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Abstract 

 

In this article, we find the explicit formulas for the degree product 

adjacency energy of the complement graph of a 𝑟 regular graph and 

also the degree product adjacency energy of 𝐿(𝐺). In this way one 

can calculate/compute the degree product adjacency energy of large 

family of regular graphs. 
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1. Introduction 

Graphs considered in this article are simple, connected with n vertices and m edges, 

𝑑𝑖 is the degree of the vertex 𝑣𝑖. For undefined terminologies we refer [6]. 

The graph 𝐺 is a regular graph, where all its vertices are equal to degree 𝑟. The 

complement 𝐺  of a graph 𝐺  also has 𝑛  number of vertices but two vertices are 

adjacent in 𝐺 if and only if they are not adjacent in 𝐺 . The line graph 𝐿(𝐺) is a 

graph, in this the number of vertices are equal to the number of edges of graph 𝐺 

and any two vertices of 𝐿(𝐺) are adjacent if and only if the corresponding edges in 

𝐺 are adjacent [6]. 

The adjacency matrix of a graph 𝐺 is a square matrix and is defined as 𝐴(𝐺) = [𝑎𝑖𝑗], 

where 𝑎𝑖𝑗 is [1],  

𝑎𝑖𝑗 = {
1, 𝑖𝑓𝑣𝑖~𝑣𝑗;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (1) 

Where the notation 𝑣𝑖~𝑣𝑗  stands for the vertex 𝑣𝑖  is adjacent to vertex 𝑣𝑗 . The 

eigenvalues of the adjacency matrix of 𝐺 are denoted by 𝜆1, 𝜆2, 𝜆3, . . . , 𝜆𝑛. 

The energy of a graph 𝐺  is defined as the sum of the absolute values of the 

eigenvalues of adjacent matrix of graph 𝐺 . This concept was introduced by I. 

Gutman [4]. This energy has been well explained in [5] and its mathematical 

representation is,  

𝐸𝐴(𝐺) = Σ𝑖=1
𝑘 |𝜆𝑖| 

The degree product adjacency energy 𝐸𝐷𝑃𝐴(𝐺) is defined as follows [7], 

The 𝐷𝑃𝐴(𝐺) is the degree product adjacency matrix and is defined as,  

𝑑𝑖𝑗 = {
𝑑𝑖𝑑𝑗 , 𝑖𝑓𝑣𝑖~𝑣𝑗;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

The degree product adjacency matrix 𝐷𝑃𝐴(𝐺) is a real symmetric matrix 

and its eigenvalues are 𝛼1, 𝛼2, 𝛼3. . . , 𝛼𝑘 . The order of eigenvalues be 𝛼1 ≥ 𝛼2 ≥

𝛼3 ≥. . . ≥ 𝛼𝑘. The similar way of adjacency energy, the degree product adjacency 

energy of a graph defined as [7], 

𝐸𝐷𝑃𝐴(𝐺) = Σ𝑖=1
𝑘 |𝛼𝑖| (2) 
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[1] The spectrum of a graph 𝐺  is the set of numbers, which are eigenvalues of 

adjacency matrix 𝐴(𝐺), together with their multiplicities. Analogues to spectrum of 

𝐴(𝐺), the spectrum of degree product adjacency matrix is defined as [7], 

  

𝑆𝑝𝑒𝑐(𝐷𝑃𝐴)(𝐺) = (
𝛼1 𝛼2 𝛼3 . . . 𝛼𝑘
𝑚1 𝑚2 𝑚3 . . . 𝑚𝑘

)(3) 

 

where 𝛼1 ≥ 𝛼2 ≥ 𝛼3 ≥. . . ≥ 𝛼𝑘  are the eigenvalues of 𝐷𝑃𝐴(𝐺)  matrix and 

𝑚1,𝑚2,𝑚3, . . . , 𝑚𝑘  are multiplicities of 𝛼1, 𝛼2, . . . , 𝛼𝑘  respectively. Here 𝑚1+ 𝑚2+ 

𝑚3+ ... +𝑚𝑘=𝑛 

The following theorems are used to prove the main results. 

Theorem 11.1.[1]  Let 𝐺 be a 𝑟 regular graph with spectra of adjacency matrix as,  

𝑆𝑝𝑒𝑐(𝐺) = (
𝑟 𝜆2 𝜆3 . . . 𝜆𝑘
1 𝑚2 𝑚3 . . . 𝑚𝑘

) 

 Then 𝐺, the complement of 𝐺 is a (𝑛 − 𝑟 − 1) regular graph with spectrum  

𝑆𝑝𝑒𝑐(𝐺) = (
𝑛 − 𝑟 − 1 −𝜆2 − 1 . . . −𝜆𝑘 − 1
1 𝑚2 . . . 𝑚𝑘

) 

Theorem 1.2. [8]2If 𝐺  is a 𝑟  regular graph with 𝑛  vertices, then its largest 

eigenvalue of degree product adjacency matrix is 𝛼1 = 𝑟
3.  

