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The temperature distribution within the thermal boundary layer
region due to the flow of a non-Newtonian fluid around a heated
circular cylinder, maintained at a constant temperature higher than
that of the fluid at infinity is considered. The flow problem is solved
by the method used by Meksyn. The graphs of the Nusselt number for
different Prandtl nuinbers and for the same Eckert number have been
plotted for various non-Newtonian parameters.

1.

The two-dimensional thermal boundary layer equation for the flow
of a second-order fluid past a heated flat wall has been derived by
Srivastava (1967). He has obtained the temperatur-e distribution for
the flow near .r stagnation pcint occurring on a flat plate maintained at a
constant temperattire irigher than that of the fluid at infinity. Srivastava
and Maiti (1966) have discussed the flow of a second-order fluid past
a cylinder by expanding the flow functions in series and obtaining the
first four terms by K6rm5n-Pohlhausen method. Srivastava and Saroa
(1970) have studied the heat transfer in a second-order fluid for flow
arosnd a circular cylinder by K6rm6n-Pohlhausen method.

It has been observed that when only skin friction, etc., at the wall
is needed, the Meksyn method is more useful as it has been found to
give better results. In this paper we have reworked the problem of flow
of a second-order fluid around a circular cylinder by series expansion
used by Meksyn (1956). We have found the point of separation for
the Newtonian case comes out to be lli.2" where as the exact value is
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109'6". Srivastava and Saroa (1970) have obtained the separation point
at 110'8'by taking the boundary layer thickness to be variable along
the cylinder. The corresponding point of separation obtained by
Srivastava and Maiti (1966) by K6rm6n-Pohlhausen method is at
116'5". Thus the method used here is expected to give more correct
results.

The constitutive equation of an incompressible second-order fluid
as suggested by Coleman and Noll (i960) is

,01 : -f,6 oi a prD r i* trzE e i + t hD i I D r'

Dil:rt,j*r j,t

Eij : a i, i + Aj,il2t ̂
,p*, i (1)

where

.and

The v2 and a6 are the components of velocity and acceleration respectively.

rii is a stress tenso, F it an indeterminate hydrostatic pressure which
differs, in general, from the mean pressurep:$(zrrf rzz*rzs) i pr, pz, tts
are material constants of the fluid, and a comma denotes a covariant
differentiation. The case pz: Irs-j corresponds to an incompressible
Newtonian fluid. On thermodynamic considerations /r2 is found to be
negative. The material constants have been determined experimentally
for solutions of pcly-isobutylene in cetane of various concentrations by
Markovitz and Brown.

2. Boundcry Layer Equatians :

Consider a stream of an incompressible second-order fluid moving
with a uniform velocity U* at inflnity ir:. presence of a fixed circular
cylinder of i'adius / niaintained at a constant temperature 7r. Let T* be
the temperature of the fluid at inflnity and assune that T*)T*. We use

cylindrical polar coordinates (r, 0, z) with z-axis coinciding with the axis
of the cylinder. The flow is two-dimensional in r and 0 directions.

The two-dimensional velocity boundary layer eqtiations fol the fluid
governed by equations (l) are

3! +oP +v?! : 9-V +u oU-+,. o" +,,f a'u
At 0x Ay At Ax ' Aya - I Atay,

* 0u A2u *r, 0", +rO,u L Oa Ozvt' ax ay' axayz ;,ys ay ay{l (2)

0u +0r:O6y 0!
(3)
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where !:r-1, x:10 and L!, y are the components of velocity in the r
and y directions respectively, U is the velocity in the ntain stream, p is
the density of the fluid and ut:ptlp, I is the time. The equation (2) is
independent of prs but the pressure involves both p.2 and pB, and is not
constant over the boundary layer region.

The thermal boundary layer equation for the incompressible second-
order fluid against a heated wall has been given by Srivastava (1967) as

,, (o*' * "# +, {rl 
: nffi + (u, + t r,fil Wrf

+u,(,ffi+,#l# (4)

where c is the specific heat, k is the thermal conductivity and 7 is
temperature. This equation is valid within the boundary layer over both
a flat wall and a curved wall when x is taken in the tangential direction
and y along the normal to the surface.

