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Abstract 

Graphs satisfying some algebraic properties, specifically semiring structures are 

discussed with respect to their applications in some real life network problems. We 

illustrate some examples of the networks of graphs (where the vertices of the given 

network are again graphs), and use the rules of semirings to discuss their 

geometrical interpretations. The article leaves with an impression that such notions 

may be helpful in handling routing problems or optimizing the signal flows, and in 

joining different networks besides dealing with decision-making problems in social 

networks. 
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1 Introduction 

An ordinary network is actually an edge weighted graph G = (V,E) equipped with 

additional information about the weights of edges and properties of the nodes. In this 

article, we synonymously call a graph as a network or a decision graph in accordance with 

the context of the usage. The graph theory has been a favorite platform for 

mathematicians and computer scientists for describing and analysis of the networks in a 

more abstract and general way. Some of the popularly known algorithms like Dijkstra 

algorithm, Travelling Salesman Problem (TSP) are presented in context of studying 

network analysis and routing problems [3]. A connection between interprocedural 

dataflow analysis and model checking of pushdown systems (PDSs) have been explored 

using semiring and its related algebraic notions [7]. In network analysis, semirings are 

mostly used to combine weights on the links (edges) of the network. And by doing so, we 

can observe different properties of network. The weights on the parallel edges are 

mailto:gete.umbrey@rgu.ac.in
mailto:saifur.rahman@rgu.ac.in


Graph Semi rings in Decision Networks 

41 

combined using the semiring addition and the weights on the sequential edges are 

combined using the semiring multiplication [5]. In the year 2015, Rajkumar, et al. [6] 

introduced a notion called S- valued graphs, combining the algebraic structure of semiring 

with that of graphs. They study graphs whose vertices and edges are assigned values from 

the semiringS (with a canonical pre-order) such that every vertex of the graph is assigned 

values and the weight of an edge is the minimum of the weights of the vertices incident 

with the edge. An approach to graph theory in an algebraic setting has been found 

attempted by Bustamante [1]. He used the graph operation called the linking between two 

graphs, which is akin to what we call join1∇, and an algebraic structure called “Link 

Algebra” which is analogous to the semiring(S,∪,∇)1. He also used a notion called “anti-

graph” such that the union of a graph and its anti-graph gives an empty graph. 

Graph theory has been increasingly an active field of research in computer and 

mathematical sciences, and allied fields. One of the basic concepts that strikes our mind, 

while dealing with problems in graph theory is the connectivity of the graph. A graph G is 

said to be connected graph if there is a path between every pair of vertex. This is called 

the connectivity of a graph. A graph is said to be disconnected, if there exists multiple 

disconnected vertices and edges. Various problems in computer and mathematical 

sciences essentially involves the study of graph connectivity theories, namely in network 

applications, routing transportation networks, network tolerance etc. are few to be named. 

The simplest measure of the degree of connectivity of a graph is given by the Beta index 

It measures the level or density of connections and is defined as β =
|𝐸|

|𝑉|
 , where | E | is the 

total number of edges and | V | is the total number of vertices in the graph or network. 

Trees or simple networks (without loops) have Beta value of less than one. A connected 

network with one cycle has a value of 1. Complex networks have a high Beta value. 

Interested readers may also see [3] for a brief introduction of beta index in network 

analysis. 

2 Preliminaries 

Definition 2.1. A semiring (S,+,·) is a non-empty set S equipped with two binary 

operations (+) and (·) such that (R,+) and (R,·) are semigroups and operation (·) 

distributes over (+) both from the left and the right. A semiring may contain additive and 

multiplicative identities. When (S,+) is a commutative monoid with identity 0 and (S,·) is 

a monoid with unity 1, the structure (S,+,·) is also called hemiring. 

Definition 2.2. A semiringS is said to be simple if x + 1 = 1 + x = 1 for any x ∈S, where 1 

is the unity. S is said to be strict or zero sum free or anti-negative if for all a,b ∈S, a + b = 

0 implies that a = 0 and b = 0, where 0 is the additive identity. 

