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ABSTRACT

Hydrodynamic boundary layer flows in a semi-infinite expansion of a
rotating viscous fluid bounded by an infinite porous flat plate with time
dependent suction or injection is studied. We have considered two
different cases, viz., (i) the plate velocity changes impulsively and (ii) the
plate velocity changes in an accelerated manner. It is found that the
non-dimensional shear stresses due to the unsteady primary and secondary
flows, for both the cases, increase with the increase in rotation parameter
while they decrease with increase in variable suction parameter.

1. Introduction -

From the physical point of view, the motion of a viscous incom-
pressible fluid in a rotating frame of reference has considerable interest in
many cosmical and geophysical fluid dynamics. Recently, Gupta [1]
studied the steady flow of a viscous incompressible fluid past an infinite
porous flat plate in a rotating frame of reference. The fluctuating flow
of a viscous fluid past an infinite porous plate has been studied by Puri [2].
The boundary layer flow past a porous flat plate with variable suction or
blowing has been studied by Pop and Soundalgekar [3] and Debnath and
Sengupta [4]. They have considered the periodic suction velocity with
non-torsional plate velocity.
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In the present paper, we have considered the viscous incompressible
fluid past an infinite porous plate with variable suction or blowing at the
plate. We assume that both the suction velocity and the plate velocity
are arbitrary functions of time. It is found that the non-dimensional shear
stress components first increase, reach a maximum and then decrease
with increase in rotation parameter, while they decrease with variable
suction parameter.

2. Mathematical Analysis :

Consider an infinite porous plate coinciding with the plane z=0
rotating in unison with a viscous incompressible liquid occupying the
region z>0 with a uniform angular velocity 2 about z-axis. The plate
is moving with a velocity U(¢) along x-axis. The y-axis normal to the
xz-plane. The horizontal homogeneity of the problem demands, that
conditions depend on z and ¢ only. It is evident from the equation of
continuity that wis only a function of time.

We consider w as
w=—wqg[l+e4 G(7)] 1)
where w, is the constant part of the suction velocity and G(z) is an
arbitrary function of time, e is a small value and A4 is a real positive

constant such thateA<<<1. Then the equations of motion along x and y
o : 1
directions are

ou ou o’u

57 “+w(?) ——aZ——QQV_.v o )
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EJ.—w(t) é_Z—i—2.Qu—v—-aZz 3)

where v is the kinematic coefficient of viscosity and w(z) is given by (1).
The boundary cenditions are
u=U(t), v=0 at z=0 and #—>0, v—>0 as z—>o 4)
Assuming the piate velocity U(¢) in the form
U(1)=Uo[—I+eF(r)] ®)
we get
u=U,[uo(n)+eus(n, 7)), v="Uo[Vo(n)+e€v1(n, 7)] (6)
where
n=Uyz[v and 7=U,%t/v @)
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Substituting (1) and (6) in equations (2) and (3) and equating steady
and unsteady parts we get

By, gife opart 8
% _s0hyomef,=hi 1 54G(r) Yo ©)
or 9 on* o
‘Where ~
Jo=up+ive and fi=u,+iv, (10)

In the above equations (8) and (9), S=w,/U, is the suction parameter
and k2=0Qv/U,? is the rotation parameter.

The boundary conditions are
;,:——-1 at n=0, ﬁ,—)O as n—>o0 (11)
fi=F(7) at 7=0, fi—>0 as 7—>00 (12

The solution of the equation (8) subject to the boundary conditions
(11) is

S ]
Jfo=— exp {—(—Z—I-nc—l-lﬁ)'q} (13)
‘where :
47 AiF S J\1/E, S2e
“ B_T/_Q[ oo K :’:Z] (14)
Using Laplace transform technique, equation (%) becomes
dfx L odi® Vs JSGIR g i
> +S 5 (p+2ik®) f SAG T (15)
‘where
fl*zs fily, e ?"dr  (p>0) (16)
—o0
provided

fiet"™>0as 7> Lo
The boundary conditions (12) become
fi*=F* at =0 and f,*—0 as n—»c0 17

Using (13), the solution of (15) subject to the boundary conditions
(17) is

fi*m, p=e R (g% 1 g,%) (18)

where
$1¥=F* exp {—(a+p)'/2n} 19)
$o*=54 (;+,‘+i‘3)%{e—(“+lﬁ)7)He_(fl‘f-P)l”n} (20)
a=315242ik? @1
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Taking inverse Laplace transform, the above equations become

S
fi=e T it ) %)
where
¢1:2\"}; So F(r—X)A-312¢-(ax+n2ian) g) (23)

da=S54 (g-}— nc—l—iB) S: G(T__,\)[e~(<+ iB)m

_%{e\/an erfC (5/24/A4+/ ah)
+eTVE arfe (/2 yaN) [N (24)

We shall now discuss some particular cases corresponding to
various forms of F(r) and G(7).

Case 1— The plate velocity changes impulsively along with its suction
velocity.

Here F(7)=G(r)= AH(7), where H(7) is the Heaviside unit function
defined by
H(7)=0, v<0
H(r)=1, >0 (25)

where A is a constant.

