DETOUR GLOBAL DOMINATION NUMBER OF CORONA PRODUCT GRAPHS

A. Punitha Tharani¹ and A. Ferdina²

¹Associate Professor, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi – 628 001, Tamil Nadu, India Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli – 627 012, Tamil Nadu, India

²Research Scholar (Register Number: 19122212092006), Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi – 628 001, Tamil Nadu, India Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli – 627 012, Tamil Nadu, India

Email : ¹punitha_tharani@yahoo.co.in, ²aferdinafdo@gmail.com

Received on: 10/06/2020 Accepted on: 12/10/2020

Abstract

A subset S of V of a connected graph G = (V, E) is a detour global dominating set if S is both detour set and global dominating set of G. The minimum cardinality taken over all detour global dominating sets is called the detour global domination number of G and is denoted by $\gamma_{dg}(G)$. A detour global dominating set of cardinality $\gamma_{dg}(G)$ is called a γ_{dg} - set of G. In this paper we determine $\gamma_{dg}(G)$ for Corona product of some standard graphs.

Keywords: Detour set, detour global dominating set, corona product

2010 AMS classification:05C12

1. Introduction

By a graph G, we mean a finite undirected connected graph without loops or multiple edges. Unless and otherwise stated, the graph G = (V, E) have n = |V| vertices and m = |E|edges. For basic definitions and terminologies, we refer [1,5]. For vertices u and v in a graph G, the detour distance D (u, v) is the length of a longest u – v path in G. A u – v path of length D (u, v) is called a u – v detour. The closed detour interval ID[u, v] consists of u, v and all vertices in some u – v detour of G. These concepts were studied by Chartrand et al. [2,3] For $S \subseteq V(G)$, ID [S] = $\bigcup_{u,v \in S} ID[u, v]$. A subset S of V of a graph G is called a detour set if ID [S] =V(G). The detour number dn(G) of G is the minimum cardinality taken over all detour sets in G. These concepts were studied by Chartrand [4].

The concepts of domination number and global domination number of a graph were introduced in [7,12]. A subset S of V of a graph G= (V, E) is called a dominating set of G if every vertex in V – S is adjacent to at least one vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all dominating sets in G.A subset S of V of a graph G= (V, E) is called a global dominating set (g.d. set) if it is a dominating set of a graph G and its complement \overline{G} of G. The global domination number $\gamma_g(G)$ of G is the minimum cardinality taken over all global dominating sets in G.

The corona $G_1 \circ G_2$ of two graphs G_1 and G_2 is defined as the graph *H* obtained by taking one copy of G_1 (which has n_1 points) and n_1 copies of G_2 and then joining the i^{th} point of G_1 to every point in the i^{th} copy of G_2 .

Theorem 1.1: Every end vertex of a connected graph G belongs to every detour global dominating set of G.

Theorem 1.2: If the set S contains only end and full vertices is a detour global dominating set of G, then S is the unique minimum detour global dominating set of G and $\gamma_{dg}(G) = |S|$.

2. Detour Global Domination Number of Corona product of graphs

Theorem 2.1: For the graph $H = P_n \circ K_1 (n \ge 2)$, then $\gamma_{dg}(H) = |P_n|$.

Proof: Let $H = P_n \circ K_1$ has 2n vertices $\{v_1, v_2, ..., v_n, u_1, u_2, ..., u_n\}$ and 2n - 1 edges $v_i v_{i+1}, 1 \le i \le n - 1$ and $v_i u_i, 1 \le i \le n$. Let $\{v_1, v_2, ..., v_n\}$ be the vertices of P_n and $\{u_i\}$ be the vertex set of $i^{th}(1 \le i \le n)$ copy of K_1 . The set $D = \{u_1, u_2, ..., u_n\}$ is the set of all pendant vertices of H. Then D is the subset of every

 γ_{dg} - set of H(by Theorem 1.1.) and so $\gamma_{dg}(G) \ge |D|$. It is clear that D is a detour global dominating set of H so that $\gamma_{dg}(H) = n$.

Theorem 2.2: For the graph $H = P_n \circ K_2 (n \ge 2)$, then $\gamma_{dq}(H) = |P_n|$.