 
1 G. Umbrey and S. Rahman, Graph of Semirings. The article is communicated for publication. 
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Definition 2.3. If for all s ∈S and a smallest non-negative integer m, if ms= s + s + ... + 

s(m times)=0, then S is said to be of characteristic m, and if no such m exists, then S is 

said to be of characteristic 0. 

Property 2.1. If (S,+,·,0,1) is a commutative, simple and idempotent semirings, then S is a 

distributive lattice and vice versa. It is noted that every additively idempotent semiring 

has characteristic 0, this is because of the fact that s+s+...+s = s for all s ∈S. We denote 

the characteristic of S by char S. 

Definition 2.4. A commutative semiring with unity (S,+,·,0,1) is called a semifield if for 

all a,b ∈S, a + b = 0 implies that a = 0 and b = 0, and a · b = 0, implies that either a = 0 or 

b = 0. 

Remark. Unlike in fields, a semifield of characteristic zero can have a finite number of 

elements. This can be shown with example. Let Sk= {0,1,2,...,k} be a finite set of non-

negative integers. Define two binary operations on Skas for all a,b ∈Sk, a+b = max(a,b) 

and a·b = min(a,b). Then it is easy to show that (Sk,+,·,0,k) is a commutative and 

idempotent semiring with unity k. Also, if a+b = 0, then a = 0 and b = 0, and a·b = 0 

implies that either a = 0 and b = 0. Hence, (Sk,+,·,0,k) is a semifield of characteristic zero 

(since every(additively) idempotent semiring is of characteristic zero). Thus, this example 

shows that a semifield of characteristic zero may have finite number of elements, which is 

a major deviation of a semiring from a ring. 

An undirected graph is a 2−tuppled G = (V,E), where V is the set of vertices and E is 

the set of unordered pairs of vertices. The union of two graphs G1 and G2 is defined as the 

graph, G = (V (G1) ∪V (G2),E(G1) ∪E(G2)). The join ∇ of two graphs G and H is a graph 

formed from the copies of G and H by connecting each vertex V (G) to each vertex of V 

(H), and it is denoted by G∇H = (V (G) ∪V (H),E(G) ∪E(H) ∪ {uv: u ∈V (G),v ∈V (H)}). 

When we ignore the self-loops, the join of G and H is denoted by G∇H = (V (G) ∪V 

(H),E(G) ∪E(H) ∪ {uv: u ∈V (G),v ∈V (H)} \ {aa: a ∈V (G) ∩ V (H)}). Likewise, the 

intersection of two graphs G1, and G2 is defined as the graph, G = (V (G1) ∩ V (G2),E(G1) 

∩ E(G2)). We will also use the words “conformity” and “combine” to mean graph 

intersection and graph union, respectively. Further notions of fundamental concepts and 

graph operations in graph theory can be recalled from the work of Deo [2] and 

Rouhonen[8]. The rank and nullity of the algebraic expressions of the graphs formed by 

the graphs union and join is discussed by Umbrey and Rahman [9]. Note that the graphs 

we consider in this article are simple and undirected. 

3 On some finite semirings of graphs 

We know that under the graph operations union and intersection, the set of all simple 

undirected graphs forms a semiring1, which is an infinite semiring. Let Sbe the set of all 

 
1 G. Umbrey and S. Rahman, Graph of Semirings. The article is communicated for publication. 
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the subgraphs of a complete graph Knwith n vertices. Then it is known that formula for 

the number of subgraphs of Knis given by [4] 

. 

In view of the above formula, we can also find a large number of finite semirings of 

graphs as for instance, the set of all subgraphs of a complete graph K2 on two vertices 

under the graph operations, namely union and intersection as addition and multiplication, 

respectively is a semiring of order 5. Similarly, SK3 and SK4 the set of all the subgraphs of 

the complete graphs K3 and K4, respectively endowed with union and intersection are 

graph semirings of order 18 and 113, respectively. Note that all these semirings are of 

characteristic 0. 

