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Ansrn,lct

The problem of general type waves propagating at the interface

between micropolar thermo-elastic half space and a compressible non-

viscous fluid is studied. It is found that the waves are not necessarily

plane waves and the motion is not necessarily confined to a plane perpen-

dicular to the interface. We get additional waves which are counterpart

of classical elastic waves. The characteristic equation for the waves

obtained in this case is sirnilar to the characteristic equation for Stoneley-

type (plane) waves bnt is effected by micropolar and thermal effects.

I . Introdtrct ion :

The micropolar theory of elasticity formulated by Eringen [1,2] is a

mathematical model of solids with an effective microstructure' This

theory is expected to find applications in the treatment of the mechanics of
granular materials with elongated rigid grains and composite fibrous

materials. It explains the behaviour cf solid propeilant grains, polymeric

materials and flber glass in which the classical theory is inadequate.

Several attempts have been made in recent \ears to develop genera-

lized theory of thermoelasticity. Kaliski [3] and Lord and Shulman [4]
have developed a generalized theory of thermoelasticity which involves

heat-flux rate. Green and Lindsay [5] have developed another generalized

theory which involves tempei'ature rate among the constitutive variables.

Recently, Chandrasekhaiiah [6] have forrnulated a generalized theory of
micropolar thelmoelasticity by including heat-flux among the constitutive

variables. There also exists some experimental evidence in favorir of
thermal waves (second sound) propagating with flnite, though quite large,
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speeds. Ackerman et al l7j and Ackerman and Overton [8] performed
such experiments on solid helium and concluded that such phenomena do

exist, though the frequency range of such thermal excitation in which
thermal waves can be directed is extremely narrow.

Chadrasekhariah [9] studied waves of general type propagating at the

interface between an elastic half space and a compressible fluid. We have

discussed here the same problem in the context of the generalized theory
of micropolar thermo-elasticity [6]. As in [9], our analysis also shows that
the particles of the solid and fluid vibrate in different planes and the

orientation of each of these planes relative to the interface varies from
point to point, in general aud only under a particular condition, the planes

become perpendicular to the interface. The characteristic equation for
phase velocity of the waves obtained in this case involve thermal as well
as micropolar effects and we have seen that this equation holds irrespective
of whether the waves are unirlirectional or not.

2, Statement of the Problem and Basic Equations :

We assume that non-viscous compressible fluid is free to slide

parallel to the interface of the micropolar thermo-elastic solid half space.

We choose the Cartesian coordinate axes (xr, xz, xa) such that the micro-
polar thermo-elastic solid occupies the region x.>0 and the fluid the region

xs<0. The linearised equations of heat-flux dependent micropolar
thermo-elasticity of a homogeneous and isotropic solid in the absence of
body forces and heat sources, are [6]

tii:i6ijak, ** p.(u6 j*ut, )*k'\uj, r*rilntn)- Frbti9 (2,1)

t?lti:&'tr, r6t* F'ta, ;*Y'ti, i Q.2)

0"*k')Vzi+(i+" r,) grad (div 7)

ak' curl ?-B* srua e:o,i (2.3)

K v 2 o - e o0 *,6 I 6 t)(c* it * F r div i1:g (2.4)

y,vri+(..,+p,) grad GivZl+t, carti-zt,?:pG e.5)

where, /2r' is the force stress tensor, mil is the couple stress tensor, i is the
,

displacement, f is the microrotation vector, ) and p, are Lame constants,
pr:(3^+2p.*k')ar*, ctf being the coefficient of the Iinear thermal
expansion, p is the mass density of solid, K is the thermal conductivity, f is

the temperature deviatiofr, (*' , P', y', k') are micropolar constants, ,I is the
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rotational inertia, 0o is the initial uniform temperature, 7 is the thermal

relaxation time and c* is the specific heat at constant volume. A super-

posed dot denotes differentiation with respect to time l.

We take non-viscotts compressible fluid which is governed by

equations
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where, p6 is the mass density of fluid' p6 is the pressure in the fluid, co is

the speed of sound in the fluid and 7 is the displacement vector.

