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Abstract 

 

We have proved in this paper that numbers can be expressed in 

algebraic form using one variable and two real rational quantities 

and thus sum of three cubes can also be expressed in algebraic form 

as a cubic polynomial. Using skeletal or seed equation, the 

polynomial can be transformed into a quadratic equation. A seed 

equation denotes a simple  equation that represents a given integer 

as sum of three cubes including 0, for example, a seed equation for 

integer 2 is 1 cubed plus 1 cubed plus 0 cubed. Resultant quadratic 

equation can further be transformed into a linear equation which 

yields value of the variable and substitution of the value of the 

variable into the algebraic form of numbers results in the required 

solution.Notwithstanding, finding a single set of three cubes, we have 

found, using this approach,  multiple sets of cubes. We have also 

given parametrization for such cubes. Cases, where it is difficult or 

not possible to determine a seedequation, alternate method has been 
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provided. Methods used are unattempted, innovative and easily 

comprehensible 

Keywords:Cube, Cubic Equation, Integer Root, Linear Equation, Parametrisation, 

Pythagorean’s Triple, Quadratic Equation, Seed Equation. 

2010 AMS classification:11D25 

1. Introduction 

It is an open problem in Number Theory tocharacterisean integer as sum of three 

cubes. Heath-Brown conjectured that all integers except of the forms 9𝑥 ± 4 or 9𝑥 ±

5, can be expressed as sum of three cubes in multiple ways [4]. Apart from this 

statement, number 0  can not be expressed as sum of three distinct cubes on account 

of Fermat’s last theorem that states, three integers 𝑎, 𝑏 and 𝑐 can not be expressed as 

𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 where 𝑛 > 2. Only possible solution is trivial,  𝑎3 + (−𝑎)3 + 0 = 0. 

On the other hand, K. Mahler in the year 1936, found that integer 1 is expressible in 

infinite ways by parametric (1 − 9𝑝3)3 + (3𝑝 − 9𝑝4)3 + (9𝑝4)3 = 1, [10]. There 

are other representations and family of parametrisation as well for this integer 1, [1]. 

Earlier in the year 1908,  A.S. Verebrusov had already discovered that integer 2 is 

expressible in infinite ways by parametric (1 − 6𝑝3)3 + (1 + 6𝑝3)3 + (−6𝑝2)3 = 2, 

[2],[8]. Notwithstanding parametric solutions stated above, there is a  family of 

solutions for representing integer 2, [1], [4]. For integer 3, Mordell in the year 1953, 

expressed his opinion that he does not know anything more than to say 3 = 13 +

13 + 13 = 43 + 43 + (−5)3.  Heath-Brown, Lioen, and te Riele in the year 1992, 

found the cubes that sum up to 39 by equation  39 = 1344763 +  1173673  +

 (−159380)3 [4]. Thereafter, for finding solutions to  𝑥3 + 𝑦3 + 𝑧3 = 𝑛, where 𝑛 

varies from 1 to 1000, many authors implemented computational searches up to 

(|𝑥|, |𝑦|, |𝑧|) < 1015  [5]. At present, up to 𝑛 < 100, solutions have been found 

except two integers 33 and 42 [6]. But now, Andrew Booker and Andrew Southland 

have settled the cases for these two integers also [3], [11],[9]. Up to 1000, there are 

integers 114, 390, 627, 633, 732, 921 and 975 which could not be solved for their 

representation by sum of three cubes [1], [7].  

Although much work has been done, we, resorting to innovative and unattempted 

methods, have endeavoured to solve the problem of representations of integers 

1, 2, 3, …  so on except integers of the forms 9𝑥 ± 4 or 9𝑥 ± 5 by sum of three cubes. 

For integers of some specific forms, we have derived their  parameterisation. We 

have also proved that a given integer can be expressed by multiple sets of three 
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adding cubes.We have proved the veracity of  formulae derived by us, presenting 

exhaustive examples in Tables. To begin with, we represent an integer  𝑘 as sum of 

three cubes by the equation 

    𝑋3 + 𝑌3 + 𝑍3 = 𝑘   (1.1)  

where  𝑋, 𝑌 and 𝑍 are all integers positive or negative. To determine 𝑋, 𝑌 and 𝑍, we 

need a seed equation which, in fact, is a skeletal equation for integer 𝑘. This equation, 

then will be used to determine values of  𝑋, 𝑌 and 𝑍. Seed equations for 𝑘 = 1, can be 

written easily as 

    (1)3 + (0)3 + (0)3 = 1 (1.2) 

or  

    (1)3 + (𝑝)3 + (−𝑝)3 = 1.              (1.3) 

where 𝑝 is an integer positive or negative. Some of the seed equations for integers 

1, 2, 3, …  are given in Table1.1 for better clarity. 

