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Abstract 

 

A pair of vertices 𝑢 and 𝑣 in a graph 𝐺 is said to be resolved by the vertex 𝑤 if the 

distance between 𝑢 and 𝑤 is not equal to the distance between 𝑣 and 𝑤 symbolically 

we write 𝑑(𝑢, 𝑤) ≠ 𝑑(𝑣,𝑤). For a simple connected graph 𝐺, a set of vertices 𝑅 of 

𝐺 is said to be a resolving set of 𝐺 if every pair of vertices of 𝐺 are resolved by some 

vertices in 𝑅, i.e., every pair of vertices of 𝐺 are uniquely identified by some vertex 

elements in 𝑅. The resolving set of 𝐺 containing the minimum number of vertices is 

the metric basis and the minimum cardinality of the metric basis is called the metric 

dimension of 𝐺. A resolving set 𝐹 for the graph 𝐺 is said to be fault tolerant if for 

each 𝑢 ∈ 𝐹, 𝐹 \{𝑢} is also a resolving set for 𝐺 and the minimum cardinality of the 

fault-tolerant resolving set is the fault-tolerant metric dimension. In this article, we 

study the fault-tolerant metric dimension for  𝑃𝑛
2 for all 𝑛 ≥ 5 . We have successfully 

deduced the fault-tolerant metric dimension of 𝑃𝑛
2 for all 𝑛 ≥ 5 . The existence of at 

least 𝑛  fault-tolerant metric bases for the same graph has been ascertained in this 

paper. 
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1. Introduction 

Every network can be represented by some graph. The identification of every vertex 

(node) uniquely is of great prominence so as to maintain the security of the network. 

Now the questionthat needs to be posed is "What should be an identifying method for 

a given graph?". The distances in graphs play a vital role for the identification of 

vertices uniquely when the graphis connected. Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be a simple 

connected graph and 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑚} be a set of vertices with respect to 𝑅 , we 

define the codes for each vertex of 𝐺 as follows 

𝑐𝑜𝑑𝑒𝑅(𝑣) = (𝑑(𝑟1, 𝑣), 𝑑(𝑟2, 𝑣), . . . , 𝑑(𝑟𝑚, 𝑣)), 
where 𝑑(𝑢, 𝑣) denotes the distance between the vertices 𝑢 and 𝑣 in 𝐺. It is to be noted 

that the code of the vertex 𝑣 with respect to 𝑅 ⊂ 𝑉 (𝐺) is a vector with 

|𝑅|components. A natural intuition can be established that 𝑅 can identify all vertices 

uniquely if 𝑐𝑜𝑑𝑒𝑅(𝑣) ≠ 𝑐𝑜𝑑𝑒𝑅(𝑤) for every pair of vertices 𝑣 and 𝑤. Such type of 

set 𝑅 is called a resolving set. Consequently, a set of vertices 𝑅 of 𝐺 is said to be a 

resolving set if 𝑐𝑜𝑑𝑒𝑅(𝑣) ≠ 𝑐𝑜𝑑𝑒𝑅(𝑤) every pair of vertices 𝑣 and 𝑤. The metric 

basis for a graph 𝐺 is the resolving set of 𝐺 containing the minimum number of 

vertices. The minimum cardinality 𝛽(𝐺) of the resolving set 𝑅 is called the metric 

dimension of 𝐺 and denoted is by 𝛽(𝐺). A fault-tolerant resolving set with minimum 

cardinality is called fault-tolerant metric basis for 𝐺. The concept of metric 

dimensions was first instigated by Slater [1], Harry and Melter [2].The metric basis 

𝛽(𝐺) is the minimum cardinality of theresolving set. Elements in the basis were 

considered as sensors in an application given in [2]. The problem of finding the 

metric dimension for a general graph is a NP-hard. Khuller et al.[3] gave a 

construction that proves that the metric dimension of a graph is NP-hard. 

