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Abstract 

 

We have proved in this paper that natural logarithm of consecutive 

numbers ratio, x/(x-1) approximatesto 2/(2x - 1) where x is a real 

number except 1. Using this relation, we, then proved,  x 

approximates to double the sum of odd harmonic series having first 

and last terms   1/3  and  1/(2x - 1) respectively. Thereafter,  not 

limiting to consecutive numbers ratios, we extended its applicability  

to all the real numbers. Based on these relations, we, then derived a 

formula for approximating the value of Factorial x.We could also 

approximate the value of Euler-Mascheroni constant. In these 

derivations, we used only and only elementary functions, thus this 

paper is easily comprehensible to students and scholars alike.   
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1. Introduction 

By applying geometric approach, Leonhard Euler, in the year 1748,  devised methods 

of determining natural logarithm of a number [2]. He then extended it to other 

numbers  utilising basic properties of logarithm. Sasaki  and Kanada, then  worked on 

determination of precise value of log (𝑥) using special functions [3]. Different 

formulae [9] for determining the value of logarithm derived so far, are, 1) ln(1 +

x) = x − x2/2 + x3/3 − ⋯ up to infinity, where|𝑥| ≤ 1 and 𝑥 ≠ 1,  2) if 𝑅𝑒(𝑥) ≥

1/2 , then ln(x) = ∑ (𝑥 − 1)𝑘/(𝑘𝑥𝑘)
∞

𝑘=2
 ,  3) ln (

n+1

n
) = ∑

1

𝑘(𝑛+1)𝑘

∞

𝑘=2
 ,  4)  

ln(x) =
2(𝑥−1)

(𝑥+1)
[

1

1
+

(𝑥−1)2

3(𝑥+1)2 + {
(𝑥−1)2

5(𝑥+1)2}
2

+ ⋯ ].In addition to these series, another 

alternative to high precision calculation is the formula [9],𝑙𝑛(𝑥) ≃ 𝜋/{2𝑀(1,4/𝑠)} −

𝑚𝑙𝑛(2), where M denotes the arithmetic-geometric mean of 1 and 4/s, and 𝑠 =

𝑥2𝑚 > 2𝑝/2with m chosen so that p bits of precision is attained. The  complexity of 

computing the natural logarithm (using the arithmetic-geometric mean) is O(M(n) 

ln (n). Here n is the number of digits of precision at which the natural logarithm is to 

be evaluated and M(n) is the computational complexity of multiplying two n-digit 

numbers [6],[9].  

Franzen gave the method of approximation of factorial using relation, ln (𝑛!) =

∑ ln(j)𝑛
𝑗=1 , [1]. Wolfram MathWorld can be referred to for different methods of 

approximation of factorial derived by different mathematicians [1]. Euler Mascheroni 

constant appeared for the first time in the paper of Leonhard Euler [5]. Tims and 

Tyrrell also worked on approximation of this constant [4]. Young gave an  inequality 

for bounding the harmonic number in terms of the hyperbolic cosine for determining 

this constant [10]. Various methods adopted to approximate this constant, find 

mention in Wikipedia [7] and Wolfram MathWorld [5].  

Notwithstanding numerous works already undertaken on calculation of logarithm, 

factorial of a number and Euler Mascheroni constant, we adopted  a completely 

different,  unique and simple approach. Icing on the cake is, it does not involve 

special functions and that makes it easily comprehensible even to under graduate 

students. To start with, a consecutive numbers ratio 𝑛/(𝑛 − 1) will be expressed in 

exponential form and then from these ratios, an exponential function will be derived 

for number 𝑛. It will be proved that natural logarithm of a number 𝑛 approximates to   

2 ∑ 1/(2𝑥 − 1)
𝑛

𝑥=2
+ 2 ∑ 1/{𝑥3(2𝑥 − 1)2}

𝑛

𝑥=2
where symbol ∑ ln {1/(2x −

𝑛

𝑥=2

1)}  denotes sum of terms {1/(2𝑥 − 1)} where 𝑥 varies from 2 to 𝑛. Based on this 

exponential representation of a number, formula for 𝑛! will be derived and value of 

https://en.m.wikipedia.org/wiki/Arithmetic-geometric_mean
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Euler Mascheroni constant will be approximated. We factorise a number 𝑛 as shown 

in Equation (1.1) 

𝑛 = (1 + 1)(1 + 1/2)(1 + 1/3) … {1 + 1/(𝑛 − 1)} = ∏ {1 + 1/(𝑥 − 1)}
𝑛

𝑥=2
(1.1) 

where symbol ∏ {1 + 1/(𝑥 − 1)}
𝑛

𝑥=2
 denotes product of terms {1 + 1/(𝑥 − 1)} 

where 𝑥 varies from 2 to 𝑛.  Therefore, 

 ln(𝑛) = ln(1 + 1) + ln (1 +
1

2
) + ln (1 +

1

3
) + ⋯ + ln (1 +

1

𝑛−1
) 

   = ∑ ln {1 +
1

x−1
}

𝑛

𝑥=2
                (1.2) 

Quantity ∑ ln {1 + 1/(x − 1)}
𝑛

𝑥=2
 can be approximated to integration of function 

𝑓(𝑥) with respect to  𝑥, where 𝑓(𝑥) = ln{1 + 1/(𝑥 − 1)} and 𝑥 varies from 2 to 𝑛. 
Mathematically,  

   ln(𝑛) ≃ ∫ ln {1 + 1/(x − 1)}
𝑛

2
𝑑𝑥              (1.3) 

On integration, 

ln(𝑛) ≃ ∫ ln {1 + 1/(x − 1)}
𝑛

2

𝑑𝑥 ≃ 𝑛 · ln(𝑛) − (n − 1) · ln(𝑛 − 1) − ln(2). 

On rearranging, 

    𝑛 ≃ (𝑛 − 1)21/(𝑛−1)  .               (1.4) 

Replacing 𝑥 with 𝑛, Equation (1.4) takes the form 𝑥 ≃ (𝑥 − 1) · 21/(𝑥−1).  This 

derivation of representation of 𝑥 in exponential form proves  Lemma1.1.  

Lemma1.1: A number 𝑥 can be roughly approximated to(𝑥 − 1) · 21/(𝑥−1)  where 𝑥 

is any positive or negative number. 

However, this approximation suffers serious drawback on account of the fact that at 

𝑥 = 1, value of (𝑥 − 1) · 21/(𝑥−1)  is equal to zero, therefore, to obviate this 

aberration, Equation (1.4) needs correction.  

 

2. Theory and Concept 



 
 

Narinder Kumar Wadhawan and Priyanka Wadhawan 

 

128 
 

To determine correction, we draw two graphs. First graph is a plot of ln{1 + 1/(𝑥 −

1)} taken on Y-axis with variable 𝑥 taken on X-axis. Area under the plotted curve 

will correspond to ∫ ln {1 + 1/(x − 1)}
𝑛

2
𝑑𝑥. Second graph is a plot of ln{1 + 1/(𝑥 −

1)} taken on Y-axis with 𝑥 taken on X-axis where 𝑥 varies in steps from 2 to 3, 3 to 

4, so on and area under the plotted graph will correspond to ∑ ln {1 + 1/(x −
𝑛

𝑥=2

1)}. Kindly refer to ‘Figure 1.’ Perusal of the graphs reveals that the quantity 

∫ ln {1 + 1/(x − 1)}
𝑛

2
𝑑𝑥 relates to the area under the smooth curve whereas the 

quantity ∑ ln {1 + 1/(x − 1)}
𝑛

𝑥=2
 relates to the area under the step-shaped graph. 