Table1.1  Some Seed Equations 

Integers to Be 

Represented  

‘𝑘’ 

𝐴3 + 𝐵3 + 𝐶3 = 𝑘  Integers to Be 

Represented  

‘𝑘’ 

𝐴3 + 𝐵3 + 𝐶3 = 𝑘 

1 (1)3 + (𝑝)3 + (−𝑝)3

= 1 

7 (2)3 + (−1)3 + (0)3

= 7 

2 (1)3 + (1)3 + (0)3

= 2 

8 (2)3 + (0)3 + (0)3

= 8 

3 (1)3 + (1)3 + (1)3

= 3 

9 (2)3 + (1)3 + (0)3

= 9 

6 (2)3 + (−1)3 + (−1)3

= 6 

10 (2)3 + (1)3 + (1)3

= 10 

It may happen that seed equation for a given  𝑘  is not easily determinable, such cases 

will be dealt at the end. We submit, a real rational number, say 𝑛, can be expressed in 

algebraic form, 

𝑛 = 𝑎 · 𝑥 + 𝐴, 

where 𝑎 and 𝐴 are real rational quantities assigned by us and  𝑥 is a variable.  From 

above said equation, we can write,  𝑥 =
𝑛−𝐴

𝑎
. To illustrate, how a number, say 𝑛, can 

be expressed, we take the example for 𝑛 = 5. Let 𝑎 and 𝐴 have values 7 and 3 

respectively, then 𝑥 =
5−3

7
=

2

7
. If 𝑎 and 𝐴 have values, 3  and −1 respectively, then 

𝑥 = 2. Integer 5 can, therefore, be written in infinite ways by assigning different 

values to 𝑎 and 𝐴. For example,   

    5 = 7 · (2/7) + 3 = 3 · 2 − 1 = ⋯. 

That proves proceeding Lemma 1.1. 
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Lemma 1.1: A real rational number 𝑛 can always be expressed in the form 𝑛 = 𝑎 ·

𝑥 + 𝐴, where 𝑎 and 𝐴 are real rational numbers and 𝑥 variable. 

1.1    Algebraic Equation for Sum of Cubes 

Applying Lemma 1.1,𝑋, 𝑌 and 𝑍 can be written in algebraic form,  𝑋 = 𝑎 · 𝑥 + 𝐴,

𝑌 = 𝑏 · 𝑥 + 𝐵 and  𝑍 = 𝑐 · 𝑥 + 𝐶. Equation (1.1), then can be written  

  (𝑎 · 𝑥 + 𝐴)3 + (𝑏 · 𝑥 + 𝐵)3 + (𝑐 · 𝑥 + 𝐶)3 = 𝑘.(1.4) 

On expansion and rearrangement, this equation can be written, 

𝑥3(𝑎3 + 𝑏3 + 𝑐3) + 3𝑥2(𝑎2 · 𝐴 + 𝑏2 · 𝐵 + 𝑐2 · 𝐶)

+ 3𝑥 (𝑎 · 𝐴2 + 𝑏 · 𝐵2 + 𝑐 · 𝐶2) 

  +𝐴3 + 𝐵3 + 𝐶3 − 𝑘 = 0.                (1.5) 

Since 𝑎, 𝑏, 𝑐, 𝐴, 𝐵 and 𝐶 have values as assigned by us, therefore, coefficients of 

𝑥3,   𝑥2,   𝑥 and constant term of above equation are known. Being a cubic equation, 

finding integer values of 𝑥, satisfying this equation, is tedious, hence determination of 

values of  𝑋 = 𝑎 · 𝑥 + 𝐴, 𝑌 = 𝑏 · 𝑥 + 𝐵 and 𝑍 = 𝑐 · 𝑥 + 𝐶 will also be tedious and 

difficult. To tide over this difficulty, we will transform cubic into a linear equation. 

2. Transformation of Cubic Equation into a Linear Equation 

For solving cubic equation in an easy way, it is transformed into a quadratic equation 

and, then to linear equation.Transformation into a quadratic equation will be achieved 

by use of seed equation that has already been explained in the introduction section. 