 

Although the applications of metric bases arise in many various platforms such as 

Robot Navigation, Network Optimization, Sensor networks, heavily used by 

government organization ofIndia such as DRDO, ISRO etc., but still they have some 

reservations due to the fact that ifsome detectors (elements of metric basis) are faulty, 

then it is not possible to identify the nodesuniquely. In order to improve the accuracy 

of the detection or the robustness of the systemHernando et al. introduced concept of 

fault-tolerant metric dimension in [7]. This concept is defined as follows: A resolving 

set 𝐹 of a graph 𝐺 is fault-tolerant if 𝐹 \ {𝑣} is also a resolving set, for every vertex 

𝑣 ∈ 𝐹. The fault-tolerant metric dimension of 𝐺, denoted by 𝛽′(𝐺), is the minimum 

cardinality of a fault-tolerant resolving set. A fault-tolerant resolving set of order 

𝛽′(𝐺) is called a fault-tolerant metric basis. The problem of determining the fault-

tolerantmetric dimension is a NP hard problem and results are known only for some 

classes of graphs. Hernendo et al. [7] characterized all fault tolerant resolving sets for 

any tree 𝑇. In this article they also have shown the relation 𝛽′(𝐺) ≤ 𝛽(𝐺)(1 + 2 ·

5𝛽(𝐺)−1) for every graph 𝐺. For a cycle 𝐶𝑛, the fault-tolerant metric dimension has 

been determined by Javaid et al. in [11] as 𝛽′(𝐶𝑛) = 3. Basak at el. [12] determine 

the fault-tolerant metric dimension of  𝐶𝑛
3. In this paper, we study the fault-tolerant 
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metric dimension of  𝑃𝑛
2. We firstly found out the lower bound for 𝛽′(𝑃𝑛

2) and then 

determine fault tolerant metric bases. Lastly, we were able to determine the exact 

valuefor the same. 

 

The rest of the paper are organized as follows: In the Preliminaries section, we 

explicitly define and explain the various different terminologies and expressions with 

the help of which weestablish the various results for the fault-tolerant metric 

dimension of 𝑃𝑛
2. In section named as Fault-tolerant metric dimension of 𝑃𝑛

2, we have 

put forward and proved the different lemmas,theorems and examples to claim our 

results. In this section we were been able to find that the lower bound for the fault-

tolerant metric dimension of 𝑃𝑛
2 for 𝑛 ≥ 5 i.e., 𝛽′(𝑃𝑛

2) ≥ 4. We have also successfully 

established that there exists a fault-tolerant resolving set of 𝑃𝑛
2 with cardinality 4 for 

𝑛 ≥ 5, which later led to the findings of the upper bound for the fault-tolerant metric 

dimension of 𝑃𝑛
2 which was found as 4 i.e., 𝛽′(𝑃𝑛

2) ≤ 4. The later part of the article 

consists of the concluding remark, acknowledgement and the references that we have 

used to construct the article. 

 

2. Preliminaries 

Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be a graph with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺). Two 

vertices 𝑢 and 𝑣 are called adjacent if there is an edge between 𝑢 and 𝑣. An edge 𝑒 is 

called adjacent to a vertex 𝑣 if 𝑒 has one end as 𝑣. The degree of a vertex 𝑣 ∈ 𝑉 (𝐺) 
is the number of edges adjacent to 𝑣. The distance between two vertices 𝑢 and 𝑣, 

denoted by 𝑑𝐺(𝑢, 𝑣) (or simply 𝑑(𝑢, 𝑣)), is the length of shortest paths between them. 

A path graph 𝑃𝑛 (simply we call path) is an 𝑛-vertex graph in which every vertex has 

degree  2  except two end vertices. Henceforth we denote the vertex set 𝑉 (𝑃𝑛) by 

{𝑣0, 𝑣1, . . . , 𝑣𝑛−1} and hence degree of 𝑣ℓ  is  2  for all ℓ ∈ {1, 2, . . . , 𝑛 −  2}, whereas 

both the vertices 𝑣0 and 𝑣𝑛−1 has degree one. The square of a connected graph 𝐺, 

denoted by 𝐺2, is the graph on the same vertex set as 𝐺 and two vertices 𝑢 and 𝑣 are 

adjacent in 𝐺2 if 𝑑𝐺(𝑢, 𝑣) ≤ 2. Therefore, vertex set 𝑉 (𝑃𝑛
2) is {𝑣0, 𝑣1, . . . , 𝑣𝑛−1} and 

the following proposition is true for 𝑃𝑛
2. 

