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ABSTRACT

Recurrent Kaehler manifolds have been studied by Lal and Singh
[2] and Singh [3, 4, 5]. In this paper we define a generalized recurrent
Kaehler manifold and study some of its properties.

1. Introduction
Let K* be a Kiehlerian manifold of real dimension n (=2m) with

local coordinates x?. We shall restrict our attention in the present
paper to manifolds which are real representations of complex Kaehlerian
manifolds. ( Indices run over the range from 1 to n). Then the positive
definite Riemannian metric g and the complex structure J satisfy the
relations

Jii=Jign=—Jis Ji=gTi=—J",

J.;:a »=0, &ji, =0,
where a comma denotes the operator of covariant differentiation with
respect to the Riemannian connection.

Let R%,;; be the Riemannian curvature tensor. The Ricci tensor
and the scalar curvature are respectively given by

_Rj,;=RZﬁ and R——-‘Rj,'gji.
We define a tensor Sy by

Ssi=J5 Ry (1.2)
then we have

Sji==S;; (1.3)
and

RiwJh=R} ;i Ryjirdi, =Ry, (1.4)

where Ry;in=R%;i&an-
K" is called Kaehlerian recurrent if its Riemannian curvature
tensor Rpijx satisfies
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Rui jitym= K Riijr (L.5)
for some non-zero vector K.
We shall consider the following generalization.
Definition 1.1 : A Kaehler manifold of dimension n shall be called
a generalized recurrent Kachler manifold, denoted by GK™, if there
exist two non-zero vectors K,, and L,, such that

Rhijlcg 1n=;'K1nRhijk +LmGhijlc, (16)
where
G’liffC:gkigjll—'gj1'glch+Jkz'JJ/'L"Jj«'th+2kaJ”l‘ (17)
The vectors K, and L, are associated vectors of recurrence. The
tensors Gu, ;5 satisfies all the algebraic identities satisfy by Ry;jp In
case L,=0, the space reduces to a recurrent Kaechler manifold charac-
terized by (1.5).
2. Some Properties of Generalized Recurrent Kaehler Manifolds.
Multiplying (1.6) by g’ g"* we get

R, u=K.R—ulsi )i (2.1
Eliminating L, between (1.6) and (2.1) we get

Uri 5k m =KnUnis, (2.2)
where

Ui 1= Rni j1 + R[n(n+2) Gpi s (2.3)

Conversely, if (2.2) holds, we can define a vector L, =(KuR—R, »)/
n(n+2) such that (1.6) holds. Thus we have

Theorem 2.1 : A necessary and sufficient condition for a Kaechler
manifold K" to be a GK" is that the tensor Uy, given by (2.3) is
recurrent.

It may be noted thar (1 5) implies (2.2). But the converse is not
necessarily true. We thereby have

Corollary 2 1 Every recurrent K is a GK™ but the converse is not
necessarily true.

Hasegawa [1] has called the tensor Uiy, given by (2.3) the
H-concircular curvature tensor of K». We may therefore define a GK»
in an alternative form as follows: A Kaehler manifold whose H-con-
circular curvature tensor is recurrent is generalized recurrent Kaehler
manifold.

From (2.1) we observe that L,,=0 if and only if R, »—K,R=0.
Hence we shall assume that R, ,,—RK,,#0.
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Again if Uj,;;,=0, then (2.2) is satisfied identically. But U, ,;,=0
implies that the Kaehler manifold is that of constant holomorphic
sectional curvature. Thus a Kaehler manifold of constant holomorphic
sectional curvature is a trivial example of a generalized recurrent Kaehler
manifold.

Multiplying U, ;;, by g" we get

Uij=Upisi 8"*=Ri;—(R[n)gi;. (2.4)
Hence we have
Theorem 2.2. In a GK™ the tensor U,; is recurrent.
Proof : The proof follows from (2.2) and (2.4).

Theorem 2.3. A necessary condition for a Gk™ to be recurrent is
given by

-0 (2.5)
or
R, w=RK,,. (2.6)
Proof. The result follows from (1.6), (2.1), (2.5) and (2.6).
Now we shall prove that the associated vectors of recurrence are
unique.
If possible let K,, and L, be the two vectors satisfying (1.6) then
Ryisus m=KnRy;j5+L'mGp; ;g (2.7)
Subtracting (2.7) from (1.6) we obtain
K Rhfjk’*‘Lff} thijk::o (2-8)
where
K —K, Ko 1* -1 ] (2.9)

From (2.8) we observe that if K¥ =0 then L* =0 and conversely.
Thus if K, is unique then L,, is also unique and conversely.