Since our requirement is the area under the step shaped graph, a correction is 

necessitated to conform smooth curve to the step shaped graph. 

Figure 1 Showing Graphs Of  ln (
𝑥

𝑥−1
) With 𝑥 
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2.1  Corrections To Conform Smooth Curve To  A Steps Shaped Graph 

For conforming area under smooth curve ADGJMP  to the area under the step shaped 

graph ACDFGIJLMOPR, area of triangle ACD is subtracted from magnitude of term 

3  {𝑇3 = ln (1 −
1

3−1
)},  area of triangle uDFG is subtracted from magnitude of term 

4 {𝑇4 = ln (1 −
1

4−1
)} so on till the last  𝑥𝑡ℎ Term. In this way,  

correction for term 3 (𝑇3) =
1

2
{ln (1 +

1

3−1
) − ln (1 +

1

2−1
)}, 

correction for term 4 (𝑇4) =
1

2
{ln (1 +

1

4−1
) − ln (1 +

1

3−1
)}, 

correction for term 5 (𝑇5) =
1

2
{ln (1 +

1

5−1
) − ln (1 +

1

4−1
)}, 

… … … 

and correction for term x (𝑇𝑥) =
1

2
{ln (1 +

1

𝑥−1
) − ln (1 +

1

𝑥−1−1
)}. 

Being initial condition, magnitude of term 2 (𝑇2) does not need correction. In this 

way, the resultant correction is the sum of corrections for all the terms and is equal to  
1

2
{ln (1 +

1

𝑥−1
) − ln(2)}. Algebraic addition of this resultant correction to the right 

hand side of Equation (1.4) yields modified relation,  

ln(𝑥) ≃ 𝑥 · ln( 𝑥) − (x − 1) · ln(𝑥 − 1) − ln(2) +
1

2
{ln (1 +

1

𝑥 − 1
) − ln(2)}. 

Or  

   𝑥/(𝑥 − 1) ≃ 23/(2𝑥−1). (2.1) 

This derivation proves Lemma2.1. 

Lemma2.1: A number 𝑥 roughly approximates to 23/(2𝑥−1). 

Although Equation (2.1) yields better result, it is not free from error at 𝑥 = 1 or in the 

vicinity of 1. It is worth mentioning that our assumption in paragraph 2.1 that ACD is 

a triangle, considering portion A to C a straight line by ignoring the fact, it is a curve, 

caused error and that error still needs correction. 

2.1a. Correction Due To Curvature And Also At 𝐱 → ∞ (Infinity)   

In addition to error due to curvature, Equation (2.1) is also not free from error 

when 𝑥 → ∞.   By definition, lim
𝑥→∞

{𝑥/(𝑥 − 1)}𝑥 = 𝑒 where ‘𝑒’ is Euler’s number. 

Applying Equation (2.1), when  𝑥 → ∞,  quantity {𝑥/(𝑥 − 1)}𝑥tends to 23/2 whereas 

it should tend to ‘𝑒’, therefore, there still exists appreciable error warranting 

additional correction. To eliminate this error when 𝑥 → ∞, power  3/2 to the base 2 

is replaced by slightly smaller quantity 1/ln (2) and Equation (2.1)  gets transformed 

into 

     𝑥/(𝑥 − 1)  ≃ 2
2𝑥·

1/ln(2)

 1−1/2𝑥 .              (2.2) 
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Since quantity  3/2 is slightly reduced, therefore, magnitude of denominator (1 −

1/2𝑥)   also needs reduction to {1 − 1/(2𝑥) − 1/(2𝑥4)} so as to keep  {2/ln (2)}/

{1 − 1/(2𝑥)} unchained. This quantity{1 − 1/(2𝑥) − 1/(2𝑥4)} was derived by 

algebraic addition of −𝑎/𝑥𝑛 to (1 − 1/2𝑥)  and, then values of ‘𝑎’ and ‘𝑛’ were 

determined by assigning successively different values 1, 2, 3 … to ‘𝑎’ and ‘𝑛’ so that 

quantity  2
2𝑥·

1/ln(2)

 1−1/2𝑥−𝑎/𝑥𝑛  gets equal to  𝑥/(𝑥 − 1). Values of ‘𝑎’ and ‘𝑛’ were thus 

found to be ½ and 4.  Since values of 𝑥/(𝑥 − 1) at different values of 𝑥, are known, 

therefore, these were utilised to discover values of  ‘𝑎’ 

and ‘𝑛’. When values of  ‘𝑎’ and ‘𝑛’ were determined and since 21/ln (2) = 𝑒, 

therefore, Equation (2.2) gets transformed into  

    𝑥/(𝑥 − 1) ≃ 𝑒2/(2𝑥−1−1/𝑥3)  . (2.3) 

Derivation of Equation (2.3) proves Lemma2.2. 

Lemma2.2: A number 𝑥 approximates to  (𝑥 − 1)𝑒2/(2𝑥−1−1/𝑥3)  where 𝑥 is a 

positive or negative real number.   

On the basis of equation (2.3), values of 𝑥 are calculated and are given in Table 2.1. 

Table 2.1: Approximation Of Numbers Using Equation (2.3) 

𝑥 Value of 𝑥 

Calculated 

Using Formula 

(2.3) 

Percentage Error 𝑥 Value of 𝑥 

Calculated 

Using 

Formula (2.3) 

Percentage 

Error 

3.5 3.493572593 −.1836402026 −125 −125.0000053 −4.21428842

× 10−6 

5.8 5.797266055 −.0471369806 −175 −175.0000027 −1.54136032

× 10−6 

−15.9 −15.90029321 −.001844063542 750 749.9999999 −1.97924237

× 10−8 

−50.1 −50.10003215 −6.41716299

× 10−5 

1500 1500 0 

−100.1 −100.1000082 −8.18031141

× 10−6 

2500 2500 0 

Perusal of figures given in Table 2.1 reveals that percentage error decreases with 

increase in magnitude of the number 𝑥. For numbers above 1500, percentage error is 

practically zero. 

2.1b.  Applicability Of Formula (2.3) To Numbers Between −𝟐 To +𝟐 

When 𝑥 = 3/2, approximated value of 𝑥 using Equation (2.3) is 1.540108424 and 

its percentage error is2.673894964 which is appreciably large. It can be verified that 

when𝑥 lies between −2 and +2 or is in the vicinity of |2|, percentage error is 
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appreciable and needs elimination.To overcome this handicap,  magnitude of the 

number 𝑥 is increased by multiplying it with a large number 𝑚 and the Equation (2.3) 

transformsinto 

   𝑚𝑥 ≃ (𝑚𝑥 − 1) · 𝑒2/{2𝑚𝑥−1−1/(𝑚𝑥)3} . 

Division by 𝑚 restores it to its original value 𝑥 which is given by relation 

   𝑥 ≃ (𝑥 − 1/𝑚) · 𝑒2/{2𝑚𝑥−1−1/(𝑚𝑥)3}.  (2.4) 

Application of this equation although is compulsorily required for numbers between 

−2 and +2, can be applied to all numbers for better results. This derivation proves 

Lemma 2.3. 

Lemma 2.3: A real number 𝑥 closely approximates to (𝑥 − 1/𝑚) ·

𝑒2/{2𝑚𝑥−1−1/(𝑚𝑥)3} where 𝑚 is a large integer. Evidently, larger the value of 𝑚,  

better will be the result. 

This relation is applicable to all the  numbers but is essential for number between −2 

to +2. 