 

Proposition 2.1 The distance between two vertices  𝑣𝑖  and  𝑣𝑗 in 𝑃𝑛
2 is given by 

𝑑(𝑣𝑖 , 𝑣𝑗) = ⌈
|𝑖−𝑗|

2
⌉ and the diameter of 𝑃𝑛

2 is ⌈
𝑛−1

2
⌉. 

 

Now we define two sets which forms a partition of the vertex set of 𝑃𝑛
2. 

 

Definition 2.1 A vertex 𝑣𝑖in 𝑃𝑛
2 is called an even or odd vertex if accordingly, the 

subscript 𝑖 being an even or odd integer. Let 𝑆[0] and 𝑆[1], respectively, denote set of 

all even and odd vertices of 𝑃𝑛
2. Note that 𝑉(𝑃𝑛

2) = 𝑆[0] ∪ 𝑆[1] is a partition of 𝑉(𝑃𝑛
2). 

For 𝑡 ∈ {0, 1}, an element 𝑣𝑗 ∈ 𝑉(𝑃𝑛
2) is called the largest element of 𝑆[𝑡] if 𝑗 is the 

largest integer such that 𝑣𝑗 ∈ 𝑆[𝑡]. By intuition similarly we will define the term 
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second largest element in the set 𝑆[𝑡] for 𝑡 ∈ {0, 1}. The following lemma gives a 

basic property of a faut-tolerant resolving set for an arbitrary graph. 

 

Lemma 2.1[11] A set 𝐹 ⊂ 𝑉(𝐺) is a fault-tolerant resolving set of 𝐺 if and only if 

every pair of vertices in 𝐺 is resolved by at least two vertices of 𝐹 . 

 

3. Fault-tolerant metric dimension of 𝑷𝒏
𝟐  

In this section, we determine the fault-tolerant metric dimension of 𝑃𝑛
2. First we give 

a lower bound for 𝛽′(𝑃𝑛
2) and then determine fault tolerant metric bases. We need 

following results to determine a lower bound for 𝛽′(𝑃𝑛
2). 

 

Lemma 3.1 Let 𝑣𝑗 resolves two consecutive vertices 𝑣𝑎 and 𝑣𝑎+1. Then 

(a)  𝑗 ≡ 𝑎(𝑚𝑜𝑑 2) with  𝑗 ≤ 𝑎 

(b) 𝑗 ≡ 𝑎 + 1 (𝑚𝑜𝑑 2) with  𝑗 ≥ 𝑎 + 1. 

 

Proof: 

(a) Let 𝑣𝑗 ∈ 𝑉(𝑃𝑛
2) with 𝑗 ≤ 𝑎. Then the distances of two vertices 𝑣𝑎and 𝑣𝑎+1 

from 𝑣𝑗are ⌈
𝑎−𝑗

2
⌉and ⌈

𝑎−𝑗+1

2
⌉, respectively. Let 𝑎 − 𝑗 = 2𝑞 + 𝑟  where 0 ≤

𝑟 ≤ 1. Then ⌈
𝑎−𝑗

2
⌉ ≠ ⌈

𝑎−𝑗+1

2
⌉ implies ⌈

2𝑞+𝑟

2
⌉ ≠ ⌈

2𝑞+𝑟+1

2
⌉ and this is true only 

when  𝑟 = 0. Therefore 𝑗 ≡ 𝑎(𝑚𝑜𝑑 2) with 𝑗 ≤ 𝑎.  

 

(b) Let 𝑣𝑗 ∈ 𝑉(𝑃𝑛
2) with 𝑗 ≥ 𝑎 + 1, i.e., 𝑣𝑗 be a right-side vertex of 𝑣𝑎+1. Then 

the distances of two vertices 𝑣𝑎 and 𝑣𝑎+1 from 𝑣𝑗 are ⌈
𝑗−𝑎

2
⌉ and ⌈

𝑗−𝑎−1

2
⌉, 

respectively. Let 𝑗 − 𝑎 − 1 = 2𝑞 + 𝑟  where 0 ≤ 𝑟 ≤ 1. Then ⌈
𝑗−𝑎

2
⌉ ≠

⌈
𝑗−𝑎−1

2
⌉ implies ⌈

2𝑞+𝑟+1

2
⌉ ≠ ⌈

2𝑞+𝑟

2
⌉ and this is true only when 𝑟 = 0. 