Let the seed equation for integer 𝑘 be  𝐴3 + 𝐵3 + 𝐶3 = 𝑘. Substituting this value of 𝑘 

in Equation (1.5) and on simplifying, it gets transformed into  

𝑥{𝑥2(𝑎3 + 𝑏3 + 𝑐3) + 3𝑥 (𝑎2 · 𝐴 + 𝑏2 · 𝐵 + 𝑐2 · 𝐶)

+ 3(𝑎 · 𝐴2 + 𝑏 · 𝐵2 + 𝑐 · 𝐶2)} = 0. 

 This equation has one root at 𝑥 = 0 and this root is ignored on account of the fact, it 

will yield the given seed equation. Ignoring root at 𝑥 = 0,  the equation, then reduces 

to quadratic form 

𝑥2(𝑎3 + 𝑏3 + 𝑐3) + 3𝑥 (𝑎2 · 𝐴 + 𝑏2 · 𝐵 + 𝑐2 · 𝐶)

+ 3(𝑎 · 𝐴2 + 𝑏 · 𝐵2 + 𝑐 · 𝐶2) 

  = 0.                   (2.1)    

If Equation (2.1) is solvable for real rational roots, say 𝑥 equal to 𝑝 and 𝑞 such that 

substitution of value of  the roots in  (𝑎 · 𝑥 + 𝐴),   (𝑏 · 𝑥 + 𝐵) and (𝑐 · 𝑥 + 𝐶) yields 

integer values on account of our choice of 𝑎, 𝑏 and 𝑐, then required cubes are given by 

relations 

  (𝑎 · 𝑝 + 𝐴)3 + (𝑏 · 𝑝 + 𝐵)3 + (𝑐 · 𝑝 + 𝐶)3 = 𝑘,  (2.2) 

and 
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  (𝑎 · 𝑞 + 𝐴)3 + (𝑏 · 𝑞 + 𝐵)3 + (𝑐 · 𝑞 + 𝐶)3 = 𝑘.             (2.3) 

If the quadratic Equation (2.1) can not be solved or difficult to solve for real rational 

root or roots, it will be further transformed into a linear equation by equating constant 

term to zero.That is 

   (𝑎 · 𝐴2 + 𝑏 · 𝐵2 + 𝑐 · 𝐶2) = 0.              (2.4) 

The transformed equation, then will be  

𝑥2(𝑎3 + 𝑏3 + 𝑐3) + 3𝑥 (𝑎2 · 𝐴 + 𝑏2 · 𝐵 + 𝑐2 · 𝐶) = 0. 

Again this equation has one root, 𝑥 = 0 and this root will yield seed equation, hence 

ignored. Transformed linear equation will, then be     

  𝑥 = −
3(𝑎2·𝐴+𝑏2·𝐵+𝑐2·𝐶)

(𝑎3+𝑏3+𝑐3)
= 𝑟 (say). (2.5) 

Depending upon our selection of 𝑎, 𝑏 and 𝑐 if 𝑟 has a real rational value such that                                            

(𝑎 · 𝑥 + 𝐴), (𝑏 · 𝑥 + 𝐵) and (𝑐 · 𝑥 + 𝐶) are integers, then solution will be 

 (𝑎 · 𝑟 + 𝐴)3 + (𝑏 · 𝑟 + 𝐵)3 + (𝑐 · 𝑟 + 𝐶)3 = 𝑘.                  (2.6) 

2.1    Choice of 𝒂, 𝒃, 𝒄, 𝑨, 𝑩  and 𝑪 

What values should be assigned to  𝐴, 𝐵  and 𝐶 depend upon the value of 𝑘 and that 

has already been explained while dealing with seed equations. Kindly refer to  Table 

1.1.  Assignment of values to 𝑎, 𝑏 and 𝑐 is very crucial. These are so chosen that 

either cubic equation (1.5) or quadratic equation (2.1) or linear equation (2.5) yields 

at least one real and rational root such that substitution of that root in (𝑎 · 𝑥 + 𝐴),

(𝑏 · 𝑥 + 𝐵) and (𝑐 · 𝑥 + 𝐶) gives integer values. To achieve this result, certain 

algebraic identities will be used. With this concept of transformation of cubic 

equation, we proceed to determine three cubes that sum up to a given integer.  