In the family S of all possible sub graphs of G, for any G1,G2 ∈S, G1 ⊆G2 implies that 

there exists G3,G4 ∈S such that G2 = G1 ∪G3 and G1 = G2 ∩ G4. Note that G3 and G4 may be 

switched here (in particular, G3 = G4). The following is a trivial example. Considering 

(∅,∅)⊆G1 ∈S implies that G1 = (∅,∅)∪G2 (in fact, G2 = G1 here) and (∅,∅) = G1 ∩G3 for 

some G3 ∈S. Note that the relation ⊆ in S is a partial order relation, hence the set S 

endowed with this operation is a partial order set. The equations 

G2 = G1 ∪G3 

and 

G2 = G1 ∩ G4 

do not have solutions if G2 ⊂G1 (resp. G1 ⊂G2 ) for all G3,G4 ∈S. On the other hand, the 

equations 𝐺′ = (𝐺1 ∪ 𝐺′) ∩ 𝐺2and 𝐺′ = (𝐺1 ∩ 𝐺′) ∪ 𝐺2have solutions for all G1,G2 ∈S. 

Proposition 3.1. If𝐺1 ⊆ 𝐺′.Then the equation 𝐺′ = (𝐺1 ∩ 𝐺′) ∪ 𝐺2has solution for all G2 

∈S. 

Proof. Given that𝐺1 ⊆ 𝐺′. Now,𝐺′ = (𝐺1 ∩ 𝐺′) ∪ 𝐺2 = 𝐺1 ∪ 𝐺2this implies that for any 

G2 ∈S, G1 ⊆G1 ∪G2 i.e., 𝐺1 ⊆ 𝐺′holds good for all G2 ∈S.  

Proposition 3.2. If𝐺′ ⊆ 𝐺1. Then the equation 𝐺′ =  (𝐺1 ∩ 𝐺′) ∪ 𝐺2has solutions for all 

𝐺2 ⊆ 𝐺′in S. 

Proof. Given that𝐺′ ⊆ 𝐺1. Now, 𝐺′ = (𝐺1 ∩ 𝐺′) ∪ 𝐺2 =  𝐺′ ∪ 𝐺2, which is true for all𝐺 ′ ⊆

𝐺1.   

Note that in other words, if the equation 𝐺′ = (𝐺1 ∩ 𝐺′) ∪ 𝐺2has solutions for any G1 

∈S, then𝐺′ ⊆ 𝐺1. 
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Proposition 3.3. The equation 𝐺′ = (𝐺1 ∪ 𝐺′) ∩ 𝐺2has solutions for all G2 ⊆G1 in S. 

Proof. 𝐺′ = (𝐺1 ∪ 𝐺′) ∩ 𝐺2 = (𝐺1 ∩ 𝐺2) ∪ (𝐺′ ∩ 𝐺2) = 𝐺2 ∪ (𝐺′ ∩ 𝐺2) =  𝐺2.  

4 Application ofsemiring of graphs 

A graph is a convenient tool for representation of real life problems, and it can capture a 

variety of information. We illustrate some graphs in this section and try to give some 

intuitive geometrical interpretations with or without using the rules of semirings. 

Example 4.1. Let us consider two graphs with the number of vertices being four and five, 

respectively as shown below. 

 

 

 

We consider the Beta index of the graphs G1 and 𝐺2  by 𝛽𝐺1
=

|𝐸1|

|𝑉1|
and 𝛽2 =

|𝐸2|

|𝑉2|
,  respectively. In this example,𝛽𝐺1

=
4

4
= 1 and𝛽𝐺2

=
7

6
=1.166. Hence G2 is more stable 

than G1. 

 

Remark. Suppose, each vertex in a graph G represent an individual person. Two persons 

(or, vertices viand vj) are connected by an edge (vi,vj) if there exists a mutual trust between 

vi and vj, that is, vi trusts vjand vice versa. Thus in view of this, the networks G1 and G2 in 

the example 4.1 represent the networks of mutual trusts. By comparing the beta index 

value of the graphs, we can conclude that G2 has stronger mutual trusts. 

Let us consider a connected network G comprising of five decision graphs (each graph 

being a vertex of the given network). A pair of decision graphs Giand Gjin the given 

network G is connected by an edge if Gi∩Gj≠ (∅,∅), that is, there exists atleast a decision 

Gi∩Gjwhich is common to both Giand Gjor the decisions of Giand Gjhas some conformity. 