Therefore 𝑗 ≡ 𝑎 + 1(𝑚𝑜𝑑 2) with 𝑗 ≥ 𝑎 + 1.  

 

Lemma 3.2 If  𝐹 misses an element  from  {𝑣1, 𝑣2, . . . , 𝑣𝑛−2}, then |𝐹| ≥ 4. 

 

Proof: Let 𝑣𝑖 ∉ 𝐹for some 𝑖 ∈ {1, 2, . . . , 𝑛 −  2}. Then consider three consecutive 

vertices 𝑢𝑖−1, 𝑢𝑖, 𝑢𝑖+1. For each  ℓ ∈ {𝑖, 𝑖 + 1}, let 𝑅ℓ  denotes the set of vertices 

which resolves 𝑢ℓ−1 and 𝑢ℓ. Then from Lemma 3.1, 𝑅𝑖 = {𝑗 ≡ 𝑖 − 1(𝑚𝑜𝑑 2): 0 ≤
𝑗 ≤  𝑖 − 1} ∪ {𝑗 ≡ 𝑖(𝑚𝑜𝑑 2) ∶ 𝑖 ≤ 𝑗 ≤ 𝑛 − 1}and 𝑅𝑖+1  =  {𝑗 ≡  𝑖 (𝑚𝑜𝑑 2) ∶  0 ≤
 𝑗 ≤  𝑖}  ∪ {𝑗 ≡  𝑖 +  1 (𝑚𝑜𝑑 2) ∶  𝑖 +  1 ≤  𝑗 ≤  𝑛 −  1}. Since F bea fault-

tolerant resolving set, |𝐹 ∩ 𝑅𝑖| ≥ 2 and |𝐹 ∩ 𝑅𝑖+1| ≥ 2. It is clear that 𝑅𝑖 ∩ 𝑅𝑖+1 =
{𝑢𝑖}.Since 𝑣𝑖 ∉ 𝐹, |𝐹 ∩ (𝑅𝑖\{𝑣𝑖})| ≥ 2 and |𝐹 ∩ (𝑅𝑖+1\ {𝑣𝑖})| ≥ 2. Since (𝑅𝑖 ∩
𝑅𝑖+1) \ {𝑣𝑖}  =  ∅, |𝐹|  ≥  |𝐹 ∩  (𝑅𝑖\ {𝑣𝑖})| + |𝐹 ∩ (𝑅𝑖+1\ {𝑣𝑖})| ≥ 4. 
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Theorem 1For a square of path 𝑃𝑛
2 with 𝑛 ≥  5, 𝛽′(𝑃𝑛

2) ≥ 4. 

 

Proof: Let 𝐹 be an arbitrary fault-tolerant resolving set of 𝑃𝑛
2. If 𝐹 miss a vertex 𝑣𝑖 for 

some 𝑖 ∈  {1, 2, . . . , 𝑛 −  2}, then applying Lemma 3.2, we have |𝐹|  ≥  4. Again if  

𝐹 does not miss any vertex from {𝑣1,  𝑣2, . . . , 𝑣𝑛−2}, then |𝐹| ≥ 𝑛 − 2. Therefore, 

|𝐹| ≥ 𝑚𝑖𝑛{4, 𝑛 − 2} and hence the result is true as 𝐹 being an arbitrary fault-tolerant 

resolving set of 𝑃𝑛
2. 

 

Theorem 2 For every integer 𝑛 ≥ 5, there exists a fault-tolerant resolving set of 𝑃𝑛
2 

with cardinality 4. 

 

Proof: For the existence of a fault-tolerant resolving set having cardinality 4, we need 

to construct a set 𝐹 for which every pair of vertices of 𝑃𝑛
2 must be resolved by at least 

two elements of 𝐹. The first four consecutive vertices or the last consecutive vertices 

do have this property. Let us consider 𝐹 = {𝑣0, 𝑣1, 𝑣2, 𝑣3}, i.e., 𝐹 be the set of first 

four consecutive vertices. We show that 𝐹 is a fault-tolerant resolving set. Let 𝑢 and 

𝑣 be arbitrary two vertices in 𝑉(𝑃𝑛
2). Without loss of generality, we may assume 𝑢 is 

a left side vertex of 𝑣 . Then there exist 𝑖 and 𝑗 with 𝑖 < 𝑗 such that 𝑢 = 𝑣𝑖 and 𝑣 =
𝑣𝑗. If both of 𝑢 and 𝑣 are in 𝐹, then the pair of vertices 𝑢 and 𝑣 are resolved by both 

of them. So, in this case proof is trivial. We take the following two remaining cases. 