2.1c Examination And Elimination of Error When 𝒙 Varies from +𝟐  to −𝟐 

Table 2.2: Comparison of Error Using Formula (2.3) And Formula (2.4) 

x Value of 𝑥 

Calculated Using 

Formula (4) 

Value of x Using 

Formula (2.4) With 

𝑚 = 100 

x Value of 𝑥 

Calculated Using 

Formula (2.3) 

Value of x Using 

Formula (2.4) 

With m as 100 

2 2.00591 1.999999979 1.2 2.28356 1.199999941 

1.8 1.82285 1.799999974 1.0 0.00000 0.9999999154 

1.6 1.66819 1.599999967 0.7 −.13546 0.6999998263 

1.4 1.61105 1.399999957 0.3 −.66358 0.2999990268 

It is explicit from Table 2.2 that percentage error is negligible, when the Equation 

(2.4) was used. It is pertinent to mention that when 𝑥 is large, magnitude of 1/𝑥3 

becomes so small that it can be ignored. Equation (2.4), then transforms into    

    𝑥 ≃ (𝑥 − 1)𝑒2/(2𝑥−1)   .               (2.5) 

2.2. Number Building Blocks And Consecutive Numbers Ratios 

Quantity 𝑥/(𝑥 − 1) is a ratio of two consecutive numbers 𝑥 and 𝑥 − 1 and  can be 

approximated using the Equations (2.3) and (2.4). It is noteworthy that a number 𝑥 

can be built by multiplying  consecutive number ratios abbreviated as CNR’s. For 

example,  𝑥 = (2/1)(3/2)(4/3) … {𝑥/(𝑥 − 1)}. On account of this property, CNR’s 

are also called number building blocks abbreviated as NBB’s. Both CNR’s and 

NBB’s are synonymous. Data mentioned in the Table 2.3 proves the truthfulness of 

the Equation (2.3).  

Table 2.3 Comparison Of Values Of Actual  CNR’s, Logarithm Of  CNR’s With Calculated 

Values 
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𝑥 Actual 

CNR 

𝑥/(𝑥 − 1) 

Calculated  

CNR 

e
2

2x−1−1/x3 

Percentage 

Error 

ln {x/(x

− 1)} 

Calculated 

2/(2𝑥 − 1

− 1/2𝑥2) 

Percentage 

Error 

1 ∞ ∞ 0.00000 ∞ ∞ 0.0000 

2 2.00000 2.00501 0.25081 0.69315 0.69565 . 36067 

6 1.20000 1.19949 0.04250 0.18232 0.18189 . 23584 

20 1.0526  1.05262 . 00110 . 05129 . 05128 . 01949 

100 1.0101010 1.0101009 1.089991×

 10−5 

. 010050335 . 01005025 7.9582

×  10−4 

It is clear from the figures given in the Table 2.3  that as 𝑥 increases, calculated 

values of CNR’s and their logarithms closely approximate to their actual values.    

2.3. Derivation of Numbers in Exponential Form And Their Logarithms 

By Binomial expansion and ignoring terms having powers more than 3 to the base 

𝑥, 2/(2𝑥 − 1 − 1/𝑥3) = 2/(2𝑥 − 1) + 2/{𝑥3(2𝑥 − 1)2. Therefore, Equation (2.3) 

takes the form, 𝑥 ≃ (𝑥 − 1) · 𝑒2/(2x−1) · 𝑒2/{x3(2𝑥−1)3}   and integers 2, 3, 4, …,𝑥  

approximate to  [1 · 𝑒2/3 · 𝑒2/{(23)(32)}], [2 · 𝑒2/5 · 𝑒2/{(33)(52)}] , [3 · 𝑒2/7 ·

𝑒2/{(43)(72)}] ,…,[(𝑥 − 1) · 𝑒2/(2𝑥−1) · 𝑒2/{(𝑥3)(2𝑥−1)2}]. 

On multiplying integers  2, 3, 4, …, 𝑥 and simplifying, we get,  𝑥 ≃

𝑒
2(

1

3
+

1

5
+

1

7
+⋯+

1

2𝑥−1
)

· 𝑒
2{

1

23·32+
1

33·52+
1

43·73+⋯+
1

𝑥3·(2𝑥−1)2}
. Let the number be denoted by 𝑛, 

then 

  𝑛 ≃ e
2(

1

3
+

1

5
+

1

7
+⋯+

1

2n−1
)

· 𝑒
2{

1

23·32+
1

33·52+
1

43·73+⋯+
1

𝑛3·(2𝑛−1)2}
             (2.6) 

and 

ln (n) ≃ 2 {
1

3
+

1

5
+

1

7
+ ⋯ +

1

(2𝑛−1)
} + 2 {

1

23·32 +
1

33·52 +
1

43·72 + ⋯ +
1

𝑛3(2𝑛−1)2}.(2.7) 

This proves Lemma2.4,   

Lemma2.4: A positive integer 𝑛 approximates to  𝑒
2 ∑ {

1

2𝑥−1
+

1

𝑥3(2𝑥−1)3}
𝑛

𝑥=2    and its 

logarithm 𝑙𝑛 (𝑛) to 2 ∑
1

2𝑥−1

𝑛

𝑥=2
 + 2 ∑

1

𝑥3(2𝑥−1)2

𝑛

𝑥=2
. 

Examination of Equation (2.7) reveals that major contributor to approximation of 

ln(𝑛) is double the sum of odd harmonic series 2 ∑ 1/(2𝑥 − 1)
𝑛

𝑥=2
.To illustrate 

the percentage error involved in approximation of  ln (𝑥)  using the Equation (2.7), 

values of actual and calculated 𝑙𝑛 (𝑥) are given Table 2.4. 

Table 2.4: Comparison Of Actual And Calculated Values of 𝑙𝑛(𝑥) 

𝑥 ln(𝑥) 

On The 

ln(𝑥) 

Actual 

Percentage 

Error 

𝑥 ln(𝑥) 

On The 

ln(𝑥) 

Actual 

Percentage 

Error 
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Basis Of 

Equation 

(2.7) 

Basis Of 

Equation  

(2.7) 

2 0.69444 . 69315 . 18715 10 2.29823 2.30258 −.18912 

3 1.09740 1.09861 −.10967 11 2.39347 2.39789 −.18455 

5 1.60618 1.60944 −.20242 13 2.56043 2.56495 −.17611 

7 1.94195 1.94591 −.20328 15 2.70347 2.70805 −.16900 

9 2.19296 2.19722 −.19409 30 3.40119 3.49119 −.13243 

Perusal of values mentioned in the Table 2.4, reveals that at lower values of 𝑛, error 

is comparatively large and at higher value, the error is less. 