 

3    Use of a Seed Equation  

We will take up relatively easier cases first, then harder and ultimately the hardest, 

where it is difficult to find a seed equation.  

3.1  Representation of Integer 2 and Other Integers Expressible as 𝟐𝒑𝟑, Where 𝒑 

Is an Integer 

Seed equation for integer 2 is  (1)3 + (1)3 + (0)3 = 2. That makes 𝑋 = 𝑎 · 𝑥 +

1, 𝑌 = 𝑏 · 𝑥 + 1 and 𝑍 = 𝑐 · 𝑥.  We have chosen, 𝐴 = 1, 𝐵 = 1 and 𝐶 = 0 

intentionally so as to get rid of constant term in Equation (3.1). Equation, then can be 

written, 

   (𝑎 · 𝑥 + 1)3 + (𝑏 · 𝑥 + 1)3 + (𝑐 · 𝑥)3 = 2.  (3.1) 

On simplification, 

𝑥2(𝑎3 + 𝑏3 + 𝑐3) + 3𝑥 (𝑎2 + 𝑏2) + 3 (𝑎 + 𝑏 ) = 0. 
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For transformation into linear equation, we put  𝑎 + 𝑏 = 0. Transformed linear 

equation is 

𝑥 (𝑎3 + 𝑏3 + 𝑐3) + 3(𝑎2 + 𝑏2) = 0. 

On putting, 𝑏 = −𝑎, 

𝑥 = −
6

𝑐
(

𝑎2

𝑐2) = −
6

𝑐
(𝑝2), 

where  𝑝 = 𝑎/𝑐. Substituting this value of 𝑥 in Equation (2.6) 

  (1 − 6𝑝3)3 + (1 + 6𝑝3)3 + (−6𝑝2)3 = 2. (3.2) 

This parameterisation proves, there are infinite values of integer  𝑝 that satisfy 

Equation (3.2), hence there are infinite ways to represent 2 as sum of three cubes. 

This relation was discovered by A.S. Verebrusov who found this parametrisation [2]. 

But we have given the simplest method of determining family of sets of three cubes 

that sum up to 2. On multiplying identity (3.2) with 𝑑3,  

{𝑑(1 − 6𝑝3)}3 + {𝑑(1 + 6𝑝3)}3 + {−𝑑(6𝑝2)}3 = 2𝑑3.             (3.3) 

This identity is a parametrisation for the integers 2𝑑3 expressed as sum of three 

cubes.   

3.2  Representation of Integers 3 and 𝟑𝒑𝟑 

Seed equation for integer 3 is (1)3 + (1)3 + (1)3 = 3. That makes 𝑋 = (𝑎 · 𝑥 +

1), 𝑌 = (𝑏 · 𝑥 + 1) and  𝑍 = (𝑐 · 𝑥 + 1). Corresponding equation is 

 (𝑎 · 𝑥 + 1)3 + (𝑏 · 𝑥 + 1)3 + (𝑐 · 𝑥 + 1)3 = 3.             (3.4) 

On simplification,  

𝑥3(𝑎3 + 𝑏3 + 𝑐3) + 3𝑥2(𝑎2 + 𝑏2 + 𝑐2) + 3𝑥(𝑎 + 𝑏 + 𝑐) = 0 . 

For transformation into linear equation, we put  𝑎 + 𝑏 + 𝑐 = 0 and simplify it, then 

𝑥 = 2 (
1

𝑐
−

𝑐

𝑎𝑏
). 

Substituting this value of 𝑥 in  Equation (3.4), we get  

 {1 + 2𝑎 (
1

𝑐
−

𝑐

𝑎𝑏
)}

3
+ {1 + 2𝑏 (

1

𝑐
−

𝑐

𝑎𝑏
)}

3
+ {1 + 2𝑐 (

1

𝑐
−

𝑐

𝑎𝑏
)}

3
= 3.       

(3.5) 

Let 𝑏 = 𝑐 · 𝑑, then 𝑎 = −(𝑐 · 𝑑 + 𝑐) since 𝑎 = −(𝑏 + 𝑐), where 𝑑 is real rational 

quantity. On putting these values of 𝑎 and 𝑏 in Equation (3.5) and simplifying, 

 {−1 − 2 (𝑑 +
1

𝑑
)}

3
+ {1 + 2 (𝑑 +

1

𝑑+1
)}

3
+ {1 + 2 (

1

𝑑
+

𝑑

𝑑+1
)}

3
= 3.      