 

Case 1: Exactly one of 𝒖and 𝒗 is in 𝑭 . Since 𝑢 = 𝑣𝑖 and 𝑣 = 𝑣𝑗 with 𝑖 < 𝑗, so in this 

case 𝑣 cannot be in 𝐹; otherwise, 𝑢 will also be in 𝐹 as 𝐹 contains consecutive 

vertices starting from initial vertex 𝑣0. Since 𝑢 ∈ 𝐹, the pair of vertices 𝑢 and 𝑣 is 

resolved by a vertex 𝑢. Now we have to find another vertex 𝑤 ∈ 𝐹 that will resolve 

the vertices 𝑢 and 𝑣. In the below we give the distances of 𝑢 and 𝑣 from the both 

vertices 𝑣0 and 𝑣1. 

𝑑(𝑣0, 𝑢)  =  𝑑(𝑣0, 𝑣𝑖)  = ⌈
𝑖

2
⌉ 

      𝑑(𝑣1, 𝑢)  =  𝑑(𝑣1, 𝑣𝑖)  = ⌈
𝑖 − 1

2
⌉ 

𝑑(𝑣0, 𝑣)  =  𝑑(𝑣0, 𝑣𝑗)  = ⌈
𝑗

2
⌉ 

      𝑑(𝑣1, 𝑣) =  𝑑(𝑣1, 𝑣𝑗) = ⌈
𝑗 − 1

2
⌉. 

. 

Since 𝑢 = 𝑣𝑖 ∈ 𝐹, 0 ≤ 𝑖 ≤ 3 and then the above equations give 𝑑(𝑣ℓ, 𝑢) ≤ 2 and 

𝑑(𝑣ℓ, 𝑣) ≥ 3 provided 𝑗 ≥ 6. Thus, the pair 𝑢 = 𝑣𝑖 and 𝑣 = 𝑣𝑗  are resolved by two 

vertices 𝑣0 and 𝑣1 which are elements of 𝐹, provided 𝑗 ≥ 6. Now we take 𝑗 ≤ 6. 

Since  𝑣 = 𝑣𝑗 ∉ 𝐹{𝑣0, 𝑣1, 𝑣2, 𝑣3}, 𝑗 ∈ {4, 5}. Now for 𝑗 ∈  {4, 5}, i.e., 𝑣𝑗 ∈ {𝑣4, 𝑣5}, 

we calculate a 4 × 6 matrix 𝐷𝐹  in which (𝑖 + 1)-th column represents the code of the 

vertex 𝑣𝑖with respect to 𝐹, where 0 ≤ 𝑖 ≤ 5. 
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𝐷𝐹 = (

0  1  1  2  2  3
1  0  1  1  2  2
1  1  0  1  1  2
2  1  1  0  1  1

) 

 

From the above matrix it is clear that every pair of columns has at least two distinct 

correspondingentries and hence 𝑢 = 𝑣𝑖 and 𝑣 = 𝑣𝑗 are resolved by at least two 

elements of 𝐹, when 𝑣𝑖 ∈ 𝐹and 𝑣𝑗 ∈ {𝑣4, 𝑣5}. 

 

Case 2: Both 𝒖 and 𝒗 are not in 𝑭. Recall that 𝑢 = 𝑣𝑖 and 𝑣 = 𝑣𝑗, where 𝑖 < 𝑗. Let 

𝑖 ≡ 𝑎(𝑚𝑜𝑑 2), where 𝑎 ∈  {0, 1}. Then both 𝑣𝑎 and 𝑣𝑎+2 are in 𝐹. Since 𝑣ℓ ∈ 𝐹 =
 {𝑣0, 𝑣1, 𝑣2, 𝑣3} and both 𝑣𝑖 and 𝑣𝑗 are outside of 𝐹, ℓ < 𝑖 < 𝑗. We show that 

𝑑(𝑣ℓ, 𝑣𝑖) ≠ 𝑑(𝑣ℓ, 𝑣𝑗) for each  ℓ ∈ {𝑎, 𝑎 + 2}. Note that ℓ ≡ 𝑎 (𝑚𝑜𝑑 2). Here below, 

we calculate the distances of 𝑣𝑖 and 𝑣𝑗 from 𝑣ℓ for each ℓ ∈ {𝑎, 𝑎 +  2}. 