2.4a. Derivation of Formulae for Multiplication And Division of Two Numbers 

And Their Corresponding Logarithm 

When 𝒙 > 𝑦, 

𝑥 · 𝑦 ≃ 𝑒
4(

1

3
+

1

5
+

1

7
+⋯+

1

2𝑦−1
)

· 𝑒
2(

1

2𝑦+1
+

1

2𝑦+3
+

1

2𝑦+5
+⋯+

1

2𝑥−1
)
 

   · 𝑒
4{

1

23·32+
1

33·52+
1

43·72+⋯+
1

𝑦3(2𝑦−1)2}
 

   · 𝑒
2{

1

(𝑦+1)3(2𝑦+1)2+
1

(𝑦+2)3(2𝑦+3)2+
1

(𝑦+3)3(2𝑦+5)2+⋯+
1

𝑥3·(2𝑥−1)2}
,(2.8) 

𝑙𝑛(𝑥) + 𝑙𝑛(𝑦) ≃ 4 (
1

3
+

1

5
+

1

7
+ ⋯

1

2𝑦 − 1
) 

 +2 (
1

2𝑦+1
+

1

2𝑦+3
+

1

2𝑦+5
+ ⋯ +

1

2𝑥−1
) 

+4 {
1

23 · 32
+

1

33 · 52
+ +

1

43 · 72
+ ⋯ +

1

𝑦3(2𝑦 − 1)3} 

 +2 {
1

(𝑦+1)3(2𝑦+1)2 +
1

(𝑦+2)3(2𝑦+3)2 +
1

(𝑦+3)3(2𝑦+5)2 + ⋯ +
1

𝑥3(2𝑥−1)2},(2.9) 

𝑥/𝑦 ≃

𝑒
2(

1

2𝑦+1
+

1

2𝑦+3
+

1

2𝑦+5
+⋯+

1

2𝑥−1
)
. 𝑒

2{
1

(𝑦+1)3.(2𝑦+1)2+
1

(𝑦+2)3.(2𝑦+3)2+
1

(𝑦+3)3.(2𝑦+5)2+⋯+
1

𝑥3(2𝑥−1)3}
(2.10) 

and 

𝑙𝑛(𝑥) − ln(𝑦) ≃ 2 (
1

2𝑦 + 1
+

1

2𝑦 + 3
+

1

2𝑦 + 5
+ ⋯ +

1

2𝑥 − 1
) 

 +2 {
1

(𝑦+1)3·(2𝑦+1)2 +
1

(𝑦+2)3·(2𝑦+3)2 +
1

(𝑦+3)3·(2𝑦+5)2 + ⋯ +
1

𝑥3·(2𝑥−1)2}. (2.11) 

When 𝒙 < 𝑦, 

𝑥 · 𝑦 ≃ 𝑒
4(

1

3
+

1

5
+

1

7
+⋯+

1

2𝑥−1
)+2(

1

2𝑥+1
+

1

2𝑥+3
+

1

2𝑥+5
+⋯+

1

2𝑦−1
)
 

· 𝑒
4{

1

23·32+
1

33·52+
1

43·72+⋯+
1

𝑥3(2𝑥−1)2}+2{
1

(𝑥+1)3.(2𝑥+1)2+
1

(𝑥+2)3.(2𝑥+3)2+⋯+
1

𝑦3.(2𝑦−1)2}
,     (2.12) 
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𝑙𝑛(𝑥) + 𝑙𝑛(𝑦) ≃ 4 (
1

3
+

1

5
+

1

7
+ ⋯

1

2𝑥 − 1
) 

+2 (
1

2 𝑥 + 1
+

1

2𝑥 + 3
+

1

2𝑥 + 5
… +

1

2𝑦 − 1
) 

+4{
1

23·32 +
1

33·52 + +
1

43·72 + ⋯ +
1

𝑥3(2𝑥−1)3} 

 +2 {
1

(𝑥+1)3(2𝑥+1)2 +
1

(𝑥+2)3(2𝑥+3)2 +
1

(𝑥+3)3(2𝑦+5)2 + ⋯ +
1

𝑦3(2𝑦−1)2},  (2.13) 

𝑥

𝑦
≃ 𝑒

−2(
1

2𝑥+1
+

1

2𝑥+3
+

1

2𝑥+5
+⋯+

1

2𝑦−1
)
𝑒

−2{
1

(𝑥+1)3.(2𝑥+1)2+
1

(𝑥+2)3.(2𝑥+3)2+
1

(𝑥+3)3.(2𝑥+5)2+⋯+
1

𝑦3.(2𝑦−1)2}
,(2.14) 

and                

ln(𝑥) − ln(𝑦) ≃ −2 (
1

2𝑥 + 1
+

1

2𝑥 + 3
+

1

2𝑥 + 5
… +

1

2𝑦 − 1
) 

 −2 {
1

(𝑥+1)3.(2𝑥+1)2 +
1

(𝑋+2)3.(2𝑥+3)2 +
1

(𝑥+3)3.(2𝑥+5)2 + ⋯ +
1

𝑦3.(2𝑦−1)2}. (2.15) 

2.4b. Elimination of Error  In Approximation of Logarithm of A Number 

Let there be a number 𝑝/𝑞. For elimination of error, we write, 𝑝/𝑞 = (𝑚 · 𝑝)/(𝑚 · 𝑞) 

where integer 𝑚  has large value. 

When 𝒑/𝒒 > 1. 

Using equation (2.10), 

 𝑝/𝑞 = (𝑚 · 𝑝)/(𝑚 · 𝑞)

≃ 𝑒
2(

1

2𝑚𝑞+1
+

1

2𝑚𝑞+3
+

1

2𝑚𝑞+5
+⋯+

1

2𝑚𝑝−1
)
𝑒

2{
1

(𝑚𝑞+1)3.(2𝑚𝑞+1)2+
1

(𝑚𝑞+2)3(2𝑚𝑞+3)2+
1

(𝑚𝑞+3)3(2𝑚𝑞+5)2+⋯+
1

(𝑚𝑝)3(2𝑚𝑝−1)2} ,
 

                  (2.16) 

and 

ln (
𝑝

𝑞
) = ln {

𝑚 · 𝑝

𝑚 · 𝑞
}

≃ 2 (
1

2𝑚𝑞 + 1
+

1

2𝑚𝑞 + 3
+

1

2𝑚𝑞 + 5
… +

1

2𝑚𝑝 − 1
)

+ 2 {
1

(𝑚𝑞 + 1)3(2𝑚𝑞 + 1)2
+

1

(𝑚𝑞 + 2)3(2𝑚𝑞 + 3)2

+
1

(𝑚𝑞 + 3)3(2𝑚𝑞 + 5)2
+ ⋯ +

1

(𝑚𝑝)3(2𝑚𝑝 − 1)2}     (2.17) 

When  𝟎 < 𝑝/𝑞 < 1, 

𝑝

𝑞
=

𝑚 · 𝑝

𝑚 · 𝑞
≃ 𝑒

−2(
1

2𝑚𝑝+1
+

1

2𝑚𝑝+3
+

1

2𝑚𝑝+5
+⋯+

1

2𝑚𝑞−1
)
 

  · 𝑒
−2{

1

(𝑚𝑝+1)3(2𝑚𝑝+1)2+
1

(𝑚𝑝+2)3(2𝑚𝑝+3)2+
1

(𝑚𝑝+3)3(2𝑚𝑝+5)2+⋯+
1

(𝑚𝑞)3(2𝑚𝑞−1)2}
, (2.18) 

and 
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ln(𝑝/𝑞) = ln {
𝑚 · 𝑝

𝑚 · 𝑞
}

≃ −2 (
1

2𝑚𝑝 + 1
+

1

2𝑚𝑝 + 3
+

1

2𝑚𝑝 + 5
+ ⋯ +

1

2𝑚𝑞 − 1
)

− 2 {
1

(𝑚𝑝 + 1)3(2𝑚𝑝 + 1)2
+

1

(𝑚𝑝 + 2)3(2𝑚𝑝 + 3)2

+
1

(𝑚𝑝 + 3)3(2𝑚𝑝 + 5)2
+ ⋯ +

1

(𝑚𝑞)3(2𝑚𝑞 − 1)2}.         (2.19) 

Since 𝑚 is appreciably large, values of  

2 {
1

(𝑚𝑞+1)3(2𝑚𝑞+1)2 +
1

(𝑚𝑞+2)3(2𝑚𝑞+3)2 +
1

(𝑚𝑞+3)3(2𝑚𝑞+5)2 + ⋯ +
1

(𝑚𝑝)3(2𝑚𝑝−1)2}  

and−2 {
1

(𝑚𝑝+1)3(2𝑚𝑝+1)2 +
1

(𝑚𝑝+2)3(2𝑚𝑝+3)2 + 1
(𝑚𝑝+3)3(2𝑚𝑝+5)2 + ⋯ +

1

(𝑚𝑞)3(2𝑚𝑞−1)2}are ignorable and Equations (2.16), (2.17), (2.17) and (2.18) transform 

into Equations (2.20), (2.21), (2.22) and (2.23).       