Proof: Let $H = P_n \odot K_2$ has 3n vertices $\{v_1, v_2, ..., v_n, u_1, u_2, ..., u_{2n}\}$ and 4n - 1 edges. Let $\{v_1, v_2, ..., v_n\}$ be the vertices of P_n and $\{u_{2i-1}, u_{2i}\}$ be the vertex set of $i^{th}(1 \le i \le n)$ copy of k_2 . Any set S containing at least one vertex from each copy of k_2 forms a minimum detour dominating set of H. Also, it is a dominating set of \overline{H} . Since every vertex in H - S is not adjacent to at least one vertex in S. Therefore, S itself is a minimum detour global dominating set of H. Hence $\gamma_{dg}(H) = n$.

Theorem 2.3: For the graph $H = P_n \circ K_m (n \ge 2)$, then $\gamma_{dg}(H) = |P_n|$.

Proof: Let $H = P_n \circ K_m$. Let $\{v_1, v_2, ..., v_n\}$ be the vertices of P_n and $\{u_{i1}, u_{i2}, ..., u_{im}\}$ be the vertex set of i^{th} copy of K_m which is adjacent to $v_i (1 \le i \le n)$. Then the graph H has n(m+1) vertices $\{v_1, v_2, ..., v_n, u_{11}, u_{12}, ..., u_{1m}, u_{21}, u_{22}, ..., u_{2m}, ..., u_{n1}, u_{n2}, ..., u_{nm}\}$. Obviously, for j = 1 to $m, S_j = \{u_{1j}, u_{2j}, u_{3j}, ..., u_{(n-1)j}, u_{nj}\}$ are some detour dominating sets of H. Then any subset of detour dominating set of H with cardinality two, dominates all the vertices in the complement \overline{H} of H. Therefore, sets S_j itself is a detour global dominating set. Hence, each S_j is a minimum detour global dominating set of H. Hence $\gamma_{dg}(H) = |P_n| = n$.

Figure 2.1

Infigure 2.1, The sets $\{u_{11}, u_{21}\}, \{u_{12}, u_{22}\}, \{u_{13}, u_{23}\}, \{u_{14}, u_{24}\}, \{u_{15}, u_{25}\}$ are some minimum detour global dominating sets of H. Hence $\gamma_{dg}(P_2 \circ K_5) = 2$.

Theorem 2.5: For the graph $H = C_n \circ K_1 (n \ge 3)$, then $\gamma_{dq}(H) = n$.

Proof: Let $H = C_n \circ K_1$. Let $\{v_1, v_2, ..., v_n\}$ be the vertices of the cycle of order n and let u_i be the vertex set of the i^{th} copy of K_1 which is adjacent to v_i . The graph H has 2n vertices $\{v_1, v_2, ..., v_n, u_1, u_2, ..., u_n\}$. Then the set $S = \{u_1, u_2, ..., u_{n-1}, u_n\}$ is the set of all end vertices of H. By theorem 1.1, S is a subset of every detour global dominating set of H and so $\gamma_{dg}(H) \ge n$. It is clear that S is a detour global dominating set of H and so S is the unique minimum detour global dominating set of H. Therefore $\gamma_{dg}(H) = n$.

Theorem 2.6: For the graph $H = C_n \circ K_2 (n \ge 3)$, then $\gamma_{dg}(H) = n$.

Proof: Let $H = C_n \circ K_2 (n \ge 3)$. Let $\{v_1, v_2, ..., v_n\}$ be the vertices of the cycle of order n and $\{u_{i1}, u_{i2}\}$ be the vertex set of the *i*th copy of K_2 which is adjacent to $v_i (i = 1 \text{ to } n)$.

Then the graph H has 3n vertices { $v_1, v_2, ..., v_n, u_{11}, u_{12}, u_{21}, u_{22}, ..., u_{n1}, u_{n2}$ }. The sets $S_1 = \{u_{11}, u_{21}, ..., u_{(n-1)1}, u_{n1}\}$ and $S_2 = \{u_{12}, u_{22}, ..., u_{(n-1)2}, u_{n2}\}$ are some detour global dominating set of H. There does not exist any $\gamma_{dg} - set$ of cardinality less than n ($|S_1| = |S_2| = n$). Hence $\gamma_{dg}(H) = n$.