                 𝑑(𝑣ℓ, 𝑣𝑖) = ⌈
𝑖 −  ℓ

2
⌉ =

𝑖 −  ℓ

2
 

𝑑(𝑣ℓ, 𝑣𝑗) = ⌈
𝑗 −  ℓ

2
⌉ 

                                = ⌈
𝑖 − ℓ + 𝑗 −  𝑖

2
⌉ 

                                                                       ≥  
𝑖 −  ℓ

2
+ 1 (𝑎𝑠 𝑖 − ℓ ≡ 0 (𝑚𝑜𝑑 2)) 

                             = 𝑑(𝑣ℓ, 𝑣𝑖) + 1 
Therefore, we have 𝑑(𝑣ℓ, 𝑣𝑖) ≠ 𝑑(𝑣ℓ, 𝑣𝑗) for each ℓ ∈ {𝑎, 𝑎 + 2}. Hence if 𝑖 is even, 

then the pair of vertices 𝑢 = 𝑣𝑖 and 𝑣 = 𝑣𝑗 are resolved by the both 𝑣0 and 𝑣2 

whereas for odd  𝑖 , the pair 𝑣𝑖 and 𝑣𝑗 are resolved by two elements 𝑣1 and 𝑣3. 

On account of Case 1 and Case-2, finally we have that every pair of vertices of 𝑃𝑛
2 are 

resolved by at least two elements of 𝐹 = {𝑣0, 𝑣1, 𝑣2, 𝑣3} and this thus grantees the 

existence of a fault-tolerant resolving set for 𝑃𝑛
2 with cardinality 4. 

 

Remark 3.1 From above theorem we may conclude that 𝛽′(𝑃𝑛
2) ≤ 4 for 𝑛 ≥ 5. 

 

Remark 3.2 Renaming the vertices of 𝑃𝑛
2 by 𝑤𝑖 = 𝑣𝑛−1−𝑖, one can show that 𝐹 =

{𝑤0, 𝑤1, 𝑤2, 𝑤3} (the set of last four consecutive vertices of 𝑃𝑛
2) forms a fault-tolerant 

resolving set  for 𝑃𝑛
2 for 𝑛 ≥ 5. 

 

Remark 3.3 By similar argument as used in the proof of Theorem 2, one can show 

that any four consecutive vertices form a fault-tolerant resolving set for 𝑃𝑛
2 for 𝑛 ≥ 5. 

 

Theorem 3. For any integer 𝑛 ≥ 5, 𝛽′(𝑃𝑛
2) = 4. 
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𝑣0
𝑣1
𝑣2
𝑣3
𝑣4
𝑣5
𝑣6
𝑣7
𝑣8
𝑣9

 

 

Proof: If 𝑛 ≥ 6, then from Theorem 1 and Remark 3.1, we have 𝛽′(𝑃𝑛
2) = 4. 

Therefore thetheorem is true for 𝑛 ≥ 6. Now we take 𝑛 = 5. Then from Theorem 

1, 𝛽′(𝑃5
2) ≥ 3 and the equality occurs only if 𝐹 = {𝑣1, 𝑣2, 𝑣3} from a fault-tolerant 

resolving set of 𝑃𝑛
2. We show that F does not form a fault-tolerant resolving set for 

𝑃𝑛
2. We consider a 3 × 5 matrix 𝐷𝐹 in which (𝑖 + 1)-th column represents the code of 

𝑣𝑖with respect to 𝐹 for each 𝑖 ∈ {0, 1, 2, 3, 4}. 
 

𝐷𝐹 = (
1  0  1  1  2
1  1  0  1  1
2  1  1  0  1

) 

 

In the above matrix, we see that the entries in 1st and 5th columns differ by only one 

place and hence 𝐹 = {𝑣0, 𝑣1, 𝑣2} cannot be a fault-tolerant resolving set of 𝑃5
2. 