Substituting the above value of F(r) and G(r) in the equations (23)
and (24) and evaluating the integrals, we get

=1 AH) [V erfo (n/24/7-+v/an)
+e™V erfe (o2 7—v/ar)|  (26)
$r=1 54 AHE) (S + i) 2remierion—_{ oty V@
erfc (n/24/ 744/ ar)+(r—n/24/a) |

erfc (n/24/ T‘_\/a:)}] 27y

Substituting ¢, and ¢, in the equation (22)k and using the definition
of f; given by (10) we get u; and », ;
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The non-dimensional shear stress at the plate =0 is given by
. 5 L TSl
7xi+l7ui:AH(7)[—{—2+'\/d erf (\/CJT)-{-\/—;: e aT}
S : ; faf 1 i
+SA4(5 <t iB) et By Tt 5L ent (v

+(Z) e e—ar}] (28)

n

On separating real and imaginary parts we get 74 and 7y; at the
plate n=0. The values of 7,; and r,; have been plotted against - for
different values of rotation parameter k2 in Fig. 1. Tt is found that both
7z: and 7,; increase with increase in either k2 or + when A is constant.

Table | shows that for fixed k% and -, both Te; and 7,; decrease
with increase in 4.

For small time

1= AH() erfe (n/2v73~(%2+2ik2){(§) 2 e

Iy erfc (n/z\/;)}] (29)
=354 AH(T)(§+“+i,B)-[T e (¢+iB)m —(7‘—’-%1}2) erfc (7)/2\/7—)

ol e o) b
Xemrtr—sn(rt 2 7) erte (2ym}]  GO)

Substituting (29) and (30) in (22) and using (10) we get 1, and v, for
small time. It is interesting to note that the unsteady primary velocity u,
depends on the rotation parameter if we considered the variable suction.
For constant suction, u, is independent of rotation parameter k* while the
unsteady secondary velocity v; depends on rotation parameter for both
variable as well as constant suction.

For large time u; and v; become
Lt S
= AH@e ™ ET D o5 g, o, (1)1'2{(S272—7,2) cos 2k2r
o™

—8k%2 sin 242 —(S7+9)%/4 SA4 —(§+<)y
A T

{(5+)(< cos Br—g sin Bry-+-(8 cos gyt sin gy a1y
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vi= AH@e ™GO _gingoy S4 1oy cos pr

S
—B sin f)—(3+<)(8 cos fr+« sin fr)]-+2q(7)"
- {(S™2—1?) sin 2kPr-8k22 cos 2kPrfe— (STEDY4 (35

The above equations show that both the primary and the secondary
velocities are the combination of a steady state solution and the unsteady
solution. The steady state is confined within a thin layer. The thickness
of this layer is O(2/(S+2«)). Since « (see eqn. (14) increases with
increase in either S(S>0) or k2 while it decreases with increase in injection
S(S<0). This implies that boundary layer thickness decreases with
increase in either S(S>0) or k? but it increases with increase in S(S<0).
The unsteady solution represents the inertial oscillations of the fluid which
ultimately die out for large time. The frequency of these oscillations is
2k?, which is independent of both suction as well as injection.

Case 2—The plate starts with sudden acceleratloa and its suction velocity
changes impulsively.

In this case we put F(r)= ATH(T) and G(r)=AH(7) in (23) and (24),
we get
$1=1 AH@(r-+n/2/@)e¥ Terfe (g/2+/74+/a7)
+r—n/2v/@) e VT etfe m2v/i—va)]  (33)
and ¢, is given by (27). Knowing ¢, and ¢, one can easily obtain

Jfi(n, 7) from equation (22) and separating real and imaginary parts we get
Uy and Vi.

The non-dimensional shear stresses due to the unsteady primary and
the secondary flow at the plate =0 are

Teabdt,— HG

(§2+=¢+iﬁ)5[4(=¢+i5)7—%r
+H(5+ (_ <+if)— 1} ry/at1/2va) erf (+/ar)+ )me“”}] (34)

The values of 7,, and 74, have been plotted against + for different
values of k? in Fig. 2. It is seen that both 7., and 7,, increase with
increase in k2% or 7. It is also seen from Table 2 that they decrease with
increase in A.
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For small time ¢, is given by

$1=NAH(7) [(T’f‘ 3n?) erfc (n/zw/;) — (g)”z e —3/4r

12 —%/dr =
—an{(Z) gt e (e 4 erfe (2} 39)
and ¢, is given by (30).
Substituting (35) and (30) in (22) and on using f(n, 7) as in (10)
we get iy and v, for small time. As in Case 1 here the unsteady primary

velocity depends on rotation only, when variable suction velocity is taken
into account.

For large time, v, and v, are given by

uy=/N\H(7) [’r cos ’877—2(*277752)‘ (x cos Bp—B sin ﬁn)e_(g‘+°€)77
54 0 gigilis : :
+B(B cos fy-+< sin B (36)
vi=AH(7) [—7- sin /377-{—2“‘_++ﬂz)(3 cos Bn-+« sin Bn)e_(g‘*"")n
+‘2(ccf_—/l{ﬂ‘)n{ﬁ(°c cos fn—B sin Bn)—(ec-[-g)
(B cos Br+sin ) je =] (37

It is interesting to note that when the plate starts with sudden accelera-
tion and the suction velocity changes impulsively then there is no inertial
oscillation.

Table 1
Values of 7,; and 7,; for k2=2:0, =05 and S=1-0
4 [ 0-0 02 0-4 0'6 ( 0-8
—Txg l 1-86935 1-78832 1-70700 162628 |' 1:54526
— Ty 2:00147 l 1:86953 173758 160564 ‘ 1-47369
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Table 2
Values of 74 and 7, for £2=2:0, r=0-5 and S=1-0
A ] 00 02 i 04 06 08
—7ee | 1:27654 119552 ‘ 111450 103340 0-95245
— 7. | 081430 0-68236 \ 0-55041 0-41847 0-28652

Q‘ | I | =
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Fig. 1 Shear stress components for 4=0-2
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Fig. 2 Shear stress components against = for 4=02
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