From Theorem 1.2, the degree product adjacency spectrum of 𝐺 is,  

𝑆𝑝𝑒𝑐𝐷𝑃𝐴(𝐺) = (
𝑟3 𝛼2 𝛼3 . . . 𝛼𝑘
1 𝑚2 𝑚3 . . . 𝑚𝑘

) 

Theorem 1.3.3[7]If 𝐾𝑚,𝑛(𝑚 = 𝑛) is a complete bipartite graph. Then the degree 

product adjacency spectrum of a graph 𝐾𝑚,𝑛(𝑚 = 𝑛) is,  

𝑆𝑝𝑒𝑐𝐷𝑃𝐴(𝐾𝑛,𝑛)     =     (
𝑛3 0 . . . 0 −𝑛3

1 𝑚2 . . . 𝑚𝑘−1 1
) . 
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Theorem 1.4.[7]If 𝐾𝑛 is a complete graph with 𝑛 vertices. Then the degree product 

adjacency spectrum  of 𝐾𝑛 is  

𝑆𝑝𝑒𝑐𝐷𝑃𝐴(𝐾𝑛)     =     (
(𝑛 − 1)3 [−(𝑛 − 1)2]

1 (𝑛 − 1)
) . 

Remark 1.5.4[8],  

𝑆𝑝𝑒𝑐𝐷𝑃𝐴(𝐿(𝐺)) = (
(2𝑟 − 2)3 (2𝑟 − 2)2 (

𝛼2
𝑟2
+ 𝑟 − 2) . . . −8(𝑟 − 1)2

1 𝑚2 . . .
𝑛(𝑟 − 2)

2

) 

 

2. Main Results 

Theorem 2.1.5If 𝐺 is a 𝑟 regular graph and the adjacency eigenvalue of 𝐺 are 𝜆𝑖 ; 

𝑖 = 1,2, . . . , 𝑘, then the degree product adjacency eigenvalue for the graph 𝐺 are 

𝛼𝑖 = 𝑟
2𝜆𝑖 ; 𝑖 = 1,2, . . . , 𝑘.  

 

Proof. Consider the 𝑟 regular graph 𝐺  with 𝑛 vertices where 𝛼1, 𝛼2, . . . , 𝛼𝑘  are the 

eigenvalues of degree product adjacency matrix of 𝐺.  

We prove this Theorem by using the following facts. 

i. Consider the cycle graph 𝐶3 and the adjacency eigenvalues of 𝐶3 are −1,−1,2. 

Now the degree product adjacency eigenvalues of 𝐶3 are −4,−4,8.  

Here the cycles are 2-regular graphs, then the product of square of regularity and 

eigenvalues of adjacency matrix are equal to eigenvalues of degree product 

adjacency matrix i.e., 𝛼𝑖 = 𝑟
2𝜆𝑖. 

And this condition holds for all cycle graphs 𝐶𝑛; 𝑛 ≥ 3. 

ii. Now consider the complete graph 𝐾𝑛 and its eigenvalues for the adjacency matrix 

are 𝑛 − 1 with multiplicity 1 and −1 with multiplicity 𝑛 − 1. Now from Theorem 

1.4, The eigenvalues of degree product adjacency matrix of 𝐾𝑛 are (𝑛 − 1)3 with 

multiplicity 1 and −(𝑛 − 1)2 with multiplicity (𝑛 − 1). 
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The complete graph 𝐾𝑛  is (𝑛 − 1)  regular, therefore the eigenvalues of degree 

product adjacency matrix are equal to product of square of regularity and 

eigenvalues of adjacency matrix of 𝐾𝑛. 

From these two conditions, it follows that all regular graphs holds the equality i.e., 

𝛼𝑖 = 𝑟
2𝜆𝑖  and also by observation one can conclude that the eigenvalues of 

𝐷𝑃𝐴(𝐺), where 𝐺 is regular graph are equal to product of square of regularity and 

eigenvalues (𝜆𝑖; 𝑖 = 1,2, . . . , 𝑘) of 𝐴(𝐺) i.e., 𝛼𝑖 = 𝑟
2𝜆𝑖. 