(3.6) 

For integer solutions, 2 (𝑑 +
1

𝑑
) , 2 (𝑑 +

1

𝑑+1
)  and 2 (

1

𝑑
+

𝑑

𝑑+1
) must be integers. To 

achieve this objective, 𝑑 and 𝑑 + 1 must be factors of 2  and either of the two, must 

not be zero. Due to reciprocity of 𝑑 and 𝑑 + 1 with 1/𝑑 and 1/(𝑑 + 1) respectively 
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as is apparent from Equation (3.6), values of 1/𝑑 and 1/(𝑑 + 1) will also satisfy 

Equation (3.6) if values of 𝑑 and (𝑑 + 1) satisfy this equation. For example, 𝑑 = −2  

or  1/𝑑 = −2 or 𝑑 = 1 will satisfy the Equation (3.6) and yield 

(4)3 + (−5)3 + (4)3 = 3 , 

(4)3 + (4)3 + (−5)3 = 3, 

   (−5)3 + (4)3 + (4)3 = 3.               (3.7) 

These equations have  same cubes but latter two equations have cubes displaced from 

their original position and, in this way, these three equations amount to one set of 

cubes. Multiplication of Equation (3.7) with 𝑝3, where 𝑝 is an integer, gives 

parametrisation for 3𝑝3 

   (4𝑝)3 + (4𝑝)3 + (−5𝑝)3 = 3𝑝3.  (3.8) 

3.2a Multiple Sets of Three Cubes That Represent Integer 𝟑𝒑𝟑 

Equation (3.6), when multiplied with 𝑝3, where 𝑝 is an integer, takes the form 

{−𝑝 − 2𝑝 (𝑑 +
1

𝑑
)}

3
+ {𝑝 + 2𝑝 (𝑑 +

1

𝑑+1
)}

3
+ {𝑝 + 2𝑝 (

1

𝑑
+

𝑑

𝑑+1
)}

3
= 3𝑝3.  (3.9) 

For integer values of cubes, values of 𝑑 should be such that  2𝑝(𝑑 + 1/𝑑), 2𝑝{𝑑 +

1/(𝑑 + 1)} and 2𝑝{1/𝑑 + 𝑑/(𝑑 + 1)} must be integers. For integer 2, we have 

already found out factors in preceding paragraph and these will also be applicable to 

2𝑝 as 2 is a factor of 2𝑝 but to have more factors, 2𝑝 must be of the form 

2𝑝 = 𝑞(𝑞 + 1), 

where 𝑞 is an integer positive or negative such that either 𝑞 or (𝑞 + 1) is not zero. Let 

us take the case, where 𝑞 = 2. In that case, factors of  2𝑝 (or 6) of the form 𝑑(𝑑 + 1), 

are (2)(3) and (1)(2)  ignoring factors (−3)(−2) and (−2)(−1) as these yield same 

cubes but displaced from their original positions. Therefore, putting 𝑑 = 1 and 𝑝 = 3, 

we get (−15)3 + (12)3 + (12)3 = 3(3)3and on putting 𝑑 = 2 and 𝑝 = 3, we get 

(−18)3 + (17)3 + (10)3 = 3(3)3. This proves proceeding Lemmas3.1, 3.2 and 3.3.  

Lemma 3.1: Integer 3 is represented by sum of cubes  

{−1 − 2 (𝑑 +
1

𝑑
)}

3

+ {1 + 2 (𝑑 +
1

𝑑 + 1
)}

3

+ {1 + 2 (
1

𝑑
+

𝑑

𝑑 + 1
)}

3

= 3, 

where 𝑑 has such values that 𝑑 and 𝑑 + 1 are factors of 2. Also 2 (𝑑 +
1

𝑑
) ,

2 (𝑑 +
1

𝑑+1
)  and 2(

1

𝑑
+

𝑑

𝑑+1
) have integer values.  

Lemma3.2: Integer 3𝑝3 is represented by sum of cubes  

{−𝑝 − 2𝑝 (𝑑 +
1

𝑑
)}

3

+ {𝑝 + 2𝑝 (𝑑 +
1

𝑑 + 1
)}

3

+ {𝑝 + 2𝑝 (
1

𝑑
+

𝑑

𝑑 + 1
)}

3

= 3𝑝3, 
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where 𝑑 has such values that 𝑑 and 𝑑 + 1 are factors of 2𝑝. Also 2𝑝 (𝑑 +
1

𝑑
) ,

2𝑝 (𝑑 +
1

𝑑+1
)  and             2𝑝 (

1

𝑑
+

𝑑

𝑑+1
) have integer values. 