The boundary conditions on z/, v and T are

u:0, Y:0, T:T* at y:0,
u+U, T->T- as /->oo (5)

The velocity distribution U outside the velocity bor.rndary layer
region created by the cylinder is given by

u(0):2u*sin6:2u.10-* *** 0,- +r,+...] (6)

The form (6) suggests that the velocity components u and v within
the velocity boundary layer region and the temperature 7 within the
thermal boundary layer region should be taken in the forms

u(0, t11:2s*Wfi@-* e" f , h)+ $n'f{@-fi 0'f,'(,1)*...1 (7)

t e,,1) : - (2"-l - l''' v,t l -\e' f ,@ + * eo fub) -f; , eu f,(,il *... I (8)

r*p, 11: 3-*t :4ElT{n)-0273e1)!}aTs(l)-ourr(q)*...1 (e)T*-f -
where a:y(ft)'l'u"a the Eckert number u:ffi,1. A prime

denotes f /fl1. We shall confine ourselves to terms up to f, and 7.,
only.
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The forms (7) and (8) of u and rr satisfy the equation (3) of
continuity. The boundary conditions ofl and Ti, i:l, 3, 5, j, etc., are

fi-fs:fs:f?:0 , ft' :_f s, :ja;, :fi, :0,
- - 

'!
, t:tE, 73: G: Tr:Q a1 q:Q,

fr'*1, fs')!, f5'**,.fr'**, Tr:Tt:Ts:Tz:0 at n-->a . (10)

Substituting the expressions for (J, u, v andT from (6) to (9) into
(2) and (4) and equating the coefficients of like powers of 0 on both sides
of the equations, we get the following two sets of ordinary differential
equations :

.fr"' *.frfr" : -llfr'z-lx(-2f{fr"' *frfrn' +fr"'), (11)

f""'*.f,f ,": - | *4fr'f ,' -3fr" f ,l cf- 4( fl.fr"'*fl "f ,')
*(frf ,* *3fr*f ,)*4fro.f""), (12)

-fr,,,*.frfu,, : _$*6flfs,_5fr,, fr*#_(fe,z _-fsf ,,)
* *l-617r'7u' ' ' *fr' ' '.fs') * (fr.fun' * Sfru,fu)

*6fr'-fu'*3{(-2fr'f ,"'*f uf ,u'+fr"), (13)

f z"' *Ji.f t" : - 8 + 8fi f7 -7 fi' f? + I 68f 
"' 
f u' - 63f u f u'

-105f B', fs+ *l- 8 (fr, fi,, *fr,,,.fr, )
-168(fR' f5"' *-f a"'-fd')*(frf,* *35fr*fr)

+ (t 0 5hcY5+ 63f 
'.f 

uo, ) * I 68f u' .fa'

and
.l

Pri'+f{1':0'

*gft'fr"), (14)

'*frTu':27r,73-2f sTl +fL,,r* *l.fr,,(fr., fr, _.fr.f{,,)1, (16)

t
prr;' +frTs':4.ft'Ta-2f ,Tr'**f "'7"-*"f uTl *tfr' .fr'

*&*[.fr" (fr' f u' * A.fr' f ,')--"fr'{.fr.fi " *fr"'*3f1,, fs)

--frfr"' -f r'f , (17 )
T r" * frT r' : 6 f r' 7 7 - 2 f aT i * E "f s' T b- + f bT B' + rro.f o' 7,

- -k f ,T r' * iu f ," f u" * $ f "" * xl*o -f ," (- .f ,.f ,"' * 6.fr' fr'
*f,' fu' - 5.fr"' fu)- t f ,"(f,.f ,"'-*-3 f,"' f ,-4.f,' f ,')

*io(80fr'f 
""r-90.fr,, 

f ,f ,",-3.fr.fr,,, -fr,,)], etc. (lg)

(l s)

t=,,
r

I

P

where ":2%'zlrr
Prandtl number.

is the non-Newtonian parameter and p:P!:c
k
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3. Solutions of Equations :

The equations (11) to (18) subject to boundary conditions (10) can be
solved by any numerical method. We solve the equations by the method
of series expansion followed by the method of Laplace. For this purpose,

we express the functions rth) and T1(r) in power series of , as

f,td:d eon'**a,r'* *.c,nu* ,\. oon'* *Erf *... (le)

r,?i:)4E+ n'r++.u,n'* *tr,n'* i1a,no+ {tr,r'+ '.. I
T/r1): all: rLro,r,+*, r,r, * A a,,t,+ 

s\. 
cj,t.+. J 

t^n

where i--1, 3, 5,7 and. j:3, 5,7, .--

The forms (i9) and (20) of f,, T, and T, satisfy the boundary
conditions (10) at 1:0. The expansions (19) and (20) are valid only for
sufficiently small values of 1. Substituting fi, T1 and T , from (19) and (20)
into (11) to (18), and equating the coefficients of differentpowers of q to
zero, we obtain the constants B.i, Ci, Di, Et etc., and bi, ci, di, e.i, etc., as

functions of A6's and a;'s only.