If K¥ 30we can choose a vector a™ satisfying K% a™=1 so that
in view of (2.8) we obtain R, ;;=KG;,;;; with K=—L#* am, showing
that the manifold is that of constant holomorphic sectional curvature.
We thereby have the following.

Theorem 2.4. In a GK" the associated vectors of recurrence are
unique or the space is that of constant holomorphic sectional curvature.

We shall use the following Lemmas as given in [7,4].

Lemma I. (A. G. Walker). The curvature tensor of a Riemannian
space satisfies the identity
(Rhi.'jlcslm—Rhijkaml)—l_(Rjk Tmoh i _ijc Zm:i}n)
+(le7u')jk—lehisflc)zo, (210)
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where
th’]‘kslm=Rhijkalﬂn-

Lemma II. (A. G. Walker). If a;, and b; are numbers satisfying
a,;=a;; and a;;by+a;:b;+3,;b,;=0, then either all the a;; are zero
or all the b, are zero.

It may be verified that U, ;; also satisfies the identity (2.10). Subs-
tituting U, ; j for Ry, ;5 in (2 10) and using (2.2) we obtain

Ui it Kin—UjnimKni+Uinni K =0,
where K,,=K;,,—Ku,;. Using Walker’s Lemma II we immediately
deduce that K,, =0, showing that K,, is irrotational.

Hence we have

Theorem 2.5 : Ina GK® the recurrence vector K, is irrotational.

Theorem 2.6 : L, is not a gradient vector except in the case when
R=constant.

Proof : The result follows from (2.1) and Theorem 2.5.

Lemma III. If T be any recurrent tensor whose recurrence vector
is gradient of some scalar function f, then (e~ T) is covariant constant.

Proof: The statement can be verified directly. Hence in view of
Theorems 2.1, 2.5 and Lemma III we have the following.

Theorem 2.7 : Ina GK" if K, =f, m then (e~” U, ;) is covariant
constant.

3. GK” satisfying R=constant
If R=constant, then in view of the well known relation

R}i =2R?m.
and from (2.4) we obtain

K., Ui=0, (3.1)
where Ur—-U,,; g’".
Equation (3.1) immediately yields

This can easily be given the form of a recursive formula.
Theorem 3.1 : Ina GK" with R=constant we have

v -

p being apy positive integer.

Proof: Let us define
(p) Ri="*"VR{RY, p=23, -
©)Ri=4}-
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e Multiplying (3.2) by R} and using it again we obtain
£ R ?
(2)R§:Ka=(,;) £

The result follows by induction.

Theorem 3.2 : 1In a GK* with R=constant we have

Unisi Ki+Upi 1K+ Uy ;K =0, (3.4)
K. Ui ;0=U; ;K ~U; K, (3.5)
and
Uwijte=UpepP:P;+U; ;pupi—U,; 5P —UjnD:Prs (3.6)
1
where D,k | K2

Proof : (3.4) follows from (2.2) and Bianchi’s identities on R, ;5.
Multiplying (3.4) by g"! and taking into consideration (2.4) and the
symmetrics of U, ,; we obtain (3.5).

Again (3.6) follows from (3.4), (3.5) and (3.1) by straight forward
computation.

Theorem 3.3 : In a GK" with R=constant the vectors K, and L,
are collinear.

Proof : This follows from (2.1).
4. Some examples of generalized recurrent Kaehler manifolds.

In a Kaehler manifold, the holomorphically projective curvature
tensor and the Bochner curvature tensor are respectively given by

1

P;“:jlc=R1,,fjk+m [Rh,fgik—nghk
+Suslin—8: 3 Jnu+28,: 752 4.1)

and

1
Bhise=Rpise +;1_— [Ru;g:x —R; i8uk T8 iR k—8: iRy

+4
TSnsdie =S g Tnr+ 5 iS5 —T s 5Snu4280 T 5
R
+28545 ;1] ‘(mm[gm’gf t—&i &tk
—Ji i Inwt 2050 54] 4.2)

It is well known that if a Kaehler manifold is an Finstein one,
then the H-projective curvature tensor and the Bochner curvature
tensor reduces to the tensor U,,,, given by (2.3). Hence in view of
Theorem 2.1 we have
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Theorem 4.1 : An Einstein Kaehler manifold with recurrent
holomorphically projective curvature tensor is a GK*.

Theorem 4.2: An Einstein Kaehler manifold with recurrent
Bochner curvature tensor is a GK”.

The following Theorem is known [1]

Theorem 4.3: A necessary and sufficient condition for a
Kaehlerian manifold K" to be H-projective recurrent is that K" be
H-concircular recurrent,

We thereby have

Theorem 4.4: A necessary and sufficient condition for the
manifold K™ to be GK" is that K™ be H-projective recurrent.
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