Suppose, we want to derive the best decision out of five given decisions graphs in the 

network, we would collect all the edges of G. The act of collecting the edges is done with 

the help of the graph intersection operation, which we call semiring multiplication. Our 

next task in the process is to combine all the edges using the graph union operator, which 

we call semiring addition. Due to interplay of these two operations, endowed with the 

rules of semirings like associativity and distributivity, it becomes simpler to arrive at the 

final decision graph called solution graph, that has been contributed by all the decision 

graphs in the given connected network G. Finally, the stability of the solution can be 
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checked using the Beta index of the graph. Note that the word “conformity” need not be 

transitive. The illustration is example 4.2. 

Proposition 4.1. In the semiring(S,∪,∇) if G1 ⊆G2, G4 ⊆G3, and G1∇G4 ⊆G2 ∪G3 for some 

G1,G2,G3,G4 ∈S, then (G1∇G3) ∪ (G2∇G4) ⊆G2∇G3. 

Proof. We have G1 ∪G2 = G2, G3 ∪G4 = G3 and G1∇G4 ⊆G2 ∪G3. Now, 

(G1∇G3) ∪ (G2∇G4)={G1∇(G3 ∪G4)} ∪ {(G1 ∪G2)∇G4} 

= {(G1∇G3) ∪ (G1∇G4)} ∪ {(G1∇G4) ∪ (G2∇G4)} 

= (G1∇G3) ∪ {(G1∇G4) ∪ (G1∇G4)} ∪ (G2∇G4) 

= (G1∇G3) ∪ (G1∇G4) ∪ (G2∇G4) 

⊆ (G1∇G3) ∪ (G2 ∪G3) ∪ (G2∇G4)  

⊆ (G1∇G3) ∪ (G2∇G3) ∪ (G2∇G4)(since G2 ∪G3 ⊆G2∇G3) 

= G2∇G3 (since G1∇G3 ⊆G2∇G3 and G2∇G4 ⊆G2∇G3). 

 

Proposition 4.2. In the semiring(S,∪,∩), if G1 ⊆G2 and G4 ⊆G3, then (G1 ∩ G3) ∪ (G2 ∩ 

G4) ⊆G2 ∩ G3. 

Proof. We have G1∪G2 = G2 or, G1∩G2 = G1, and G3∪G4 = G3 or, G3∩G4 = G4. 

Now,  

(G1 ∩ G3) ∪ (G2 ∩ G4) = {(G1 ∩ G2) ∩ G3} ∪ {G2 ∩ (G3 ∩ G4)} 

= {(G2 ∩ G3) ∩ G1} ∪ {(G2 ∩ G3) ∩ G4} 

= (G2 ∩ G3) ∩ (G1 ∪G4) (∩ distributes over ∪)  

⊆ (G2 ∩ G3) ∩ (G2 ∪G3) (since G1 ∪G4 ⊆G2 ∪G3)  

= G2 ∩ G3. 

 

Corollary 4.3. In the semiring(S,∪,∩), if G1 ⊆G2, G4 ⊆G3 and G2 ∩ G3 ⊆G1 ∪G4 then (G1 

∩ G3) ∪ (G2 ∩ G4) = G2 ∩ G3. 

Proof. We have G1∪G2 = G2 or, G1∩G2 = G1, and G3∪G4 = G3 or, G3∩G4 = G4. 

Now, 

 
 

(G1 ∩ G3) ∪ (G2 ∩ G4) = {(G1 ∩ G2) ∩ (G3 ∪G4)} ∪ {(G1 ∪G2) ∩ (G3 ∩ G4)} 

  

  

= (G1 ∩ G2 ∩ G3) ∪ (G1 ∩ G2 ∩ G4) ∪ (G1 ∩ G3 ∩ G4)∪ 

(G2 ∩ G3 ∩ G4) 

= {(G2 ∩ G3) ∩ (G1 ∪G4)} ∪ {(G1 ∩ G4) ∩ (G2 ∪G3)} 

= (G2 ∩ G3) ∪ {(G1 ∩ G4) ∩ (G2 ∪G3)} 
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(Since by assumption, G2 ∩ G3 ⊆G1 ∪G4)  

= (G2 ∩ G3) ∪ (G1 ∩ G4) (since G1 ∩ G4 ⊆G2 ∪G3) 

= G2 ∩ G3 (since G1 ∩ G4 ⊆G2 ∪G3). 