   When 𝒑/𝒒 > 1,  we get 

𝑝/𝑞 = (𝑚 · 𝑝)/(𝑚 · 𝑞) ≃ 𝑒
2(

1

2𝑚𝑞+1
+

1

2𝑚𝑞+3
+

1

2𝑚𝑞+5
+⋯+

1

2𝑚𝑝−1
)
(2.20) 

and 

 ln (
𝑝

𝑞
) =  ln (

𝑚·𝑝

𝑚·𝑞
) ≃ 2 (

1

2𝑚𝑞+1
+

1

2𝑚𝑞+3
+

1

2𝑚𝑞+5
+ ⋯ +

1

2𝑚𝑝−1
).           

(2.21) 

  When  𝟎 < 𝑝/𝑞 < 1, 

𝑝/𝑞 = (𝑚 · 𝑝)/(𝑚 · 𝑞) ≃ 𝑒
−2(

1

2𝑚𝑝+1
+

1

2𝑚𝑝+3
+

1

2𝑚𝑝+5
+⋯+

1

2𝑚𝑞−1
)
  (2.22) 

and 

 ln (
𝑝

𝑞
) = ln (

𝑚·𝑝

𝑚·𝑞
) ≃ −2 (

1

2𝑚𝑝+1
+

1

2𝑚𝑝+3
+

1

2𝑚𝑝+5
+ ⋯ +

1

2𝑚𝑞−1
).        (2.23) 

Derivations of Equations (2.20), (2.21), (2.22) and (2.23) prove Lemmas2.5, 2.6, 2.7 

and 2.8. 

Example: Let there be  𝑝/𝑞 = 1/2  and assuming 𝑚 = 25, then (𝑚 · 𝑝)/(𝑚 · 𝑞 =

25/50 . On  putting these values in equation (2.22), we get, ln (
1

2
) = ln (

25

50
) ≃

−2 (
1

51
+

1

53
+

1

55
+ ⋯ +

1

99
) − 2 {

1

263·512 +
1

273·532 +
1

283·552 + ⋯ +

1

503·992}.Therefore,ln (
1

2
) ≃ 2 (

1

51
+

1

53
+

1

55
+ ⋯ +

1

99
) = −.693097198. Actual 

value of ln (
1

2
) is−.6931471806. Percentage error is 0.007210944709.  

Table 2.5 Logarithm of Numbers Between 0 To 2 After Elimination of Error 

{(𝑚)𝑝}/{(𝑚)𝑞} ln(𝑝/𝑞) ln(𝑝/𝑞) Percentage 
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Calculated Actual Error 

(25)1/(25)4 −1.38623188 −1.386294361 0.004507060091 

 

(25)1/(25)2 −0.693097198 −.6931471806 . 00778721778 

(40)3/(40)4 -0.2876808066 −0.2876820725 4.4001761 × 10−4 

(15)9/(15)10 -0.1053600813 −0.1053605157 4.12258637 × 10−4 

(30)5/(30)4 0.2231425097 0.2231435513 −4.66791087 × 10−4 

(50)3/(50)2 0.4054627934 0.4054651081 −5.70877276 × 10−4 

(22)7/(22)4 0.5596121685 0.5596157879 −7.33170063 × 10−4 

(10)19/(10)10 0.6418508407 0.6418538862 −4.74480635 × 10−4 

It is explicit from the data given in Table 2.5 that percentage error being multiple of  

10−4 is small. By increasing the value of m, the error can be further reduced.  

Lemma2.5: A number  𝑝/𝑞  approximates to 𝑒
2(

1

2𝑚𝑞+1
+

1

2𝑚𝑞+3
+

1

2𝑚𝑞+5
+⋯+

1

2𝑚𝑝−1
)
,  when 

𝑝/𝑞 > 1 and to 𝑒
−2(

1

2𝑚𝑝+1
+

1

2𝑚𝑝+3
+

1

2𝑚𝑝+5
+⋯+

1

2𝑚𝑞−1
)
, when  0 < 𝑝/𝑞 < 1 , where 

integer  𝑚 is such that  𝑚 · 𝑝 and 𝑚 · 𝑞 are both appreciably large. Also higher the 

value of 𝑚 · 𝑝 and 𝑚 · 𝑞 , less will be the error.   

Lemma2.6: Logarithm of a number 
𝑝

𝑞
 approximates to 2 (

1

2𝑚𝑞+1
+

1

2𝑚𝑞+3
+

1

2𝑚𝑞+5
+

⋯ +
1

2𝑚𝑝−1
), when 

𝑝

𝑞
> 1 and to −2 (

1

2𝑚𝑝+1
+

1

2𝑚𝑝+3
+

1

2𝑚𝑝+5
+ ⋯ +

1

2𝑚𝑞−1
), when 

0 <
𝑝

𝑞
< 1 and integer  𝑚  is such that 𝑚. 𝑝 and 𝑚. 𝑞 are appreciably large. Also 

higher the value of 𝑚 · 𝑝 and 𝑚 · 𝑞, less will be the error. 

𝑂𝑅 

Lemma2.7: Logarithm of a number  𝑝/𝑞  approximates to double the sum of odd 

harmonic series which has terms given by 𝑇 = 2 ∑ {1/(2𝑚𝑥 − 1)},
𝑝

𝑥=(𝑞+1/𝑚)
 

where 𝑥  varies from (𝑞 + 1/𝑚)  to 𝑝,   (𝑝/𝑞) > 1and integer  𝑚  is such that  𝑚 · 𝑝 

and 𝑚 · 𝑞 are appreciably large. Also higher the value of 𝑚 · 𝑝 and 𝑚 · 𝑞, less will be 

the error. 

Lemma 2.8: Logarithm of a number  𝑝/𝑞 approximates to double the sum of odd 

harmonic series which has terms given by 𝑇 = −2 ∑ {1/(2𝑚𝑥 − 1)
𝑞

𝑥=(𝑝+1/𝑚)
 

where 𝑥  varies from (𝑝 + 1/𝑚) to q,  0 < 𝑝/𝑞 < 1 and integer 𝑚  is such that 𝑚 · 𝑝 

and 𝑚 · 𝑞 are appreciably large. Also higher the value of   𝑚 · 𝑝 and 𝑚 · 𝑞, less will 

be the error. 

2.5. Algorithm For Determination Of Natural Logarithm Of A Number 
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1. Let the given real number be  𝑝/𝑞. 

2. Check if  𝑝/𝑞 < 0. If it is < 0, then reject it as there is no logarithm in real 

quantities for a negative number. Also check if  𝑝/𝑞 = 0 or 𝑝 = 0 or 𝑞 = 0, 

if either 𝑝 or 𝑞 is zero, then go to 3 and reject it as there is no logarithm in 

real quantities for a number 0  or ∞. When 𝑝/𝑞 > 0, then go to 4. 

