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ABSTRACT

The temperature distribution within the thermal boundary layer
region due to the flow of a non-Newtonian fluid around a heated
circular cylinder, maintained at a constant temperature higher than
that of the fluid at infinity is considered. The flow problem is solved
by the method used by Meksyn. The graphs of the Nusselt number for
different Prandtl numbers and for the same Eckert number have been
plotted for various non-Newtonian parameters.

1. Introduction :

The two-dimensional thermal boundary layer equation for the flow
of a second-order fluid past a heated flat wall has been derived by
Srivastava (1967). He has obtained the temperature distribution for
the flow near a stagnation point occurring on a flat plate maintained at a
constant temperature higher than that of the fluid at infinity. Srivastava
and Maiti (1966) have discussed the flow of a second-order fluid past
a cylinder by expanding the flow functions in series and obtaining the
first four terms by Karmdan-Pohlhausen method. Srivastava and Saroa
(1970) have studied the heat transfer in a second-order fluid for flow
around a circular cylinder by Karman-Pohlhausen method.

It has been observed that when only skin friction, etc., at the wall
is needed, the Meksyn method is more useful as it has been found to
give better results. In this paper we have reworked the problem of flow
of a second-order fluid around a circular cylinder by series expansion
used by Meksyn (1956). We have found the point of separation for
the Newtonian case comes out to be 111:2° where as the exact value is
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109-6°. Srivastava and Saroa (1970) have obtained the separation point
at 110-8° by taking the boundary layer thickness to be variable along
the cylinder. The corresponding point of separation obtained by
Srivastava and Maiti (1966) by Karman-Pohlhausen method is at
116-5°. Thus the method used here is expected to give more correct
results.

The constitutive equation of an incompressible second-order fluid
as suggested by Coleman and Noll (1960) is

T¢j=—53ij+#1Dii+ paEij+psDie Dy*
‘where

D;j=v,j+ Vi,
and

E;j=0,j+0j,;+2V V™, 5 1
The v; and g; are the components of velocity and acceleration respectively.

745 1S a stress tensor 5 is an indeterminate hydrostatic pressure which
differs, in general, from the mean pressure p=2(r1;+792-+7s3) ; B, B2, M3
are material constants of the fluid, and a comma denotes a covariant
differentiation. The case wu,=u;—0 corresponds to an incompressible
Newtonian fluid. On thermodynamic considerations u, is found to be
negative. The material constants have been determined experimentally
for solutions of poly-isobutylene in cetane of various concentrations by
Markovitz and Brown.

2. Boundary Layer Equations :

Consider a stream of an incompressible second-order fluid moving
with a uniform velocity U, at infinity in presence of a fixed circular
cylinder of radius / maintained at a constant temperature 7). Let 7., be
the temperature of the fluid at infinity and assume that 7,,>7.,. We use
cylindrical polar coordinates (r, 8, z) with z-axis coinciding with the axis
of the cylinder. The flow is two-dimensional in r and g directions.

The two-dimensional velocity boundary layer equations for the fluid
governed by equations (1) are

ou ou o _ o%u o%u
5 at T +1ay ”[amyz
ou 92u a Y a u o o%v
ol 1 2
& 0x oy* axay ooy oy oy 1 )

a” & 2; =0 3)



46 MATHEMATICAL FORUM

where y=r—I, x=I0 and u, v are the components of velocity in the x
and y directions respectively, U is the velocity in the main stream, p is
the density of the fluid and vy=p,/p, ¢ is the time. The equation (2) is
independent of u, but the pressure involves both u, and ps, and is not
constant over the boundary layer region.

The thermal boundary layer equation for the incompressible second-
order fluid against a heated wall has been given by Srivastava (1967) as

Pc(%TZ'“I'Ug-l— )— ——+(M1+§H2 )(gz)
byl o

where ¢ is the specific heat, £ is the thermal conductivity and 7 is
temperature. This equation is valid within the boundary layer over both
a flat wall and a curved wall when x is taken in the tangential direction
and y along the normal to the surface.