Since we assume that the fluid is free to slide parallel to the interface

Jra:0, the conditions to be satisfied are

(i) ur:f,r; (ii) t$:-pn ; (iii) lsr:0 ; (iv) rsz:O ; (t) mtt:O ;

(vi) msr:O ; (vii) O,rlhg:O at xa:O (2'8)

*lere h is the heat transfer coefficient at the interface.

prd:-grad. Pn

po:_ pocoz div i,

We take for solid
+-+
x1:grad @*curl 1/

and for liquid
.>
[tr:grad gs

(2.6)

(2.7)

(3.1)

(3.2)

do is the displacementwhere, @ and Y are the Lame potentials and

potential in the liquid.

Using (3.1)and (3.2) in {2.3)-(2.7), we get

lr'-1,#,1*:#-*o
(v'-b#)a:-fui

(3.3)

(3 4)

[t o'-# &1,*" #)]i v' - i #Y * v' ffl+"],)1,:o
(3.s)

[it.,'+tr'+r')v'+(.c'+p') 
curl curl-2k' - pJ L]

\r'-h#Y#.ctrrr curr ]?:o (3.6)

co2v24o:A26olAt2 (3.7)
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,r:-orffi

a2-d*2+k'f p, b2:b*2!k'f p

e : B y20 sf pc* (A-12 y"+ k' )
q*2 :(A-12p1I p, b*2: p.l p, K* : Kl pc

We consider the displacement potentials, the

Similarly q afid q' are roots satisfying the equations

microrotation of the form

@:f1xr)P(xb xz)€i,t (3.10)

i:s@r)b(x1, x2)ei,ot, d.:(er, er, O) (3.11)

6o:ho(xs)Po(xr, xz)ei't (3.12)

0:0*(xy xr, xr)ei,t (3.13)

++
6:{*(xr, x2, xs)ei,t (3.14)

where, <a is the angular frequency and P(x,, xz), Qlx* xz), Po(x* xz)
satisfying the 2-dimensional reduced wave equation

(62l6x r1x"l<'if c2)F:0, *:7, 2 (3.15)

Obviously, the waves are interlacial in nature and propogate with
speed c.

Also,/(xr), g(-rrr) and /zo(;ra) satisfy the coirditions

f(xs)-->O, g(x3)-+0 as xB--> oo

and

/26(xs)--+0 &S xs->-oo

Substituting (3.10)-(3.12) intc (3.5-3.7; and using
we get

f(xz):e*rrxt lls-nxz
g(4):e-axz{ Ds-Q'xz

hs(xr1:slx '
where, A and D are arbitrary constants, m and fi. zto .t

equations

mz {n2:l(2p2- 12) }(iaQolK* p){11'i.rl{l t pel0o\l

n*nz:pz[(pz - 12)l(ia|olK* il{l+i@r}{l -r2lp2l e pl0o})

(3.8)

(3.e)

temperature and

(3.16)

(3.15) and (3.16),

(3.17)

(3. I 8)

(3.ie)

roots satisfying the

(3.20)

_.r,"!t*
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q2 * q' 2 :l( p2 - s2) * (*'* F' * y')p, I y' -{pJ,o2 - 2k' { k' 2 
I 0, * k' )\ I y' I

q' q'' : ( p' -.t')[((' + B' + y' )p' l y' - (pJ -' -2k' ) l y' ] (3.2r)

In these equations, we have put

l2:p2-azlco2, pz:-zlcz, rz:azf e2, s2:@2f bz (3.22)

With the aid of equatious (3.17)-(3.19), the equations (3.10)-(3.12) become
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With the aid of equations (3.3), (3.4), (3.15), (3.23) and (3.24), we obtain

@:1e- mx" *Ae-ilx")P(xt, xz)eiat

Q : p- a' 
" * Dr- q *')fi.1*r, *r1ri-'

go-Po(.rr, x r)slxr*i't

g:ryP(x1, xr)ei'r

t:rr'Q,(xr, *r)rn"

(3.23)

(3.?.4)

(3.2s)

(3.26)

(3.27)

(3.2e)

(3.30)

(3.31)

(3.32)

( 3.3 3)

(3.34)

(3.3s)