Theorem 2.7: For the graph $H = C_n \circ K_m (n \ge 3)$, then $\gamma_{dg}(H) = n$.

Proof: Let $\{v_1, v_2, ..., v_n\}$ be the vertices of C_n and let $\{u_{i1}, u_{i2}, ..., u_{im}\}$ be the vertex set of i^{th} copy of K_m which is adjacent to $v_i (1 \le i \le n)$. Then, $V(H) = \{v_1, v_2, ..., v_n, u_{11}, u_{12}, ..., u_{1m}, u_{21}, u_{22}, ..., u_{2m}, ..., u_{n1}, u_{n2}, ..., u_{nm}\}$. Obviously, for j = 1 to $m, S_j = \{u_{1j}, u_{2j}, u_{3j}, ..., u_{(n-1)j}, u_{nj}\}$ are some detour dominating sets of H. It is also a dominating set of \overline{H} . Since, every vertex in $\{H - S_j/j = 1 \text{ to } m\}$ is not adjacent to at least one vertex in S_j Therefore, sets S_j itself is a detour global dominating set of L. Further, there does not exist any $\gamma_{dg} - set$ of cardinality less than $n(|S_j| = n)$. Hence, each S_j is a minimum detour global dominating set of $C_n \circ K_m$. Hence $\gamma_{dg}(H) = |C_n| = n$.

Example 2.8: $\gamma_{dg}(C_4 \circ K_2) = 4$.

In figure 2.2, $S = \{u_{11}, u_{21}, u_{31}, u_{41}\}$ forms a minimum detour global dominating set of H.

Therefore $\gamma_{da}(C_4 \circ K_2) = 4$

H:

Figure 2.2

Theorem 2.9: For the graph $H = W_n \circ K_1 (n \ge 4)$, then $\gamma_{dg}(H) = n$. **Proof:**

Let $H = W_n \circ K_1$. Here W_n is a graph formed by connecting a single universal vertex to all vertices of a cycle of order n - 1. Let $\{v_1, v_2, ..., v_{n-1}, v_n\}$ be the vertices of the wheel graph of order n with v_n be a universal vertex and $\{v_1, v_2, ..., v_{n-1}\}$ be the vertices of an outer cycle. Let u_i be the vertex set of the i^{th} copy of K_1 which is adjoint to v_i . The graph H has 2n vertices $\{v_1, v_2, ..., v_n, u_1, u_2, ..., u_n\}$. Then the set S = $\{u_1, u_2, ..., u_{n-1}, u_n\}$, being the set of all end vertices of H. By theorem 1.1, S is a subset of every detour global dominating set of H. It is clear that S is a detour set. Also, S dominates all the vertices in H and the complement \overline{H} of H. Therefore, S itself is a detour global dominating set of H. Further, no set less than n(|S| = n)vertices is a detour global dominating set. Hence S is the unique minimum detour global dominating set of H. Therefore $\gamma_{dg}(H) = |S| = n$.

Theorem 2.10: For the graph $H = W_n \circ K_2 (n \ge 4)$, then $\gamma_{dq}(H) = n$.

Proof: Let $H = W_n \circ K_2$. Here W_n is a graph formed by connecting a single universal vertex to all vertices of a cycle of order n - 1. t $\{v_1, v_2, ..., v_{n-1}, v_n\}$ be the vertices of the wheel graph of order n with v_n be a universal vertex and $\{v_1, v_2, ..., v_{n-1}\}$ be

the vertices of an outer cycle and let $\{u_{i1}, u_{i2}\}$ be the vertex set of the i^{th} copy of K_2 adjoint to $v_i(i = 1 \text{ to } n)$. Then the graph H has 3n vertices $\{v_1, v_2, \dots, v_n, u_{11}, u_{12}, u_{21}, u_{22}, \dots, u_{n1}, u_{n2}\}$. The sets $S_1 =$ $\{u_{11}, u_{21}, \dots, u_{(n-1)1}, u_{n1}\}$ and $S_2 = \{u_{12}, u_{22}, \dots, u_{(n-1)2}, u_{n2}\}$ are some detour global dominating set of H. Further, no set less than *n* vertices is a detour global dominating set. Therefore sets S_1 and S_2 are minimum detour global dominating set of H. Hence $\gamma_{da}(H) = n$.