 

The above formulations of graph algebraic equations will help us in simplifying the 

graph algebraic equations in complex decision networks on one hand and enabling us to 

give different geometrical interpretations of the networks on the other hand. First we look 

at the former case through the following examples. 

Example 4.2. Let us consider the following network of graphs. 

 

Where the graphs G1,G2,G3,G4 and G5 are from the semiring (S,∪,∩). Find the stability 

of the paths connecting G2 and G4. Now, we propose the following simple algorithm to 

answer this. There are two paths connecting G2 and G4, namely, p1: G2 − G1 − G3 − G4 and 

p2: G2 − G1 − G5 − G3 − G4. 

Step 1: Recall that each edge is an intersection graph of the end vertices. Assign the 

corresponding Beta index as its weights as follows. 

 

 

 

That is, the weight of the edge connecting the vertices (graphs) G1 and G2 is given by 

the Beta index β12 of intersection of the graphs G1 and G2, i.e., Beta index of G1 ∩ G2. 

Likewise, the weight of the edge connecting the nodes G1 and G3 is given by the Beta 

index β13 of G1 ∩ G3. Similarly, the weights are assigned to the remaining edges. 

Step 2: Combine all the edges along the path p1 by the means of the operation ∪, and let 

this combined decision graph of the path p1 be denoted by Cp1. We make the following 

calculations to find the upper limit graph or, the super graph of Cp1. 

 Cp1  
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= (G1 ∩ G2) ∪ (G1 ∩ G3) ∪ (G3 ∩ G4) 

= (G1 ∩ G2) ∪ {(G1 ∩ G3) ∪ (G1 ∩ G3)} ∪ (G3 ∩ G4) 

= {(G1 ∩ G2) ∪ (G1 ∩ G3)} ∪ {(G1 ∩ G3) ∪ (G3 ∩ G4)} 

= {G1 ∩ (G2 ∪G3)} ∪ {G3 ∩ (G1 ∪G4)} 

⊆ (G2 ∪G3) ∩ (G1 ∪G4) (by proposition 4.2). 

Therefore, the combined decision graph of the path p1 is a subgraph of (G2 ∪G3) ∩ 

(G1 ∪G4). 

Similarly, we find the upper limit graph or, the supper graph of Cp2 (the combined 

decision graph of p2) as follows. 

Cp2= (G1 ∩ G2) ∪ (G1 ∩ G5) ∪ (G3 ∩ G5) ∪ (G3 ∩ G4) 

= (G1 ∩ G2) ∪ {(G1 ∩ G5) ∪ (G3 ∩ G5)} ∪ {(G3 ∩ G5) ∪ (G3 ∩ G4)} 

= (G1 ∩ G2) ∪ [{G5 ∩ (G1 ∪G3)} ∪ {G3 ∩ (G4 ∪G5)}] 

⊆ (G1 ∩ G2) ∪ (G1 ∪G3) ∩ (G4 ∪G5) (by proposition 4.2). 

Therefore, Cp2 is a subgraph of (G1 ∩ G2) ∪ (G1 ∪G3) ∩ (G4 ∪G5). 

In lieu of suitable Beta index of the paths, a generalized formulation for determining 

the most stable path in view of the interplay of various factors in a decision making 

problem is discussed below. 

There is no general way to compare the Beta index of a graph (𝑉, 𝐸)  and its 

subgraphs. Thus, to establish a numerical (or, connectivity) comparison of a graph and its 

subgraphs, we define a ratio, which is a function of Beta index denoted and expressed 

as𝜷 = 1 +  𝛽 = 1 +  
|𝐸|

|𝑉|
For a discrete graph, β = 1, while for a complete graph with n 

vertices,𝜷 =
𝑛+1

2
.Clearly, βof a graph will be always greater than or equal to those of its 

subgraphs. Thus, for instance in the example 4.2, βof p1 will be less than or equal to that 

of (G2 ∪G3)∩(G1 ∪G4). Similarly, the connectivity of the rest can be compared using β. 