The boundary conditions on u, v and T are

u=0, v=0, T=T, at y=0,
u—>U, T-T, as y—>oo (&)

The velocity distribution U outside the velocity boundary layer
region created by the cylinder is given by

U(e)=2U, sin =20, 0— 3, 6%+, 0°— o, 07+ (6)

The form (6) suggests that the velocity components # and v within
the velocity boundary layer region and the temperature T within the
thermal boundary layer region should be taken in the forms

u(8, n)=2U,[01,' (7))—— 6> f5' (n)+ 0°F5 (71)— g ed | ()

w0, p=—(21l= ) L — 3 i+ S ot =8 00 it 1 ®)

T—T,
T8, 1) =52 =4E[()— P T+ OTsn) —0 Ty + 1 ()
B e U2 :
where n_y( vll) and the Eckert number E=__—~% _ CToeT.) A prime

denotes g/gn. We shall confine ourselves to terms up to f; and 7T,
only.
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The forms (7) and (8) of u and v satisfy the equation (3) of
continuity. The boundary conditions of £; and T}, i=1, 3, 5, 7, etc., are
Si=f=fs==0, fi'=fs'=f'=f'=0,
T1=EIE, oo Toaligf o0
fl'—>1,f3’—)i-, =L, i3, T1=T,=T,=T,=0 at n—>00 . (10)
Substituting the expressions for U, u, v and T from (6) to (9) into
(2) and (4) and equating the coefficients of like powers of 6 on both sides
of the equations, we get the following two sets of ordinary differential
equations :
A AR = 1A (200 AL A", (11)
R A A P A P S Y e L)
+(NL L")+ A", (12)
A == 6T —SK S 40 Sy
+a[—6(Afs" HA ) (s + 5%
A+ (=25 15+ s ), (13)
S NS = =884 =T i 168f 5 f —63f s fy”
—105fy" fs+«[=8(/ 'S+ f7') _
—16B(f5 S5 s ) H s+ 35A,71)
+(105/5% 5+ 635 15%) -+ 168f," f5”
SRR B (14)

and
%Tl”‘f‘fle:O; (15)
] n 7 7 1 " " # n 7y
}—DTa +AT'=2f; T5—2f3T+f1 2+« f1 (Y A" —f1fa ), (16)
] ”n ? ’ v - 7 ¥ 5 n ”
FTs +/1T5'=4/1'Ts—2f5Ts +5/5Ts—1fsTy+4 1" fs
FR [ (A s H4S [ )i =" 3R f9)
~ i sl (1D
' ”n ’ 7 ’ ’ ’ ?
P T7 +f1T7 :6f1 T7—2f3 Ts ‘f"%f:a Ts_r}rfsTa ‘f‘a'%fs T
_glaf7T1’+T%f1”f5”+% f3”2+ *[-glzsflﬂ(—flf5m+6ﬂ’f:ﬁ”
+f1" S5 “5f1'”f5)‘“%—f:«x”(flfsw'i‘3f1'”f3—4f1"f3')
+56(80£1" [ —80 1" fafs" —3 fufi""" f5")], etc. (18)
whete w=2Us¥ s fhe non Newtonjan parameter and P:p%lc is the
V1

Prandt]l number.
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3. Solutions of Equations :

The equations (11) to (18) subject to boundary conditions (10) can be
solved by any numerical method. We solve the equations by the method
of series expansion followed by the method of Laplace. For this purpose,
we express the functions fi(5) and T;(n) in power series of y as

1 1 1 1 1
fi(’/})=§—! Am2+3~! Bm3+ﬂ Cm4+5—~! Dm5—|—6——! EmS4---  (19)

1 1 1 1 1
T1(77)24~E+a177+2—! bin*+ T 51’73+Z—! d1774+ﬁ eyt -
1 1 1 1 (0
Tit)=am= 5 b+ 5 e+ dim'+ sy et -
where i=1,3,57 and j=3,5,7, ---

The forms (19) and (20) of f;, T, and T; satisfy the boundary
conditions (10) at n=0. The expansions (19) and (20) are valid only for
sufficiently small values of 5. Substituting f;, 7; and T'; from (19) and (20)
into (11) to (18), and equating the coefficients of different powers of 5 to
zero, we obtain the constants B;, C;, D;, E;, etc., and b;, ¢;, d;, e;, etc., as
functions of 4;’s and a;’s only.