3.  Reject. 

4.  Put 𝑚 = 1, 2, 3, … so on till both integers   𝑚 · 𝑝and𝑚 · 𝑞  are larger than say 

150. It is observed from the figures mentioned in Table 5, when integers  𝑚 ·

𝑝and𝑚 · 𝑞 both are above 100, logarithm of a number has percentage error in 

multiple of  10−4. If percentage error less than multiple of  10−4 is required, 

value of 𝑚 needs to be increased so as to make integers 𝑚 · 𝑝and𝑚 · 𝑞, both 

more than 150. Higher the value of 𝑚 · 𝑝and𝑚 · 𝑞 , less will be the error. 

5. Record value of 𝑚 that makes integers  𝑚 · 𝑝and𝑚 · 𝑞, both more than say 

150. 

6. Check if  𝑝/𝑞 > 1. If it is not, go to 8 otherwise go to 7. 

7. Calculate 2 (
1

2𝑚𝑞+1
+

1

2𝑚𝑞+3
+

1

2𝑚𝑞+5
+ ⋯ +

1

2𝑚𝑝−1
). Let its value be 𝑦. Go 

to 9. 

8. Calculate −2 (
1

2𝑚𝑝+1
+

1

2𝑚𝑝+3
+

1

2𝑚𝑝+5
+ ⋯ +

1

2𝑚𝑞−1
). Let its value be 𝑦. 

9. Print result 𝑦. 

10. Result is ln(p/q)  ≃ 𝑦. 

2.6. Factorial of an Integer 2 And Higher   

Factorial of a positive integer is given by relation, 𝑛! = (1)(2)(3) … (𝑛) and ln(𝑛) is 

given by   

ln(𝑛!) = ln(2) + ln(3) + ln(4) + ⋯ + ln(n − 2) + ln(n − 1) + ln(𝑛).  (2.24) 

On substituting values of ln 2 , ln 3 , ln 4 , … , ln 𝑛 obtained using Equation (2.6)  in 

Equation (2.24), we get 

ln 𝑛! ≃ 2 (
n − 1

3
+

n − 2

5
+

n − 3

7
+ ⋯ +

2

2𝑛 − 3 
+

1

2𝑛 − 1
)

+ 2 {
𝑛 − 1

23 · 32
+

𝑛 − 2

33 · 52
+

𝑛 − 3

43 · 72
+ ⋯ +

𝑛 − (𝑛 − 2)

(𝑛 − 1)3(2𝑛 − 3)2

+
𝑛 − (𝑛 − 1)

𝑛3. (2𝑛 − 1)2}. 

For better clarity, step by step simplification is given below. On rearranging terms, 

ln 𝑛! ≃ 2n (
1

3
+

1

5
+

1

7
+ ⋯ +

1

2𝑛 − 3 
+

1

2𝑛 − 1
) 

  − (1 −
1

3
+ 1 −

1

5
+ 1 −

1

7
+ ⋯ + 1 −

1

2𝑛−3
+ 1 −

1

2𝑛−1
) 
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  +2 {
𝑛

23·32 +
𝑛

33·52 +
𝑛

43·72 + ⋯ +
𝑛

(𝑛−1)3(2𝑛−3)2 +
𝑛

𝑛3(2𝑛−1)2} 

  −2 {
1

23·32 +
2

33·52 +
3

43·72 + ⋯ +
(𝑛−2)

(𝑛−1)3(2𝑛−3)2 +
(𝑛−1)

𝑛3(2𝑛−1)2}. 

Or 

ln 𝑛! ≃ 𝑛 · ln(𝑛) + (
1

3
+

1

5
+

1

7
+ ⋯ +

1

2𝑛 − 3 
+

1

2𝑛 − 1
) − (𝑛 − 1)

− [(
1

23 · 3
−

1

23 · 32
) + (

1

33 · 5
−

1

33 · 52
) + (

1

43 · 7
−

1

43 · 72
) + ⋯

+ {
1

𝑛3 · (2𝑛 − 1)
−

1

𝑛3 · (2𝑛 − 1)2}] . 

Or 

ln 𝑛! ≃ (𝑛 +
1

2
) ln(𝑛) − (𝑛 − 1)

− {(
1

23 · 3
) + (

1

33 · 5
) + (

1

43 · 7
) + ⋯ +

1

(𝑛 − 1)3(2𝑛 − 3)

+
1

𝑛3(2𝑛 − 1)
}. 

Or 

ln 𝑛! ≃ (𝑛 +
1

2
) ln(𝑛) − (𝑛 − 1) − ∑ {

1

𝑥3(2𝑥−1)
}

𝑛

𝑥=2
.   (2.25) 

On decomposing  
1

𝑥3(2𝑥−1)
 into partial fractions, we get,∑ [1/{𝑥3(2𝑥 − 1)}] =

∑ {−1/𝑥3 − 2/𝑥2 − 4/𝑥 + 8/(2𝑥 − 1)}. Since  ∑ {−1/𝑥3 − 2/𝑥2 − 4/𝑥 +

8/(2𝑥 − 1)} approximates to ∫ {−1/𝑥3 − 2/𝑥2 − 4/𝑥 + 8/(2𝑥 − 1)} 𝑑𝑥,  

therefore,  

∑{−1/𝑥3 − 2/𝑥2 − 4/𝑥 + 8/(2𝑥 − 1)}

≃ ∫ {−1/𝑥3 − 2/𝑥2 − 4/𝑥 + 8/(2𝑥 − 1)} 𝑑𝑥 

Or 

∑[1/{𝑥3(2𝑥 − 1)}] ≃ 1/(2𝑥2) + 2/𝑥 − 4 · ln(𝑥) + 4 · ln(2𝑥 − 1) + 𝐶. 

At 𝑥 = 2, ∑ [1/{𝑥3(2𝑥 − 1)}] is equal to1/{3(23)}. Therefore, at 𝑥 = 𝑛 , we 

obtain,  
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∑ {
1

𝑥3(2𝑥 − 1)
}

≃
1

23 · 3
+

1

2
(

1

𝑛2
−

1

22
) + 2 (

1

𝑛
−

1

2
) + 4. ln (1 −

1

2𝑛
) − 4 · ln(3)

+ 8 · ln(2) . 

Or   

∑ {
1

𝑥3(2𝑥 − 1)
}

 𝑛

 𝑥=2

≃ 0.06739495647 + 2 (
1

𝑛
+

1

4𝑛2
) + 4 · ln (1 −

1

2𝑛
) .   

On putting this value∑ [1/{𝑥3(2𝑥 − 1)}
 𝑛

 𝑥=2
 in equation (2.25),  

ln 𝑛! ≃ (𝑛 +
1

2
) · ln(𝑛) − (𝑛 − 1) − 0.06739495647 − 2 (

1

𝑛
+

1

4𝑛2
) − 4

· ln (1 −
1

2𝑛
) . 

Or 

 𝑛! ≃ 𝑒 .9326050435 · 𝑛
1

2 · (
𝑛

𝑒
)

𝑛
· 𝑒

−2(
1

𝑛
+

1

4𝑛2)
· {1 −

1

2𝑛
}

−4
.           (2.26) 

On account of our assumption made in paragraph 2.3 that term 1/{𝑥6(2𝑥 − 1)3} and 

other terms containing higher power of 𝑥 are ignored and also another  assumption 

that ∑ {−1/𝑥3 − 2/𝑥2 − 4/𝑥 + 8/(2𝑥 − 1)} approximates to ∫ {−1/𝑥3 −

2/𝑥2 − 4/𝑥 + 8/(2𝑥 − 1)} 𝑑𝑥, error has crept in the approximation of 𝑛!. However, 

this error is appreciably reduced if equation (2.26) is modified to 

 𝑛! ≃ √𝑒1.83788 · 𝑛 · (𝑛/𝑒)𝑛 · 𝑒
−2(

1

𝑛
+

10

33.𝑛2)
· (1 − 200/387𝑛)−4           (2.27) 

Based on equation (2.27), factorial of some integers are calculated and are given in 

the Table2.6. Perusal of data mentioned in the Table, reveals that maximum 

percentage error is approximately 0.5 and this gets reduced as 𝑛 increases. For 160!, 

it is approximately 0.01. Further, this derivation proves  the purpose that ‘summation 

of odd harmonic series facilitates approximation of factorial of a number.’  