Lemma 3.3: If integer 2𝑝 has only  factors 𝑞 and (𝑞 + 1) and neither 𝑞 nor (𝑞 + 1) 

is zero, then integer 3𝑝3 is represented by two sets of  sum of cubes as given below   

{−𝑝 − 2𝑝(1 + 1)}3 + {𝑝 + 2𝑝 (1 +
1

2
)}

3

+ {𝑝 + 2𝑝 (1 +
1

2
)}

3

= 3𝑝3 

and 

{−𝑝 − 2𝑝 (𝑞 +
1

𝑞
)}

3

+ {𝑝 + 2𝑝 (𝑞 +
1

𝑞 + 1
)}

3

+ {𝑝 + 2𝑝 (
1

𝑞
+

𝑞

𝑞 + 1
)}

3

= 3𝑝3 

provided 𝑞 is not further factorable as 𝑞1(𝑞1 + 1). 

3.2b Multiple Sets or Family of Sets of Three Cubes Representing Integer 

𝟑(𝑷!/𝟐!)𝟑 for  𝑷 ≥ 𝟑 

Let integer 𝑝 be such that 𝑝 = 𝑃!/2! and if 𝑃 = 3, then  𝑝 = 3!/2! = 3 and 2𝑝 = 6. 

Six is factorable as (1)(2)(3). Therefore, (1)(2) and (2)(3) are its two pairs of 

factors. That means 3(3!/2!)3 can be represented by two sets of three cubes.  

Taking the case, when 𝑃 = 4, then 𝑝 = 4!/2! = 12 or 2𝑝 = 24 which is factorable as 

(1)(2)(3)(4), then (1)(2), (2)(3) and (3)(4) are three pairs of factors of the form 

𝑑(𝑑 + 1). That means 3(4!/2!)3 can be represented by three sets of three cubes.  

Takings another case, when 𝑃 = 5 or  𝑝 = 5!/2! = 60 or 2𝑝 = 120 which is 

factorable as (1)(2)(3)(4)(5), then (1)(2), (2)(3), (3)(4), (4)(5) and (5)(6) are 

five pairs of factors of the form 𝑑(𝑑 + 1). That means 3(5!/2!)3 can be represented 

by five sets of three cubes. Similarly, it can be proved, when 𝑃 = 6 or  𝑝 = 6!/2! =

360 or 2𝑝 = 720, it is factorable by eight pairs of factors of the form 𝑑(𝑑 + 1). That 

means 3(6!/2)3 can be represented by eight sets of three cubes by putting different 

values of 𝑑. These eight sets are given below. 

(−1800)3 + (1440)3 + (1440)3 = 3(6!/2!)3 = 139968000 

(−2160)3 + (2040)3 + (1200)3 = 3(6!/2!)3 = 139968000 

(−2760)3 + (2700)3 + (1140)3 = 3(6!/2!)3 = 139968000 

(−3420)3 + (3384)3 + (1116)3 = 3(6!/2!)3 = 139968000 

(−4104)3 + (4080)3 + (1104)3 = 3(6!/2!)3 = 139968000 

(−6210)3 + (6200)3 + (1090)3 = 3(6!/2!)3 = 139968000 

(−6920)3 + (6912)3 + (1088)3 = 3(6!/2!)3 = 139968000 

(−11208)3 + (11205)3 + (1083)3 = 3(6!/2!)3 = 139968000 

From above, this can be concluded, when  𝑘 is of form form 3(𝑃!/2!)3, where  𝑃 ≥

3, then 𝑘 can be represented by multiple sets of three cubes. Number of such sets of 
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three cubes equals to the number of factors of the form 𝑑(𝑑 + 1) of 𝑃!. Also, when 

𝑃 ≥ 5, then number of sets of cubes is more than 𝑃. This proves Lemma3.4. 

Lemma3.4: If integer 𝑝 = (𝑃!/2!) and 𝑃 ≥ 3, then integer 𝑘 = 3(𝑃!/2!)3is 

represented by sum of cubes 

{−𝑝 − 2𝑝 (𝑑 +
1

𝑑
)}

3

+ {𝑝 + 2𝑝 (𝑑 +
1

𝑑 + 1
)}

3

+ {𝑝 + 2𝑝 (
1

𝑑
+

𝑑

𝑑 + 1
)}

3

= 3𝑝3

= 3 (
𝑃!