Theorem 2.11: For the graph $H = W_n \circ K_m (n \ge 4)$, then $\gamma_{dg}(W_n \circ K_m) = n$.

Proof: Let $H = W_n \circ K_m$. Here W_n is a graph formed by connecting a single universal vertex to all vertices of a cycle of order n - 1. Let $\{v_1, v_2, ..., v_{n-1}, v_n\}$ be the vertices of the wheel graph of order n with v_n be a universal vertex and $\{v_1, v_2, ..., v_{n-1}\}$ be the vertices of an outer cycle. Let $\{u_{i1}, u_{i2}, ..., u_{im}\}$ be the vertex set of i^{th} copy of K_m adjacent to $v_i (1 \le i \le n)$. Then $V(H = W_n \circ K_m) = \{v_1, v_2, ..., v_n, u_{11}, u_{12}, ..., u_{1m}, u_{21}, u_{22}, ..., u_{2m}, ..., u_{n1}, u_{n2}, ..., u_{nm}\}$. Obviously, for j = 1 to m, $S_j = \{u_{1j}, u_{2j}, u_{3j}, ..., u_{(n-1)j}, u_{nj}\}$ are some detour dominating sets of $W_n \circ K_m$. Then any subset of detour dominating set of H with cardinality two, dominates all the vertices in the complement \overline{H} of H. Therefore, sets S_j itself is a detour global dominating set of H. Further, no set less than $n(|S_j| = n)$ vertices is a detour global dominating set. Hence, each S_j is a minimum detour global dominating set of $W_n \circ K_m$. Hence $\gamma_{dg}(W_n \circ K_m) = |W_n| = n$.

Example 2.12: $\gamma_{dg}(W_4 \circ K_3) = 4$

In figure 2.3, $S = \{u_{12}, u_{22}, u_{32}, u_{42}\}$ forms a minimum detour global dominating set of the graph H. $\gamma_{dg}(W_4 \circ K_3) = 4$.

Figure 2.3

Theorem 2.13: For the graph $H = K_{1,n} \circ K_1$, then $\gamma_{dg}(K_{1,n} \circ K_1) = n + 1$. **Proof:** Let $H = K_{1,n} \circ K_1$. Let $V(K_{1,n}) = \{v_1, v_2, ..., v_{n-1}, v_n, v\}$ with v as its root vertex and $\{v_1, v_2, ..., v_{n-1}, v_n\}$ be the set of end vertices. et u_i be the vertex set of the i^{th} copy of K_1 adjacent to $v_i (1 \le i \le n)$ and w be the vertex of a copy of K_1 adjacent to the root vertex v. The graph H has 2n + 1 vertices $\{v_1, v_2, ..., v_n, v, u_1, u_2, ..., u_n\}$. Then the set $S = \{u_1, u_2, ..., u_{n-1}, u_n, w\}$ being the set of all end vertices of H. By theorem 1.1, S is a subset of every detour dominating set of H. It is clear that S is a detour set. Also, S dominates all the vertices in the complement \overline{H} of H. Since S contains only end vertices and the graph H - S has no full vertex. Hence S is the unique minimum detour global dominating set of H. Therefore $\gamma_{dg}(K_{1,n} \circ K_1) = |S| = n + 1$.

Theorem 2.14: For the graph $H = K_{1,n} \circ K_2$, then $\gamma_{dg}(K_{1,n} \circ K_2) = n + 1$.

Proof: Let $H = K_{1,n} \circ K_2$. Let $V(K_{1,n}) = \{v_1, v_2, \dots, v_{n-1}, v_n, v\}$ with v as its root vertex and $\{v_1, v_2, \dots, v_{n-1}, v_n\}$ be the set of end vertices and let $\{u_{i1}, u_{i2}\}$ be the vertex set of the i^{th} copy of K_2 which are adjacent to v_i (i = 1 to n) and $\{w_1, w_2\}$ be the vertex set of a copy of K_2 which are adjacent to the root vertex v. Then the graph H has 3n + 1 vertices $\{v_1, v_2, \dots, v_n, v, u_{11}, u_{12}, u_{21}, u_{22}, \dots, u_{n1}, u_{n2}\}$. The sets $S_1 = \{u_{11}, u_{21}, \dots, u_{(n-1)1}, u_{n1}, w_1\}$ and $S_2 = \{u_{12}, u_{22}, \dots, u_{(n-1)2}, u_{n2}, w_2\}$ are some detour global dominating set of H. There does not exist any $\gamma_{dg} - set$ of cardinality less than n ($|S_1| = |S_2| = n$). Hence $\gamma_{dg}(K_{1,n} \circ K_2) = n$.