(3.36)

where

^- - 
pa2(m* e- mx z + An* e- nx 3 

)'/r:-

n f : m2 -p2 ! 12, fi* : n2 - p2 + 12

q* :q- -p"+ s". q' ^ : q - -1-+s- (3.28)

With the aid of equations (2.1\,(3.1), (3.2), (3.8), (3.15), \3.23)-(3.27),the
conditions (i), (ii) and (vii) yield

(m{ An) P { (_I + D)X + lP o: 0

B' (l + A)P + C' (q { Dq' ) X* ps@2Pr:6

(h-m)m* {(h-n)n*A:0
where

B' : C' p2 - (t* k' ) s', C' -- (2 y. I k' )

X: er, ,_er,,
The conditions (iii), (iv) and (v), (vi) taken in the forms

tar, r]-taz, z:0 on xa:Q
.and

ms1lm32:O oE x3:Q

Yield
qqx{q'q'*D:o
C' (m * An)nz P + (l + D) X B' :0

0"* k'\(q* e- qx s + Dq' * e - q' x t)
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The equations (3.31) and (3.35) determine the constants A and D
respectively.

On nsing (3.1), (3.2), (3.23)-(3.26), (3.29) and (3.36), we may express

the displacementi,i, and temperature 0 in terms of X and y'as follows

fi:1Frx,r{ F Bez, FLx,z- Fre1, G rx)ei.t
fi: lfoA I A xt, F oO I O xz, G s) Xet,t
g : rrFrx ei' t 

1 7e- 
** 

" a A e-n x,)

(3.37)
(3.38)

(3.3e)

(3.43)

(3.44)

(3.4s)

(3.46)

while i is given by equation (3'27)interms of f.
In these equations we have put

r.:-(1 *D) p(,.zelx,llc'p', Gs:lFs

F1: -@-mxz aar-nxa)0* D)Btl@l An)C'pz

Fr:qe-axs s, Dq's- 4'xz

G r: {B' | (m I An) C' pz}f(l I D)(m e- m x 
" 

L, An e-n *, )

-C'pz(m{An)p-ax,a 2tr-o'xa)18'7 (3.40)

The functions X and fi are ingeneral complex, we may therefore set

X:Q(x1, xr)eit'Q,' x,l (3.41)

Q.:Qr.t(xr, xrlsa<t{x'' x') Q.42't

Substituting (3.41) and (3.42) into (3.37)-(3.38) and taking only real parts
of RHS, we get

a t:Fr(Q,f os (-Qt' ^rsin Of FrO, cos (,
uz:Ft(Q,rcos (-O$'.2 sin ()-FsJ?r cos [,
us:GrQ cos {
d1:Fs(Qncos (-Of',, sin ()
dz: Fo(9 ,zcos (- Q (' ,rsin ()
ds:GoQ cos i

where

(:{'{<ot andfr:g.aat
Similarly from 13.27) and (3.39), we obtain

t
{:(r1l -IJ1cos Jr, 4r'.0, cos fr, 0)

0 :q1F1Q cos (l (e-mx z { Ae-nx s)
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Eliminating ( from equations (3.43) in two different ways, we get the
following two sets of equations connecting components of i andi,

GrQ(t', zut-€', rur)|J'Fruu:(\Gplrll )((', rtr*t', rtt) G.47)
GrQ((', dt-|', Ld)+J'FoL:o (3.48)

l\u r- F Bti z co s (-r)(2,, - lt r rl F rQ, c,.r s (-1)O^ t|r,, Ff Q, J,,
*(ug)zlGrzQz:l (3.49)

(dslcoo)2+l{d:Q,2- d2Q, )f J,QF|7?: I (3.50)
where, J': d), z€' , t-9, rt' , z (3.51)

The components of f are related by the relation

h:Or€, cos 6r,'0, cos (, (3.s2)

In the particular case when f):constant and, {':*yxr, equations
(3.47) and (3.48) yield

u2: - FsQ, cos (,
dr:o

Substituting equations (3.53) in (3.49) and (3.50), we get

[(u, - F 
"dt-, 

c o s ( 11 1 y g F r]2 * (u rl G re)z : t

d12 f yz Qz F nz ! ilz I G 02 Qz : I

If we eliminate the functions P, X andPo from equations (3.29), (3.30) and
(3.36) and use (3.22) and (3.32), we get

{2-czlbz {1k' I d0 -c2lbz11z
:[(m{ An)lp(L+A)|lQ-lk'ly,),(q{ Ds)llr + D)p

' 
-(pocalpb*.a)(l_'c2!.rr)-*l (3.55)

This is the characteristic equation determining the phase velocity c of the
waves. The analysis of this equation is quite complicated, hence we
consider the following special cases of equation (3.55).

