{(B+u,)*i*' -Bi+j+1}" 
#6 ?,' (A+u.)d(B+uaF tr+v+n--

(e)

Tong's [5] result (eq. 5) can be obtained putting in eq. (g)

A:B-:0, r:n, y:ffi, (J*:ri and Uu:mi,

(8)

*-.*

l
t
I
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1.2 B<A<A+UnlB*Uy:

51

Then from (5'), (6) and (7) we have

i-r -(r- r)u-1(1 * i)' 
'(r. 

*)

, ['*o'(, -]"-)'- Ei n de*.

E,-D'-#

: 1 - (r-1) u;,(t +#;)' -'(, * +)'-'

I
i=o

Tong's [6] result can be obtained

r:n, v:m, Ur:ni and (iu:my.

(11)

putting in eq. (10) A:B:0,

A<B<A+U"<8*Ur:

Then from (5"), (6) and (7) we have

R- 1 - (r- r)u;,(1 + #)' 
-' 

(, * A),.'

. t f e \'., col#;lo-r, lrd+ u''):!:Il-:q:Ili
n=o i =o

B<A<B+UrlA*U":

From (5"), (6) and (7) we have

 /
R:(r_r)u-, (r *a)'-'1,+rq;)' '

(10)

1.3

(12)

(l 3)

".^-
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2. ) and p are known, A and B are unknown:

a ts a -?? ,t
Here, R:l s(€,, ' ,. r)[ ] tre " l.t. ild€.lrttu. (s*)

6 -i,
Since, for known o and p ; x(1) and -y{1) are the respective com-

plete and sufifrcient estimators for I and B, therefore we find the condi-
tional distributions .f (8" I xirl) and S({u l-r,1,1) as:

lln . , if {,:x1r1
/({, I .r1,1): 

It,-]l j exp{-,G*-x(,) )/o}, x(,)(€,<o. (14)

o , otherwise

1m , if tr-!(rl
s(4, I ti,y): 

{ 
U- i,r\i, exp{-(€,-}(,))/p}, r(1)({r-(cc (15)

o , otherwise.

To obtain the MVUE, ,i, ,n. limils of ,€, and fo are taken as:

x(')(€,(* and y1r1{{r(-. Here also two cases may be considered

viz., (r) .y(r)>x(t) (rr) x1ryX,1r1

2.1 J'1r;>x1ry :

Then from (5x), (14) and (15) we have

i:(r-;x , -:) ur*exp t-(/1r1-x1r1)/o) (16)

22 x1r1>/1r; :

Then from (5*), (14) and (15) we have

i:,-(,-;)(, -i)rinexp {*(x1t1-r1ry\tu}. :,7)

3. (A, o) and (8, P) are unknown:

The conditional distributions of f(€" I x11;, z,) and g({, I lg1, zr7

are : 
1 ln if {r:xi1y

/(€, lxrrr,"): { 
(,-;) tr-2) (r-€'-:'rrr)'-' :,

I ]'g1/-to1xg1*zn (18)

, otherwise

t
*l*t
*1

tl
I
il
r
d
L
E

€

E
E
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S(to I t6'1, zv):

R is derived only for the cases when x111(E*1x$)*2, and'

t117<Ev{t11;;*zr'

Here also four cases maY arise viz.,

(,) x(1)</(1)</ 61* 
zulxP1* z"

(ii) /1r1<x1ry(xgy* 2"1161* z,

(iii) x11y{/111(x g1* z,<-l1t7* za

(rr) ./1 r1(x11i(Y g1* zu(x,:1* z'

Here we shall consider the above cases

53

','^ if 4u:/(l)
I ,-,

I 
('-;) (v-2)(r --r#\ ,,

| !61(.8u<!61*zn'
, otherwise.

3.1. xlry(/1r1(/g1*zs(x67*zn :

Then from (5), (18) and (19) we have

i:(,-;X'-'r)+t-#) (,

. E X, 
_,,,.,,a;[*r#i+rr

i=o i=o

3.2 ./1ry(x1r1(x 1ty* z*1!61* z v :

Then from (5'), (i8) and (19) we have

(le)

in the following subsections'

y( 
r) \'-t+=-lztl

{({1)+ zy)i+i+1 -Y(t)i+i * I }.
('+j+ l)

(20)

.l-r -('-;X, -|ff{,.*) (,*'#i-'

" S T r-,.,,*, ('i'X''J') ..{(x(r)+2,)n*io'-x(t)i*'-'}.
^ A ,4' '' (x11'1*zn)'(t1t1-lz)t ('+i+ l) 

(21)

-..-'....
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3.3 x1r1(.11r;(x 0)+ z n1!g1! z, :

Then from (5), (18) and (19) we have

,tr-(,-)('- *) T(, + x!t))'-* (, *'-e)' 
-' 

.

"I Ir-r;,.i,. ('i'l(:;') {(-(!I!:1-ysfil'}.
E6 Fo @17*2,)i(vl)*z)i 

-1i+J+ 

1)- -
(22)

3.4 J'1t;(x1ry<-/ 0)* z y --x61* z u :

Then from (5), (18) and (19) we get

i:(, -1;ll -:)* (, *r!,,) (,.#)
y _2 n_9,

,t y6-11rn, ('i'X"l') 
.\$111*zr)i*r+1-x6)'+i+1t.

f4 ?-,' (.r11y*2,)i(11 D+z !)i ---G+j+-i)-
(23)

4. Maximum likelyhood estimator of R:

The ML estimator of R can be obtained by substituting the ML

estimates of A, B, 0 and p in g). Ir is known (91 that if I i, a ML
AA

estimator for 0 then t/ (o) is a ML estimator for U(O). Here we consider
the following three cases :

4.1 A and B are known but 6 and p are unknown:

The ML estimator of 0 and p are

A\
o:(J"lr I
^(p:Urlv J

(24)

:
t
T

_*_E
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RELIABILITY ESTIMATES FOR

0 and p are known but A and B are

The ML estimator of A and B are

A
A:xG) \/\I
B-tut )

(A, o) and (8, p) are unknown:

The ML estimator of (A, o) and (8,

l\/\. z-A: x(). 0: -:-

+,L

4.3

TWO PARAMETER

unknotvn :

p) are

(26)
/\,,\
B:y0), tr:r;.

Substituting the ML estimates (24) of o and
ML estimator of R for the case 4.1 as

i (J-v
R : u,i i' vr, expl- (A- B)r lU,).

Similarly the ML estimators of R for
respectively given by

A
o : #* ex p{- (x 6-1111) /a}.

'A
n : --1-"1 -- exp\- r(x 61- t g,) I z ,).zny+ zur

Illustrative Examples :

Let the available ordered samples from X and 7 be (2, 6,10, 14, 18)

and (3, 4, 5, 6) respectively. For n:6 and m:5, we have xg1-2,
!0):3, z*:56 arrd zu:9. From (20) the MVU estimate of R is

0.537713 and from (29) the ML estimate of R is 0.761586.

the

p it (4) we canobtain

(27)

the case 4.2 and 4.3

(28)

(2e)
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