 

Theorem 2.2. 6If 𝐺 is a 𝑟 regular graph, then  

𝑆𝑝𝑒𝑐𝐷𝑃𝐴(𝐺) = (
(𝑛 − 𝑟 − 1)3 [(𝑛 − 𝑟 − 1)2 (

𝛼2
𝑟2
− 1)] . . . [(𝑛 − 𝑟 − 1)2 (

𝛼𝑘
𝑟2
− 1)]

1 𝑚2 . . . 𝑚𝑘

) . 

and 

𝐸𝐷𝑃𝐴(𝐺) = (𝑛 − 𝑟 − 1)
2 (2 − 𝑛 −∑

𝑛

𝑖=2

𝛼𝑖
𝑟2
) 

 

Proof. Consider the 𝑟 regular graph 𝐺 and the graph 𝐺 is complement of 𝐺. From 

Theorem 1.1, the graph 𝐺 is (𝑛 − 𝑟 − 1) regular. 

Now from Theorem 1.2, the maximum eigenvalue of 𝐷𝑃𝐴(𝐺) is 𝑟3 for all regular 

graphs. Hence from Theorem 1.1 and Theorem 2.1, the degree product adjacency 

spectra of 𝐺 is,  

𝑆𝑝𝑒𝑐𝐷𝑃𝐴(𝐺) = (
(𝑛 − 𝑟 − 1)3 [(𝑛 − 𝑟 − 1)2 (

𝛼2
𝑟2
− 1)] . . . (𝑛 − 𝑟 − 1)2 (

𝛼𝑘
𝑟2
− 1)

1 𝑚2 . . . 𝑚𝑘

) . 

 By using the spectrum of 𝐷𝑃𝐴(𝐺), 

𝐸𝐷𝑃𝐴(𝐺) = (𝑛 − 𝑟 − 1)
2 (2 − 𝑛 −∑

𝑛

𝑖=2

𝛼𝑖
𝑟2
) 
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Theorem 2.3.7If 𝐺 is 𝑟 regular graph but not complete bipartite having the smallest 

eigenvalue greater than or equal to 𝑟2(1 − 𝑟), then  

𝐸𝐷𝑃𝐴(𝐿(𝐺))     =     (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

((𝑟 − 1)(2𝑛 − 4) − 2) 

Proof. Consider the 𝑟 regular graph 𝐺 with 𝑛 vertices and is not complete bipartite, 

then from Theorem 1.2, 𝑟3 ≥ 𝛼2 ≥ 𝛼3 ≥. . . ≥ 𝛼𝑘  are the distinct eigenvalues of 

𝐷𝑃𝐴(𝐺). Therefore the spectrum of 𝐷𝑃𝐴(𝐺) is, 

𝑆𝑝𝑒𝑐𝐷𝑃𝐴(𝐺) = (
𝑟3 𝛼2 𝛼3 . . . 𝛼𝑘
1 𝑚2 𝑚3 . . . 𝑚𝑘

) 

Now from Remark 1.5, Theorem 2.1 and Theorem 2.2, 

𝑆𝑝𝑒𝑐𝐷𝑃𝐴(𝐿(𝐺)) =

(

  
 
(
𝑛𝑟 − 2(2𝑟 − 1)

2
)
3

[(
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

(
−𝛼2
𝑟2

− 𝑟 + 1)] . . . (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

1 𝑚2 . . .
𝑛(𝑟 − 2)

2 )

  
 
. 

Since 
−𝛼𝑖

𝑟2
− 𝑟 + 1 ≤ 0; 𝑖 = 2,3, . . . , 𝑘 is always true, thus  

𝐸𝐷𝑃𝐴(𝐿(𝐺))     =     (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
3

+ (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

∑

𝑘

𝑖=2

𝑚𝑖 (
𝛼𝑖
𝑟2
− 𝑟 + 1)

+(
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2 𝑛(𝑟 − 2)

2

=     (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

(
𝑛𝑟

2
− 2𝑟 + 1 +

𝑛𝑟

2
−
2𝑛

2
)

 + (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

(∑

𝑘

𝑖=2

𝑚𝑖𝛼𝑖
𝑟2

+ (𝑟 − 1)∑

𝑘

𝑖=2

𝑚𝑖)

 

From Theorem 1.2 and number of multipilicities in the spectra of 𝐷𝑃𝐴(𝐺),  

𝑟3 + ∑𝑘𝑖=2 𝑚𝑖𝛼𝑖 = 0        𝑎𝑛𝑑        1 + ∑
𝑘
𝑖=2 𝑚𝑖 = 𝑛

𝑖. 𝑒.,         ∑𝑘𝑖=2
𝑚𝑖𝛼𝑖

𝑟2
= −𝑟𝑖. 𝑒. ,         ∑𝑘𝑖=2 𝑚𝑖 = 𝑛 − 1

(4) 