Thus, if 4; and a; are known, the velocity profile and the temperature
distribution are completely determined.

The constants A;, a;, etc., can be determined by using the condition
(10) as p—>o0 . We write the equations (11) to (14) and (15) to (18) in the
following forms

f"'+ffi'=Hin), i=1,3,5,7 €29
and
T/+Pf,T{=PMyn), i=1, 3, 5,7 (22)
where H(n) and M;(n) are the right-hand sides of the equations (11) to
(14) and (15) to (18) respectively.
Letting

F(n)= SZ Sfi(n) dn
G(n)=P SZ Fi(n) dy (23)
and

Sli—Ar SZ eF Hi(n) dy
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Dby a e SZ €S Mi(n) dn 24)
we get the following by integrating twice the equations (21) and (22)
respectively :

ﬁ@=%eTMm® 25)
7
Tiw=art | eopay 26)
The coefficients 4; and a,, i=1, 3, 5, 7 are given by
0
SO e Fi(n)dn=1

-}

1
-F e
o & "Pa(m)dn=7

8

)
SO e~ Fs(n)dn= (1;

T 1
‘ SO e F¢7(n)dn=§, etc. 27)
and

e —

o

-]

0 e~ y(n)dn=0

So e~ %5(n)dn=0
S:e‘0¢7(n)dn=0, etc. (28)

These integrals can be evaluated asymptotically by Laplace’s method.
Putting F=G'=r, transforming the equations (27), (28) to the variable +
and integrating in the gamma functions, we find

L,-=§[P”~F(1,3)+P2i1‘(2,3)+P3i1’(1)+P4¢I’(4,3)+P51-I’(5,3)] (29)
Li=%[pul 1/3)+P2ir(z/s)+173ir(1)+P4ip(4/3)+P5iF(sls)] (30)
where

A —
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Pu=ka

 Pri=kaa;+ko?b;
Pa=ksa;+3k ksbi+LkPc;
Pas=ka@i+bi(§ka’+gk1ks)+ci(k ko) + (di+a:A;) kot
Pui=Ksa:+bi(3kk g+ §hoks)+ ci(§ky ks + §kaka®) + (di+ asd,) Sk ks

+(e;+a:By+-3b3A, 4 PbiA,) g k1 3D
and
' F 6 Yl
ba={pr)
i Bl _)2/8
ey 671(PA1

k=g (ot o)
s PAl 204, ' 164,*

( )m(_ L TBCy 351313)
3PA1 P4, 54, 1042 724,

o e B, CE HASC,
k5_3PA1(FA_,) ( 28A'1+ 6A2+10A1 2843

+

385 314) 32)

1728 4,%

The constants P,; can be obtained from p,; by replacing a;, b;, c;, d;,
e;, etc,, in py; by A4, B;, Ci, Dy, E;, etc, respectively and by putting P=1
in kz

The unknowns 4; and a; are determined by the conditions (29)
and (30) respectively. The series (29) and (30) are in general divergent.
So, we use Euler’s transformation

E (—1)"An—§ (—Ipo (33)

A Am=Am+1—Ama AzA'mz AAm+1_‘ AAm

where

To determine A,, A5 A5, 4, from the condition (29), we took five
terms of the series and applied Euler’s transformation. Similarly, a1, a,,
as, az are determined from the condition (30). The values of 4;, i=1, 3,
5, 7 have been determined for «=0, —06, —10 and the values are
given in table (1). The values of ay;, i=1, 3,5, 7 are determined for
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«=0, —06, —-10, Eckert number E=0-1 and Prandtl number P=35,:25, 50
respectively. The values of the constants a; for P=35, 25, 50 are given in
the tables (2a), (2b) and (2¢) respectively.

4. Discyssion

The shearing stress =, on the wall of the cylinder is given by

The location of the point of separation can be found from the
condition that the velocity gradient normal to the wall and hence the
shearing stress at the wall vanishes there. The condition that the shearing

stress 7, at the surface vanishes is given for «=0, «=—"06 and «=—"10
respectively by
0-033192X3—0-360508 X2-2-748296 X —7-021791=0 : (35)
0144717 X3 0636374 X>-3:263831 X —8-302649=0 (36)
0°457042X3—1-251123X2+3-487458 X —8-715832=0 (37)
where X=62

Solving the cubics (35), (36) and (37), we find the acceptable roots
as X=3773, X=3:096 and X=2-611 respectively. Thus the separation
points occur at #=111-2°, 6=100-8° and §=92-5° for «=0, «=—"06 and
«= —"10 respectively.