2!
)

3

 

in as many sets as𝑃! has distinct factors of the form 𝑑(𝑑 + 1). When 𝑃 ≥ 5, then 3𝑝3 

can be represented by sets of cubes in as many numbers  as equal to or more than 𝑃. 

Also, If 𝑃! has 𝑛 sets of distinct  factors, then using this method, there will be 𝑛 

distinct sets of three cubes to represent 3𝑝3. 

3.3  Representation of Integers 1 and Other Integers Expressible as 𝒑𝟑, Where 𝒑 

Is an Integer 

Seed equation for integer 1 is (1)3 + (0)3 + (0)3 = 1. That makes  𝑋 = 𝑎 · 𝑥 +

1, 𝑌 = 𝑏 · 𝑥 and 𝑍 = 𝑐 · 𝑥. Therefore,  

   (𝑎 · 𝑥 + 1)3 + (𝑏 · 𝑥)3 + (𝑐 · 𝑥)3 = 1.   (3.10) 

On simplification, 

𝑥2(𝑎3 + 𝑏3 + 𝑐3) + 3𝑥 (𝑎2) + 3(𝑎 ) = 0. 

Let 𝑎 = −9𝑝2, 𝑏 = 3(1 − 3𝑝3), 𝑐 = 9𝑝3, then quadratic equation gets transformed 

into  

(1 − 9𝑝3)𝑥2 + 9𝑥𝑝4 − 𝑝2 = 0 

which has roots, 𝑥 = 𝑝 and 𝑥 = −𝑝/(1 − 𝑝3). On putting these values, 𝑥 = 𝑝 or 𝑥 =

−𝑝/(1 − 𝑝3)  in Equation (3.10), we get the identity  

   (1 − 9𝑝3)3 + (3𝑝 − 9𝑝4)3 + (9𝑝4)3 = 1.(3.11) 

This is a  parameterisation for representation of integer 1 and proves, there are infinite 

values of 𝑝, hence infinite ways to represent 1 as sum of three cubes. This was first 

given by K. Mahler in 1936 [10]. But we have given the simplest method of 

determining family of sets of three cubes that sum up to 1.Referring to identity (3.11), 

if this is multiplied by 𝑑3, where 𝑑 is an integer, it gets transformed into  

  {𝑑(1 − 9𝑝3)3}3 + {𝑑(3 − 9𝑝3)}3 + {𝑑(9𝑝4)}3 = 𝑑3(3.12) 

which is a parametrisation for sum of three cubes that equals 𝑑3. 

3.4  Representation of Integer 𝟒 or 𝟓 

Using Lemma 1.1, a real rational integer 𝑋 can be expressed as 𝑋 = 9𝑥 + 𝑎 , 

where 𝑥  is an integer positive or negative and 𝑎  is also an integer positive 

0, 1, 2, 3, 4, 5  or a negative integer    −1, −2, −3, −4. For examination of divisibility  

of  𝑋3 by 9, we expand 𝑋3,   
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𝑋3 = (9𝑥 + 𝑎)3 = (9𝑥)3 + 27𝑥 · 𝑎(9𝑥 + 𝑎) + 𝑎3 . 

In the above equation, (9𝑥)3  and  27𝑥 · 𝑎(9𝑥 + 𝑎) are obviously divisible by 9, 

therefore, we will now discuss divisibility of 𝑎3 by 9. Taking different values of  𝑎 as 

stated above, 𝑎3 is found to have remainders either 0 or 1 or −1 or 0 or 1 or −1 or 0. 

Therefore, algebraic sum of three cubes i.e. 𝑋3 + 𝑌3 + 𝑍3 will have a remainder 

which is either algebraic sum of any combination of three integers  0, 1 or −1 or 

single integer 0 or 1 or −1 repeated thrice. All combinations of the sum of 

remainders yield 0 or ±1 or ±2 or ±3. Therefore, sum of three cubes when divided 

by 9 can not have remainders other than as mentioned above. Conversely,  it can not 

have remainder  ±4. When division is by 9, remainder  −4  is equivalent to 

remainder 5 and remainder −5 equivalent to 4, therefore, it can also be stated that 

sum of three cubes, when divided by 9, can not have remainder ±5. Therefore, 𝑘 =

9𝑥 ± 4 or 𝑘 = 9𝑥 ± 5 can not be represented by sum of three cubes. In 1992, Roger 

Heath-Brown conjectured that every 𝑘 unequal to 4 or 5 modulo 9 has infinitely many 

representations as sums of three cubes [4]. 