Theorem 2.15: For the graph $H = K_{1,n} \circ K_m$, then $\gamma_{dg}(K_{1,n} \circ K_m) = n + 1$. **Proof:** Let $H = K_{1,n} \circ K_m$. Let $V(K_{1,n}) = \{v_1, v_2, ..., v_{n-1}, v_n, v\}$ with v as its root vertex and $\{v_1, v_2, ..., v_{n-1}, v_n\}$ be the set of end vertices. Let $\{u_{i1}, u_{i2},, u_{im}\}$ be the vertex set of i^{th} copy of K_m which are adjacent to $v_i(1 \le i \le n)$ and $\{w_1, w_2, ..., w_m\}$ be the vertex set of a copy of K_m which are adjacent to the root vertex v. Then V(H) = $\{v_1, v_2, ..., v_n, v\} \cup \{u_{11}, u_{12}, ..., u_{1m}, u_{21}, u_{22}, ..., u_{2m}, ..., u_{n1}, u_{n2}, ..., u_{nm}\}\}$. Obviously, for j = 1 to m, $S_j = \{u_{1j}, u_{2j}, u_{3j}, ..., u_{(n-1)j}, u_{nj}, w_j\}$ are some detour dominating sets of $K_{1,n} \circ K_m$. Then any subset of detour dominating set of H with cardinality two dominates all the vertices in the complement \overline{H} of H. Therefore, sets S_j itself is a detour global dominating set of H. Further, no set less than $n(|S_j| = n)$ vertices is a detour global dominating set. Hence, each S_j is a minimum detour global dominating set of $K_{1n} \circ K_m$. Hence $\gamma_{dg}(K_{1,n} \circ K_m) = |K_{1,n}| = n + 1$.

Example 2.16: $\gamma_{dg}(K_{1,4} \circ K_3) = 5.$

In Figure 2.4, $S = \{u_{13}, u_{23}, u_{33}, u_{43}, w_3\}$ forms a minimum detour global dominating set of the graph H. Hence $\gamma_{dg}(K_{1,4} \circ K_3) = 5$

well as creative suggestions.

References:

[1]. Buckley, F. and Harary, F. (1990). Distance in Graphs, Addison- Wesley

Publishing Company, Redwood City, San Francisco Peninsula.

[2]. Chartrand.G, Escuadro. H and Zang. B, Distance in graph, Taking the long

view, AKCE J. Graphs and combin.,1(1)(2014), 1-13

[3].Chartrand, H. Escuadro and B. Zang, Detour distance in a graph, J. Combin-

math.Combin computer.,.53(2005),75 - 94.

[4]. Chartrand. G, Johns. L and Zang. P, Detour Number of a Graph, Utilitas

Mathematics, 64(2003), 97-113

[5].Chartrand, G., Haynes, T.W., Henning, M.A., and Zhang, P.(2004). Detour Domination in Graphs, Ars Combinatoria, 149-160.

[6].Frucht. R and Harary. F, On the Corona of two graphs, Aequationes Math, 4(1970), 322-325.

[7].Harary, F. (1972). Graph Theory, Addison Wesley Publishing Company Reading Mass.

[8].Haynes, T.W., Hedetniemi, S.T. and Slater, P.J. (1998) Fundamentals of Domination in Graphs, Marcel Dekker, Inc., NY.

[9].John Adrian Bondy, Murty U.S.R.(2009); Graph Theory, Springer, 2008.

[10].Kulli, V.R College Graph Theory, Vishwa International Publications,

Gulbarga, India(2012).

[11]. PunithaTharani.A, Ferdina. A, Detour Global Domination Number of Some Standared And Special Graphs International Journal of Advanced Science and Technology, vol.29.pp:185-189.

[12]. Sampathkumar, E. (1989). The Global Domination Number of a Graph, J.

Math.Phys. Sci., 23, pp. 377- 385.