Note that in considering the graph connectivity, the empty graph (∅,∅) is excluded. Both 

β and βare measures of connectivity of graphs. The main difference is that the least value 

of β and βare 0 and 1, respectively. While, the greatest value of β and βof a graph G with 

n vertices are and , respectively. Unlike the beta index β, its function βis a 

consistent rule to compare the connectivity of a graph with its subgraphs, which will be 

one of the advantages in our formulations. 

Many decision problems in our real life may involve the interplay of various factors. 

The problems that we are considering here are presumed to be of complex in nature that 

may involve some vagueness also. And to deal with such varied problems, merely 

assigning the beta index as graph’s weight may not be sufficient. Or, so to say a beta 
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index of a graph merely tells us the intensity of the connectivity of graph, and may fail to 

address other parameters. For instance, in a decision making problem, if the problem is 

intended to determine the maximum density (degree of agreement or, conformity) of the 

connectivity of a complex network involving many participants without undermining the 

order (the number of participants) and size (conformity) of the network, then we may 

need more than beta index to arrive at an efficient conclusion. In such contexts, βwill be a 

preferred choice over β. Henceforth, we will extend the weight of each edge of the graph 

in the example 4.2 to βby a transformation β = 1 + β, which will be called extended 

weight or, simply“weight”. A beautiful characteristic of βis that it preserves the 

importance of order and size besides measuring its connectivity. Its value keeps on 

decreasing with the subsequent subgraphs, and increases or decreases proportionally with 

that of β, and this property will help us to decide the most stable path (without 

calculation) if the resultant paths are comparable under graph order relation. That is, a 

super graph is a representation of more efficient decision and so forth. For instance, if the 

resultant paths p1 and p2 of the example 4.2 are non-comparable, then we will make the 

following calculations to find the stability of the path p1. 

Stability of the path p1 is 

𝑆𝑝1
=

1

3
(∑ 𝜷

𝑖

3

𝑖=1

)𝜷
𝑝1

 

Whereβiis the weight of the ithedge and βp1 is the weight of the upper limit graphof Cp1. 

Similarly, the stability of the path𝑝2is    

 

𝑆𝑝2
=

1

4
(∑ 𝜷

𝑖

4

𝑖=1

)𝜷
𝑝2

 

The moststable path will be the one corresponding to max(Sp1,Sp2). 

 

Example 4.3. What is the most stable path connecting the graphs G2 and G4 in the given 

network? 
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There are four paths connecting the graphs G2 and G4. Namely, p1: G2−G1−G4; p2: G2 

− G1 − G3 − G4; p3: G2 − G3 − G4; p4: G2 − G3 − G1 − G4. By the similar argument as above, 

we can determine the most stable path. 

4.1 Geometrical interpretation 

We are in a view that any two decision networks are comparable under subgraph relation 

if one represents more or less efficient decision than the other or, both represent the same 

level of efficiency of a decision. Under this context, we consider that a super graph 

represents more efficient decision than the one represented by its sub graphs. Suppose, 

there are two sets A and B of networks each comprising of two distinct decision networks 

of a same problem, namely, G1,G3 ∈A and G2,G4 ∈B such that G2 and G3 represent more 

efficient decisions than those represented by G1 and G4, respectively. Further, the decision 

represented by the conformity (intersection) of G2 and G3 is less efficient than the one 

represented by the combination (union) of G1 and G4. Then what would be the combined 

decision network of the whole sets A and B, under the condition that only conformity of 

G1 and G3 from A, and conformity of G2 and G4 from B are considered for final decision? 

The answer can be given by corollary 4.3, that is, the whole statement can be modeled 

mathematically as the expression on the left hand side of the equation, (G1 ∩ G3) ∪ (G2 ∩ 

G4) = G2 ∩ G3. The term on the right hand side of this equation is the required answer. 

That is, the combined decision network of the whole sets A and B is G2 ∩ G3. 