Thus, if Aaand ai are known, the velocity profile and the temperature
distribution are completely determined.

The constants A6 d6, ate., can be determined by using the condition
(10) as n-+@. We write the equations (11) to (14) and (15) to (18) in the
following forms

fi " * ftfo':H1(r1), i:|, 3, 5, 7

and

T6"lPf1T1':PMn(n),i:1,3,5,7 (22)

whereHl(riandM.{,i are the right-hand sidesof the equations (ll) to

(2t)

(14) and (15) to (18) respectively.

Letting

F(d:\,, t at a

G(d:P \i r,r,t *
and

(23)

6o1r):A*\' ,'n,61a,

....".'{i!!d
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*{,):at+P\rr**n, o,

we get the following by integratiug twice the
respectively :

-fi(d: l, ,_o6,1,11 a,1
Jo

lrt
T i(il : a o* 

\ o, 
- 

",1' rh) d,t

(24)

equations (2l1and (22)

(2s)

(2;,6)

The coefficients A,i, and. ai, i:l , 3, 5, '7 are given by

\i,-,i,(ntdn:r

\l'-'rx't":'u

\l "-'r*"':'u

\l n'r'",0,:|' etc'

\i "-"r'"'o':-*,

\i e-c.1's';a'1:o

\1, "r,,,,,,:o

\i"'"ru,'or:o' etc'

Lt : *lP ril t, r z 1 * P 2iT 1 r, r.,* P yT 
r r, I p 

aaT 1 a,, ;l p stlr u,, I ]
ln:*lp rult r r t t* P zil 1r, a* patl 1, t*p adT t+ t st* p srlr u r s,t7

Lt:l, Lz:*, LB:+, L7:*
l1:0, lr:e, lr:g, lr:g

These integrals can be evaruated asymptotically by Laplace,s method.
Putting F:G:r, transfornring the equations (27),(2S) to the variable r
and integrating in the gamma functions, we find

{27)
and

(2e)

(30)
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P*:k{tt
P4:kzat*klbt
p st: k aa i* 8k* zb i* i k r, c i

p at : k & t * b r(+ k 22 + * k * r) | c i(k 12 k r) + (d r + a r a ) * k L4

' p*:ksar*be(*k$ r*gkrkr)4 ca(gkrzk"1gk kz2)* (dr*a1A1).{qkfkz

and 
{@i}a$rf3biAt*PhAr.).Lkf (31)

o,:(*,1"

o,:*aG\|,,,
k.:61- c - Br'I
" PArl 20Ar' t6Ar,l

o,:#,(hl"(-*,
.#*#l G2)

The constants P^i aa'l be obtained from pn; by replacing a1, bi, ci, di,
ei, etc.) in pna by At, Bt, Ci, Du E6, etc, respectively and by putting p: l
in ka

The unknowns A,i and. ai are determined by the conditions (29)
and (30) respectively. The series (29) and (30) are in general divergent.
So, we use Euler's transformation

I,-r)u-:Lelr#*n:0 n:O
where

LA*:A^+r-A*, LzA*: [Aaa1- [A*
To d.etermine Ar, Ar, Ar, Arfromthe condition(29), we took five

terms of the series and applied Euler's transformation. similarly, at, az,
a6, a7 are determined frotr the condition 130). The values af A,;, i:l,3,
5, 7 bave been determined for oc:O, -'06, -.10 and the values are
given in table (1). The values of a7, z:1,3, 5,7 are determined for

(33)

o': **,(*,) " " 
( - g * ffi -'#*

.d

I
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nc:0, -'06, -'10, Eckert number -E--:0'1 and Prandtl numbei P=5, 25, 50

respectively. The values of the constants aifor P:5,25,50' are given in
the tables (2a), (2b) and 12c) respectively.