Table 2.6: Percentage Error Associated With Approximation of Factorial Using Equation 

(2.27) 

𝑛! Actual 𝑛! Calculated 

𝑛! 

Percentage 

Error 

Actual 𝑛! Calculated 𝑛! Percentage 

Error 

2! 2 2.00584 . 29198 1.19622221

× 1056 

1.19575474

× 1056 

−.039078 
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3! 6 5.96749 −.54182 8.31860099

× 1081 

8.32098711

× 1081 

−.02867 

4! 24 23.87311 −.52869 2.48091408

× 10109 

2.48035295

× 10109 

−.02262 

5! 120 119.46289 −.44759 1.03299785

× 10148 

1.03281577

× 10148 

−.01763 

10 362880 3621048 −.21360 1.58824554

× 10178 

1.58800549

× 10178 

−.01511 

15! 1.30767

× 1012 

1.305926

× 1012 

−.13371 1.88267718

× 10209 

1.88242823

× 10209 

−.01322 

25! 1.54996

× 1025 

1.55112

× 1025 

-.074715 1.34620125

× 10241 

1.34604309

× 10241 

−.01175 

35! 1.03331

× 1040 

1.03278

× 1040 

−.05141 4.71472364

× 10284 

4.71424166

× 10284 

−.01022 

2.7. Number Constant  

 Quantity 2 ∑ [1/{𝑥3(2𝑥 − 1)2 𝑛

 𝑥=2
 appearing in the formula for approximation of 

logarithm of a number 𝑛 is equal to Number Constant provided 𝑛 → ∞  and for 

calculating its numerical value, quantity 
1

𝑥3(2𝑥−1)2 is decomposed into partial fractions 

12

𝑥
−

24

2𝑥−1
+

4

𝑥2 +
1

𝑥3 +
8

(2𝑥−1)2 ,  therefore, ∑
1

𝑥3(2𝑥−1)2 ≃ ∫ {
12

𝑥
−

24

2𝑥−1
+

4

𝑥2 +

1

𝑥3 +
8

(2𝑥−1)2} 𝑑𝑥where 𝑥 varies from 2 to 𝑛. On integration and simplification,  

2 ∑
1

𝑥3(2𝑥 − 1)2
≃

 𝑛

 𝑥=2

24 · ln (
𝑥

2𝑥 − 1
) −

8

𝑥
−

1

𝑥2
−

8

2𝑥 − 1
+ 16.67560703904 

and 

Lim
𝑛→∞

 2 ∑
1

𝑥3(2𝑥 − 1)2
≃

𝑛 

𝑥=2 

− 24 · ln(2) + 16.67560703904 

   ≃ .040074705601703.             (2.28) 

According to Equation (2.7), ln(𝑛) − 2 ∑
1

(2𝑥−1)
 ≃

𝑛 

𝑥=2 
2 ∑

1

𝑥3(2𝑥−1)2

 𝑛

 𝑥=2
 , 

therefore, when 𝑛 → ∞ , 

ln(𝑛) − 2 ∑
1

(2𝑥−1)

𝑛 

𝑥=2 
≃ 2 ∑

1

𝑥3(2𝑥−1)2

 𝑛

 𝑥=2
≃ 𝑁𝑟 ≃ 0.040074705601703.(2.29) 

where 𝑁𝑟 is a constant called Number Constant.  

2.8. Approximation Of Euler-Mascheroni Constant  γ 
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According to equation (2.29), when  𝑛 → ∞ , ln(𝑛) ≃ 2 ∑ 1/(2𝑥 − 1) + 𝑁𝑟
𝑛 

𝑥=2 
. On 

adding and subtracting 2 − ln(2), the Equation (2.29) can be rewritten as 

Lim
𝑛→∞

ln(𝑛) = lim
𝑛→∞

2 (
1

3
+

1

5
+

1

7
+ ⋯ 

1

2𝑛 − 1
)

+ {2 − ln(2)} −{2 − ln(2)}  +𝑁𝑟. 

Or 

lim
𝑛→∞

ln(𝑛) = lim
𝑛→∞

2 (
1

3
+

1

5
+

1

7
+ ⋯ 

1

2𝑛 − 1
)

+ {2 − (1 −
1

2
+

1

3
−

1

4
+ ⋯  𝑢𝑝𝑡𝑜 ∞)} − {2 − ln(2)}  +𝑁𝑟, 

since ln(2) = (1 −
1

2
+

1

3
−

1

4
+ ⋯ 𝑢𝑝 𝑡𝑜 ∞). On adding ln(2) in RHS and LHS, 

rearranging  and simplifying, 

lim
𝑛→∞

(1 +
1

2
+

1

3
+

1

5
+

1

7
+ ⋯ 

1

2𝑛 − 1
) − lim

𝑛→∞
ln(𝑛) − ln(2) ≃ 2 − 2 . ln(2) − 𝑁𝑟 . 

Or 

lim
𝑛→∞

∑
1

𝑥

2𝑛

𝑥=1

− lim
𝑛→∞

ln(2𝑛) ≃ 2 − 2 · ln(2) − 𝑁𝑟  . 

Let 𝑝 = 2𝑛. When 𝑛 → ∞, 𝑝 also tends to ∞ and 

  lim
𝑝→∞

∑ (1/𝑥)
𝑝

𝑥=1
− lim

𝑝→∞
ln(𝑝) ≃ 2 − 2 · ln(2) − 𝑁𝑟 .            (2.30) 

By definition,  

Euler-Mascheroni Constant γ = lim
𝑝→∞

∑ (1/𝑥)
𝑝

𝑥=1
− lim

𝑝→∞
ln(𝑝) .      (2.31) 

Therefore, 

 Euler − Mascheroni Constant ≃ 2 − 2 · ln(2) − 𝑁𝑟  .           (2.32) 

On substituting the value of 𝑁𝑟 , 

 Euler − Mascheroni Constant ≃ 2 − 2 · ln(2) − ∑ {
2

𝑛3·(2𝑛−1)2}
∞

2
.(2.33) 

2.8a. Approximation of Numerical Value of Euler Mascheroni Constant  γ 

On putting the value of 𝑁𝑟 given by equation (2.29) in equation (2.30), 

Euler Mascheroni Constant ≃ 0.5736309333. Actual value of Euler Mascheroni 

Constant [7]  γ is0.577215664901. There is an error of about −0.6 percent which is 

attributed to the fact that exponential quantity 2/(2𝑛 − 1 − 1/𝑛3) appearing in 

equation (2.3), is approximated to 2/(2𝑛 − 1) + 2/{𝑛3(2𝑛 − 1)2} ignoring term 

2/{𝑛6(2𝑛 − 1)3} and other terms containing higher powers of 𝑛. Also in paragraph 

2.7,  lim
𝑛→∞

∑ 1/{𝑥3(2𝑥 − 1)2}
𝑛 

 𝑥=2
 is approximated to ∫ {12/𝑥 − 24/(2𝑥 − 1) +

∞ 

2 
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4/𝑥2 + 1/𝑥3 + 8/(2𝑥 − 1)2} 𝑑𝑥.Even Equation (2.1) derived for exponential 

representation of numbers gives approximate results. All these factors accumulated 

the error to −0.6   p.c.   