5 Discussions 

We believe that the approaches discussed in this article will be handy to give a decision 

on some artificial and practical problems. For instance, let us recall the graphs in the 

example 4.1. Say for instance that G1 and G2 in the example represent two different 

decisions made by groups of four and six individuals, respectively, where any pair of 

individuals are connected by an edge if their decisions on the given problem have some 

conformity. In general, it is often the case in practical life that a decision will be more 

precise or stronger if the maximum possible number of stakeholders are consulted and 

most of the stakeholders have their opinions or decisions in conformity. And, so is the 

case we see in the example 4.1. 

The following network represents a friendship relations. Each node represents an 

individual, and an edge 

between two nodes 

indicates that the two 

individuals are friends 

(or, they have direct 

friendship relation). 
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For instance, in G2, all three persons have direct friendship relation. Likewise, in G4, 

the individual denoted by the node 5 is a friend of both 7 and 10, but 7 and 10 have no 

direct friendship relations and so forth. Let us consider that the stability of a friendship 

network is determined by the number of friends and their intensity of connections. In the 

given network, we have only two choices of paths, namely, p1: G2 − G1 − G3 − G4 and p2: 

G2 − G1 − G5 − G3 − G4. On applying the above formulae, we get the stabilities of the paths 

p1 and p2 as 0.533 and 1.687, respectively. Thus, we conclude that p2 is more stable. 

Let us also note if we take the union of all the graphs (nodes), then G1 ∪G1 ∪... ∪G5 

would be a complex network. Now, if we are supposed to find the most stable friendship 

network path from 2 to 5, then it will be a tedious task for us as there would be many 

paths connecting these two nodes. Therefore, our approach can be seen in a way as 

decomposing a complex network into suitable connected components, and reducing the 

number of paths before applying this method. 

6 Future direction and conclusion 

There are many efficient algorithms available in literature that deal with shortest path 

algorithms and maximum capacity problems in the graph theory and computer science. 

This work is unique in the sense that it is a humble attempt to unite the algebraic theory 

and the graph theory by constructing algebraic structures (semirings) on graphs with a 

clear objective of its applications. Moreover, the approaches we discussed in this article 

are most likely different from just looking for a shortest path. Also, it is probably the first 

work that deals with the problems in the network of networks using the graph algebra, 

specifically the semirings. The limitation of this article is that we would still need to 

accomplish more experimental based results, and more focused scientific applications like 

network flow or, data routing, etc. which is left as our future research target. The ratios β 

and βwill be used as measures of efficiency of decisions in a varied network problems in 

due course of time. 

References 

[1] Bustamante, A., (2011), Link Algebra: A new aproach to graph theory, Retrieved on 

23, June, 2020 from https://arxiv.org/abs/1103.3539. 

[2] Deo, N., (1974), Graph Theory with Applications to Engineering and Computer 

Science. Prentice-Hall, Inc, Englewood Cliffs, N. J. 



Graph Semi rings in Decision Networks 

51 

[3] Flitter, H., and Grossmann, T, Accessibility Network Analysis, Geographic 

Information Technology Training Alliance (GITTA). Retrieved from www.gitta.info 

- Version from: 28.4.2016. 

[4] The On-Line Encyclopedia of Integer Sequences, Retrieved on 10, June, 2020 from 

http://oeis.org/A006896. 

[5] Praprotnik, S., and Batagelj. V., (2016) Semirings for temporal network analysis. 

Retrieved on 25, April, 2020 from https://arxiv.org/abs/1603.08261. 

[6] Rajkumar, M., Jeyalakshmi, S., and Chanmdramouleeswaran, M., (2015), Semiring-

Valued Graphs International J. of Math. Sci. and Engg. Appls. (IJMSEA), 9 (III), 

141-152. 

[7] Reps, T., Schwoon, S., Jhaa, S., and Melski, D., (2005), Weighted pushdown 

systems and their application to interprocedural dataflow analysis, Science of 

Computer Programming, Elsevier, 206-263. 

[8] Rouhonen, K., (2013), (Translation by JanneTamminen, Kung-Chung Lee and 

Robert Piche), Graph Theory. 

[9] Umbrey, G., Rahman, S., Saikia, H. K., and Firos, A., (2020), An approach towards 

rank and nullity of algebraic expressions of graphs, Jour of Adv Research in 

Dynamical & Control Systems, 12(02). 