4. Discussion :

The sheating stress zo on the wall of the cylinder is given by

(3.4\

The location of the point of separation can be found from the

condition that the velocity gradient normal to the wall and hence the
shearing stress at the wall vanishes there. The condition that the shearing
stress zo at the surface vanishes is given for <:0, *:-'06 apd a:-'10
respectively by

O.O33tg2X3-0'360-<08X2+2.1.182g6X_7.021791:O (35)

0.144717 x3 -0.636374X2+3.26183tX-8.302649:0 (36)

0.457042X3_r.25n23x2+3.487458X_8.715832:0 .(37)

where X:02

Solving the cubics (35), (36) and (37), we find the acceptable roots
as X:3'773, X:3'096 and X:2'6ll respectively. Thus the separation,
points occur at 0:l1l'2, d:100'8" and g:92'5o for oc:O, <:-'06 and

<: -'10 respectively.

This shows that the effect of second-order parameter in the
constitutive equation on the position of the separation point is to advance

it towards the forward stagnation poiot. The second-order effect is

exhibited through the non-dimensional parameter ":'qr:i'. 
Thus the

point .of separation depends on the material constants p1 and pr.2 and also

on the flow parameters U-, l.

Next, the heat flux g from the cylinder to the fluid is given by

r : o l#1, _,: - ff ,tRe (r, - 7,) lr L, (o ) - 0z r s, (0 ) * eurr, (0)

-06r?'(o)l (38)

where Re: 2!-et- it the Reynold.s number. Defining the Nusselt number
lp,

Nu:(/g)ik(7,-7.),
we have Nu: -4Erl ne 1fr'10; - 02 Ta, 101* 0aTr,(0)_0uz?,(0)l (39)

,r:Ur(#l 
r-,

-&-
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Taking the Eckert number E:0'1, the graphs of (Nu//ps) against d

have been plotted for <:0, -'06, -'10 and Prandtl number P:5,25,50
respectively in the figures (l), (2) and (3). The angle 0s for which Nu:0
corresponds to the point beyond which the frictional heating effects

dominate and in that region, the temperature of the fluid in the immediate

neighbourhood of the cylinder becomes higher than that of the cylinder,

so the heat transfer occurs from that fluid to the cylinder. Figures (l), (2)

and (3) show that the effect of the non-Newtonian parameters is to shift

this critical point towards the forward stagnation point. In the figures

(1), (2) and (3), we see that the curves corresponding to .(:0, -'06, -'10
intersect at 0:18o, 18'5o and l9'3' respectively, which indicate that the

effects of the non-Newtonian parameters in the constitutive equation of the

fluid are to increase the heat flux from the forward stagnation point to the

points corresponding to d:18', 18'5'and l9'3o, and to decrease it beyond

these points. The points corresponding to 0:18', 18'5o and l9'3" on the

cylinder forP:5, 25 and 50 are some special points, since the heat flux at

these points are unaffected by the non-Newtonian terms in the constitutive

equation of the fluid.

The effect

increase it near

it. This effect

respectively.

of the Prandtl numbei P on the Nusselt number is to
the forward stagnation point and to decrease it away from
is reversed at 0:18o, l8'5o and 19'3' for P:5, 25 and 50

Table I

Values of A1, i:|,3, 5,7 for different values of <

1.241289

.728752

r.370821

3.696s26 | t''tloZt

-'10

1.540756

4.423389

50.900498

1.467715

2.249922

cC 0 -'06

At

As .865454 .924752

A5

A?
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Table 2a

Values of ai, i:|,3,5,7 for P:5 ald different values of *

-.06 -.10

aL

Os

-2.747038 -2.924363

-2.919243

-2.967116

-2.1907s9 -4.518575

-1.652486
a5

a.

-1.647793

-.607418

-r.639249

- 1.055053 -.616854

Table 2b

Values of a6 i:l, 3, 5, 7 for P:25 and different values of <

Table 2c

Values of ai, i:1, 3, 5,7 lor P:50 and different values of *

-s.200781

-rc.576516

- t.487 565

* 0 -.06 -.10

clL -6'12601 -6'496594 -6.59799s

As
-t1..407323 -15.$2021 -16.546527

a5 -6.5s1364 -7.966250 -9.709789

a7
-2.314s63 -3.646994 -3.646027

.C 0

0 -.06 -'10

A1 -4.826255 -s.12187

a8 -6.982098 -9.2s2398

Ag -4.074602 -4.917089 -5.749960

-2.34t636 -2.249602
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Fig 1. Variations of Nu/1U t<e against 0 for P:5 and <:0,
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O-.-

Fig 2. Variations of (Nu//Re; against 0 for p:25 and
*:0. -'06, -'10
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Fig 3. Variations of Nu/y'Re against 0 for P:50 and oc:0, -'06, -'10
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