This shows that the effect of second-order parameter in the
constitutive equation on the position of the separation point is to advance
it towards the forward stagnation point. The second-order effect is

exhibited through the non-dimensional parameter 4:2U—°°l“2 . Thus the
: #1

point of separation depends on the material constants u, and pu, and also
on the flow parameters U,, I.

Next, the heat flux g from the cylinder to the fluid is given by
e=k(2])_ == TEVRe T T O— P Ty O +6T5 0)
—657%'(0)] (38)

2Uqp

My
Nu=(lg)/k(Tw—T4),

we have Nu=—4E4/Re[7,'(0)—02T5'(0)+0*T5'(0)—6°T,'(0)] (39)

where Re= is the Reynolds number. Defining the Nusselt number
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Taking the Eckert number E=01, the graphs of (Nu/+/Re) against 8
have been plotted for «=0, —*06, —-10 and Prandtl number P=S5, 25, 50
respectively in the figures (1), (2) and (3). The angle g, for which Nu=0
corresponds to the point beyond which the frictional heating effects
dominate and in that region, the temperature of the fluid in the immediate
neighbourhood of the cylinder becomes higher than that of the cylinder,
so the heat transfer occurs from that fluid to the cylinder. Figures (1), (2)
and (3) show that the effect of the non-Newtonian parameters is to shift
this critical point towards the forward stagnation point. In the figures
(1), (2) and (3), we see that the curves corresponding to «=0, —:06, —*10
intersect at 6=18°, 18-5° and 19-3° respectively, which indicate that the
effects of the non-Newtonian parameters in the constitutive equation of the
fluid are to increase the heat flux from the forward stagnation point to the
points corresponding to §=18°, 18:5° and 19-3°, and to decrease it beyond
these points. The points corresponding to #=18°, 18-:5° and 19-3° on the
cylinder for P=5, 25 and 50 are some special points, since the heat flux at
these points are unaffected by the non-Newtonian terms in the constitutive
equation of the fluid.

The effect of the Prandtl number P on the Nusselt number is to
increase it near the forward stagnation point and to decrease it away from
it. This effect is reversed at §=18°, 18:5° and 19-3° for P=35, 25 and 50
respectively.

Table 1

Values of A4;, i=1, 3, 5, 7 for different values of «

o 0 —-06 —-10
A—l 4 1-241289 1-467715 1-540756
A 728752 865454 924752
Ay 1-370821 2:249922 4-:423389
A, 3:696526 16:117027 50-900498
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Table 2a
Values of a;, i=1, 3, 5, 7 for P=5 and different values of <
< 0 —06 —-10
a; | —2-747038 —2:924363 —2-967116
as —2:190759 —2-919243 —4-518575
ay —1:647793 —1:639249 —1:652486
a, —-607418 : —1-055053 —616854

Table 2b
Values of a;, i=1, 3, 5, 7 for P=25 and different values of «
< 0 —-06 —-10
@ —4-826255 —5-12187 —5:200781
as —6-982098 —9:252398 —10-576516
as —4-074602 —4-917089 —5-749960
a, — 1487565 —2:341636 —2:249602

Table 2c
Values of a;, i=1, 3, 5, 7 for P=50 and different values of «
< 0 —'66 —-10
a; —6°12601 —6:496594 — 6597995
as —11-407323 : —15-102021 —16-546527
as —6-551364 —17-966250 —9-709789
a, —2:314563 —3-646994 —3646027
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Fig 1. Variations of Nu/4/Re against 8 for P=5 and «=0, —-06, —10
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(Nu/4+/Re)
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Fig 2. Variations of (Nu/4/Re) against § for P=25 and
=0, —-06, —-10
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Fig 3. Variations of Nu/4/Re against 8 for P=50 and «=0, —06, —10
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