3. Results, Conclusions And Discussion 

Overview of what has been described in the paper, makes it amply clear that the 

golden key  to open the doors to approximation of logarithm, factorial of a number or 

Euler Mascheroni constant, is the representation of a number in exponential form and 

that was made possible by factorisation of the number. In general, when a number 𝑥  

is factorised, its 𝑛𝑡ℎ factor is given by the relation 𝑇𝑛 = 𝑛/(𝑛 − 1) which is simply a 

ratio of two consecutive integers 𝑛 and (𝑛 − 1) but is extraordinary enough to build a 

number. It will not be out of context to state that it bears a strong analogy with human 

cells. Human cells trillions in number compose the body and  NBB’s,  in the same 

way, though limited to (𝑥 − 1) in number, compose a number 𝑥.  To illustrate how 

NBB’s compose a number, we present the relation between 𝑥 and NBB’s.   

𝑥 = (2/1) · (3/2) · (4/3) … {𝑥/(𝑥 − 1)}. 

It is obvious, NBB’s (2/1), (3/2), (4/3), … , {𝑥/(𝑥 − 1)} are (𝑥 − 1) in number and 

when multiplied generate a number 𝑥.  In normal practice, a number 𝑥 is envisaged as 

that  which has magnitude equal to what we get when 1 is added 𝑥 times. This 

concept of numbers by addition, arises on account of the fact, we are taught 

mathematics starting with ‘counting of the numbers,’ in kindergarten and basing 

thereupon, we  distinguish one number from the other on account of weight acquired 

on accumulation of unities in it. We do addition and subtraction  corresponding 

integers to our  fingers that is why fingers are called digits. With these strong 

prejudices, we are unable to envisage an integer as product of numbers. Thinking out 

of box, we have considered, in this paper, an integer to be product of NBB’s. Based 

upon that we give some examples. (101/3)  is   product of NBB’s (4/3), (5/4), (7/

8) … , (101/100) and  20 is product of NBB’s (4/3), (4/3)  , (5/4), (5/4), (7/

6), … , (36/35). Using NBB’s, a number say 𝑥 can be represented in infinite ways. 

This is the crux of the research highlighted in the paper. 

Once NBB’s are known, a function to approximate NBB’s is devised using the 

identity ln(𝑛) = ∑ 𝑥/(𝑥 − 1)
𝑛

2
 . Approximating  ∑ 𝑥/(𝑥 − 1)

𝑛

2
  to 

∫ ln{x/(x − 1)} 𝑑𝑥,
𝑥

2
 we derived a relation, 𝑥 ≃ 𝑒2/(2x−1−1/x3).This relation is, then 

simplified to 𝑥 ≃ 𝑒2/(2x−1) · 𝑒2/{x3(2x−1)2}for its easy applicability to approximation 

of a number, a factorial and Euler Mascheroni constant. On the basis of this relation, 

we derived, 𝑙𝑛(𝑥) ≃ 2 ∑ 1/(2𝑛 − 1)
𝑥

𝑛=2
+ 2 ∑ [1/{𝑛3(2𝑛 − 1)2𝑥

𝑛=2
}] . Right hand 
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side of this equation has terms  2 ∑ [1/{𝑥3(2𝑥 − 1)2𝑥

𝑛=2
}],which are difficult to 

calculate, therefore,  a method is innovated to get rid of these. It is observed,  
1

23·32 >

1

33·52 >
1

43·72 > ⋯ >
1

𝑥3(2𝑥−1)2 , therefore, initial terms like 
1

23·32 ,
1

33·52 ,
1

43·72 , … have 

substantive values.  To reduce the effect of these terms,  multiplier 𝑚  having large 

value, is used so as to make 𝑥 as  (𝑚 · 𝑥)/𝑚 .In this way, the equations are modified 

to 𝑥 ≃ 𝑒2 ∑  {1/(2𝑛−1)} 
𝑚𝑥

𝑛=𝑚+1 · 𝑒2 ∑  [1/{𝑛3(2𝑛−1)2}] 
𝑚𝑥

𝑛=𝑚+1 and𝑙𝑛(𝑥) ≃ 2 ∑ 1/
𝑚𝑥

𝑛=𝑚+1

(2𝑛 − 1) + 2 ∑ [1/{𝑛3(2𝑛 − 1)2𝑚𝑥

𝑛=𝑚+1
}]. Since value of 𝑚 is appreciably large, 

therefore, sum of series  2 {
1

(𝑚+1)3·(2𝑚+1)2 +
1

(𝑚+2)3·(2𝑚+3)2 +
1

(𝑚+3)3·(2𝑚+5)2 + ⋯ +

1

(𝑚𝑥)3·(2𝑚𝑥−1)2} can be ignored. In that situation, 𝑥 ≃ 𝑒2 ∑  {1/(2𝑛−1)} 
𝑚𝑥

𝑛=𝑚+1 and  

𝑙𝑛(𝑥) ≃ 2 ∑ 1/(2𝑛 − 1)
𝑚𝑥

𝑛=𝑚+1
.It is explicit from above equations that double the 

sum of odd harmonic series  2 ∑ 1/(2𝑛 − 1)
𝑚𝑥

𝑛=𝑚+1
 approximates to natural 

logarithm of 𝑥.These equations were then, applied to derive formulae for product and 

division of two numbers. 

Factorial of a positive integer : 

By definition, 𝑙𝑛(𝑛!) = 𝑙𝑛(2) + 𝑙𝑛(3) +  𝑙𝑛(4), + ⋯ + 𝑙𝑛(𝑛).Substituting values of 

𝑙𝑛(2), 𝑙𝑛(3), 𝑙𝑛(4), … , 𝑙𝑛(𝑛) as given by Equation (2.7) in above equation and, then   

simplifying,  we obtain, 𝑛! ≃ 𝑒 .9326050435 · 𝑛
1

2 · (𝑛/𝑒)𝑛 · 𝑒
−2(

1

𝑛
+

1

4𝑛2)
·

{1 − 1/(2𝑛)}−4and after correction, 

 𝑛! ≃ √𝑒1.83788 · 𝑛 · (𝑛/𝑒)𝑛 · 𝑒
−2(

1

𝑛
+

10

33.𝑛2)
· (1 − 200/387𝑛)−4 

Euler Mascheroni. Constant:   

By definition, Euler Mascheroni. constant is equal to lim
𝑝→∞

∑ (1/𝑥)
𝑝

𝑥=1
− lim

𝑝→∞
ln(𝑝). 

Using Equation (2.7) and simplifying, we obtain equation,   Euler −

Mascheroni Constant ≃ 2 − 2 · ln(2) − ∑ [2/{𝑛3(2𝑛 − 1)2}]
∞

𝑛=2
. Its value, on  

calculation, is found to approximate to 0.577215664901. 

On summing up,  derivation of equation, 𝑙𝑛(𝑥) ≃ 2 ∑ 1/(2𝑛 − 1),
𝑥

𝑛=2
 facilitated  

approximation of 𝑛! and Euler Mascheroni constant. In other words, double the sum 

of odd harmonic series approximates 𝑙𝑛(𝑥) and facilitates approximation of 𝑥! and γ. 

This is what the title of the research says.  
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