By using the equation (4) in 𝐸𝐷𝑃𝐴(𝐿(𝐺)),  
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𝐸𝐷𝑃𝐴(𝐿(𝐺)) = (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

(𝑛𝑟 − 2𝑟 − 𝑛 + 1) + (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

(−𝑟 + (𝑟 − 1)(𝑛 − 1)) 

After simplification,  

𝐸𝐷𝑃𝐴(𝐿(𝐺)) = (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

((𝑟 − 1)(2𝑛 − 4) − 2) 

 

Theorem 2.4. 8If 𝐺 is a complete bipartite and 𝑟 regular graph having the second 

smallest eigenvalue greater than or equal to 𝑟2(1 − 𝑟), then  

𝐸𝐷𝑃𝐴(𝐿(𝐺))     =     (
𝑛𝑟 − 2(2𝑟 − 1)2

2
)

2

((𝑟 − 1)(2𝑛 − 4)) 

Proof. Consider the 𝑟  regular graph 𝐺  with 𝑛  vertices and is complete bipartite 

graph. 

Now from Theorem 1.3 the complete bipartite graph 𝐾𝑛,𝑛  is 𝑛  regular then the 

regularity 𝑟 of 𝐾𝑛,𝑛  is 𝑛 i.e., 𝑟 = 𝑛, then 𝑟3 ≥ 𝛼2 ≥ 𝛼3 ≥. . . ≥ 𝛼𝑘−1 ≥ −𝑟
3  are the 

distinct eigenvalues of 𝐷𝑃𝐴(𝐺). Therefore the spectrum of 𝐷𝑃𝐴(𝐺) is, 

𝑆𝑝𝑒𝑐𝐷𝑃𝐴(𝐺) = (
𝑟3 𝛼2 𝛼3 . . . 𝛼𝑘−1 −𝑟3

1 𝑚2 𝑚3 . . . 𝑚𝑘−1 1
) 

Now from Remark 1.5, Theorem 2.1 and Theorem 2.2, 

𝑆𝑝𝑒𝑐𝐷𝑃𝐴(𝐿(𝐺)) =

(

  
 
(
𝑛𝑟 − 2(2𝑟 − 1)

2
)
3

[(
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

(−𝛼2 − 𝑟 + 1)] . . . (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

1 𝑚2 . . .
𝑛(𝑟 − 2)

2
+ 1 )

  
 
. 

Since 
−𝛼𝑖

𝑟2
− 𝑟 + 1 ≤ 0; 𝑖 = 2,3, . . . , 𝑘 is always true,  

thus  
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𝐸𝐷𝑃𝐴(𝐿(𝐺))     =     (
𝑛𝑟−2(2𝑟−1)

2
)
3
+ (

𝑛𝑟−2(2𝑟−1)

2
)
2
∑𝑘−1𝑖=2 𝑚𝑖(𝛼𝑖 + 𝑟 − 1)

        + (
𝑛𝑟−2(2𝑟−1)

2
)
2
(
𝑛(𝑟−2)

2
+ 1)

    =     (
𝑛𝑟−2(2𝑟−1)

2
)
2
(𝑛𝑟 − 2𝑟 + 2 − 𝑛)

        +(∑𝑘−1𝑖=2 𝑚𝑖𝛼𝑖 + ∑
𝑘−1
𝑖=2 𝑚𝑖(𝑟 − 1)) (

𝑛𝑟−2(2𝑟−1)

2
)
2

 

From the spectra of 𝐷𝑃𝐴(𝐾𝑛,𝑛),  

𝑟3 + ∑𝑘−1𝑖=2 𝑚𝑖𝛼𝑖 + (−𝑟
3) = 0        𝑎𝑛𝑑        1 + ∑𝑘−1𝑖=2 𝑚𝑖 + 1 = 𝑛

𝑖. 𝑒. ,        ∑𝑘−1𝑖=2 𝑚𝑖𝛼𝑖 = 0                𝑖. 𝑒. ,        ∑
𝑘−1
𝑖=2 𝑚𝑖 = 𝑛 − 2

(5)  

By using the equation (5) in 𝐸𝐷𝑃𝐴(𝐿(𝐺)),  

𝐸𝐷𝑃𝐴(𝐿(𝐺)) = (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

(𝑛𝑟 − 2𝑟 + 2 − 𝑛) + (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

(0 + (𝑟 − 1)(𝑛 − 2)) 

 After simplification,  

𝐸𝐷𝑃𝐴(𝐿(𝐺)) = (
𝑛𝑟 − 2(2𝑟 − 1)

2
)
2

((𝑟 − 1)(2𝑛 − 4)) 
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