Case I
Suppose solid half space is purely (non-thermal) elastic. Then we

have 0:0, with the help of equations (3.3), (3.10), (3.15), the equation
(3.55) becomes

{2 - cz I fiz t, 1 k' I y')(l * c2 I bz)]z

: 1t - ", 
1 ory* K2 * k, I p)r(q + Dtt, ) I 0 + D)p

-(poca I pb *a)(t 
-cz I c oz7- 

*1 (3.56)

4t

(3.s4)

(3.53)

r.G$
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This equation gives the phase velocity of waves when micropolar
thermo-elastic half space is replaced by a micropolar elastic half space.

Case II
Suppose that micropolar effect is not taken into account, then

k'-->0, with the help of equations (3.4), (3.11), (3.15), the equation (3.55)
becomes

(2 - c2 I b* 2)z p n* :14 (l - c2 I b*2)+ - b o ca I pb * a)(t 
- cz I c o\- El 

Q.S1 )

where

,l*: (mm* -nn*).)-h(n* -m*\mn(m*-nx1|*h(mn* -m*n)

Case III
Suppose that both micropolar and thermal effects are not taken into

accoLrnt, then equation (3.55) becomes

(2 - cz I $*z1z - (1 - cz I 6*z1t [4( - cz I S*zS\

-(pnca I pb*a111_. rr 1ror7- 
L1 (3.58)

From equations (3.29), (3.36), it follows that P and Ps are expressible

in terms of the single function X which in turn involves oriry d. Conse-

quently, allfive functions @,fi,4o,? ana d are expressible in terms of I+
and Q can be determined from equation (3.15). Hence problem is solved.

4. Discussion :

From equations (3.47) and (3.48), it follows tbat il and 7 fie in
different planes and as such the particles of the solid half space and the
fluid vibrate i:r different planes. As the coefficients in (3.47) and (3.48)
depend or xz so the orientation of each of these planes vary from point to
point, in general. The planes become perpendicular to the interface if and
only if the Jacobian in (3.51) vanishes identically. The planes obtained
are similar to the planes obtainecl in [9], but the equations of the planes
are different due tc the thermal and micropolar effects. Since 7 and 7
satisfy the equations (3.49; and (3.50), the paths of particles of the solid
hali space and the fluid are ciiives of intersections of the plares (3.47),
(3'48) and the cylinders (3.49), (3.50). Since the cylinders (3.49) and
(3'50) are elliptic, so the particles of the solid half space and the fluid
move in different elliptic orbits, the planes and sizes of which vary from
one point to another in general. The elliptic orbits obtained in this

42
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case are similar to that obtained by Chandrasekhariah [lt], but the
centre is shifted to the point (f.D, cos Jr, -FrO, cos J1, 0) instead of
origin. If we neglect micropolar effect, we get same orhits which are
obtained in [1 I ].

In particular case we have seen that in solid the waves propagate
along x, and x2 directions and the motions of the solid half space is in
all the three planes but the motion of the fluid is confined to the rs-plane
only. We get additional waves in x, direction in solid due to micropolar
effect. If k'-->0, then we get waves only propagating in x. direction as
obtained in [9]. The orbits of the particles in this case are given by (3.54y.
The sizes of these orbits also vary from one point to another.

The characteristic equatioir (3.55) involves niicropolar and thermal
constants which show: that phase velocity of the waves is also effected by
thermal as well as micropolar effects. Equation 13.57) gives phase velocity
of the waves when solid half space is thermo-elastic and this equation
is identical to the equation (a.10) of [11]. Again equation (3.58) gives
phase velocity of the waves when solid half space is purely elastic and
this equation is identical to equation (4.11) of [1t] and (16) of [9].
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