Therefore, 𝛽′(𝑃5
2 ) =  4. 

The proof is complete. 

 

Example 3.1 Here we calculate the codes of each vertex for 𝑃10
2  with respect to the 

fault-tolerant resolving set 𝐹 = {𝑣0, 𝑣1, 𝑣2, 𝑣3}. 
 

 
 

Figure 1: The graph 𝑃10
2 . 

 

The distance matrix 𝐷for 𝑃10
2  is given by 

 
                     𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 

𝐷 =         

(

 
 
 
 
 
 
 

0  1    1   2  2   3  3  4    4   5
1  0    1   1  2   2  3  3 4 4
1  1    0   1  1   2  2  3 3 4
2  1    1   0  1   1  2  2 3 3
2  2    1   1  0   1  1  2 2 3
3  2    2   1  1   0  1  1 2 2
3  3    2   2  1   1  0  1 1 2
4  3    3   2  2   1  1  0 1 1
4  4    3   3  2   2  1  1 0 1
6  4   4   3  3   2  2  1 1 0)

 
 
 
 
 
 
 

 

In the matrix 𝐷, the (𝑖, 𝑗)-th entry represents the distance between 𝑣𝑖 and 𝑣𝑗. Now if 

we choose a 4 × 10 sub-matrix 𝐷𝐹 consisting of first four rows, we have the 
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following matrix whose (𝑗 + 1)-th column represents the code of 𝑣𝑗 with respect to 

the set 𝐹 = {𝑣0, 𝑣1, 𝑣2, 𝑣3}. 
 

   𝑐(𝑣0) 𝑐(𝑣1) 𝑐(𝑣2) 𝑐(𝑣3) 𝑐(𝑣4) 𝑐(𝑣5) 𝑐(𝑣6) 𝑐(𝑣7) 𝑐(𝑣8) 𝑐(𝑣9) 

𝐷𝐹 =

𝑣0
𝑣1
𝑣2
𝑣3

(

0 1 1 2 2 3 3 4 4 5
1 0 1 1 2 2 3 3 4 4
1 1 0 1 1 2 2 3 3 4
2 1 1 0 1 1 2 2 3 3

) 

In the above matrix 𝐷𝐹, every pair of columns is different at two places and hence 𝐹 

is a fault-tolerant resolving set. For example, if we take 6-th and 7-th column, then 

these two columns are differed in 2nd and 4-th places. Again, if we choose a 3 ×  10 

sub-matrix consisting of first three rows, we have the following  matrix whose (j +1)-

th column represents the code of 𝑣𝑗 with respect to the set  𝐹′ = {𝑣0, 𝑣1, 𝑣2}. 

 
       𝑐(𝑣0) 𝑐(𝑣1) 𝑐(𝑣2) 𝑐(𝑣3) 𝑐(𝑣4) 𝑐(𝑣5) 𝑐(𝑣6) 𝑐(𝑣7) 𝑐(𝑣8) 𝑐(𝑣9) 

𝐷𝐹′ =

𝑣0
𝑣1
𝑣2
(
0 1 1 2 2 3 3 4 4 5
1 0 1 1 2 2 3 3 4 4
1 1 0 1 1 2 2 3 3 4

) 

Here the 6-th and 7-th column are different at only one place. So, 𝐹′cannot be fault-

tolerant resolving set for 𝑃𝑛
2. 

 

4. Concluding Remark 

 

In this article we have determined the fault-tolerant metric dimension for 𝑃𝑛
2 for all 

𝑛 ≥ 5. We also have shown the existence of at least 𝑛 fault-tolerant metric bases for 

the same graph. The readers may try to find all fault-tolerant metric bases for 𝑟-th 

power of paths or in particular, for square of paths. This article gives a solution to the 

problem of placement of optimal numbers of sensors in a network when it is 

structured as square of paths. By giving more than one fault-tolerant metric bases for 

𝑃𝑛
2, we present an alternative placement of sensors in the network when one solution 

is not suitable for an organization who are planning to place the sensors. If a sensor 

fails which can be catastrophic the fault-tolerant system is able to use reversion to 

fallback to a safer mode. The advantages of using such a system are that it reduces 

redundancy, there is no slowdown of the given system and no assumptions are made 

for the distribution of fault. 
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