3.5  Representation of Integer 7 and Other Integers Expressible as 𝟕𝒅𝟑 

Seed equation for integer 7 is (2)3 + (−1)3 + (0)3 = 7. That makes 𝑋 = (𝑎 · 𝑥 +

2), 𝑌 = (𝑏 · 𝑥 − 1), 𝑍 = 𝑐 · 𝑥  and  

   (𝑎 · 𝑥 + 2)3 + (𝑏 · 𝑥 − 1)3 + (𝑐 · 𝑥)3 = 7. (3.13) 

On putting 4𝑎 + 𝑏 = 0, (𝑐/𝑎) = 𝑦 and simplifying, transformed  linear equation is  

    𝑥 =
42𝑎2

𝑐3−63𝑎3 =
1

𝑎
(

42

𝑦3−63
)   (3.14) 

On putting above said value of 𝑥,  𝑏 = −4𝑎 and (𝑐/𝑎) = 𝑦 in Equation (3.13), we 

get 

{2 +
42

𝑦3 − 63
}

3

− {1 +
168

𝑦3 − 63
}

3

+ {
42𝑦

𝑦3 − 63
}

3

= 7. 

At 𝑦 = 4, 

443 − 1693 + 1683 = 7. 

On multiplying above said identity with 𝑑3, it gets transforms into  

(44𝑑 )
3

+ (−169𝑑 )
3

+ (168𝑑)3 = 7𝑑3 

which is a parametrisation for integer expressible as 7𝑑3, where 𝑑 is an integer.  

3.6  Representation of an Integers Expressible as 𝒑𝟑 − 𝟏 and 𝒅𝟑(𝒑𝟑 − 𝟏) Where 

𝒅 and 𝒑 Are Integers.   

Seed equation for integer 𝑝3 − 1 is  (𝑝)3 + (−1)3 + (0)3 = 𝑝3 − 1. That makes 𝑋 =

(𝑎 · 𝑥 + 𝑝), 𝑌 = (𝑏 · 𝑥 − 1), 𝑍 = 𝑐 · 𝑥 and  

  (𝑎 · 𝑥 + 𝑝)3 + (𝑏 · 𝑥 − 1)3 + (𝑐 · 𝑥)3 = 𝑝3 − 1.           (3.15) 
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On expansion, simplification and putting 𝑝2 · 𝑎 + 𝑏 = 0, (𝑐/𝑎) = 𝑦,  Equation 3.15 

gets  transformed into a linear equation,  

  𝑥 =
3𝑝·𝑎2(𝑝3−1)

𝑐3−𝑎3(𝑝6−1)
= (

1

𝑎
)

3𝑝(𝑝3−1)

𝑐3

𝑎3−(𝑝6−1)
= (

1

𝑎
)

3𝑝(𝑝3−1)

𝑦3−(𝑝6−1)
. (3.16) 

 On putting above said value of 𝑥,   𝑏 = −𝑝2𝑎 and   (𝑐/𝑎) = 𝑦 in Equation (3.15), 

{𝑝 +
3𝑝(𝑝3 − 1)

𝑦3 − (𝑝6 − 1)
}

3

+ {−1 −
3𝑝3(𝑝3 − 1)

𝑦3 − (𝑝6 − 1)
}

3

+ {
3𝑝 · 𝑦(𝑝3 − 1)

𝑦3 − (𝑝6 − 1)
}

3

= 𝑝3 − 1. 

On putting, 𝑦 = 𝑝2 in above equation,  

{𝑝 + 3𝑝(𝑝3 − 1)}3 + {−1 − 3𝑝3(𝑝3 − 1)}3 + {3𝑝3(𝑝3 − 1)}3 = 𝑝3 − 1,(3.17) 

which is parametrisation for integer 𝑝3 − 1, where 𝑝 is an integer positive or 

negative.    

Table3.1 Sum of Three Cubes That  Equals to 𝑝3 − 1 

𝑝 𝑋3 + 𝑌3 + 𝑍3 = 𝑝3 − 1 𝑝 𝑋3 + 𝑌3 + 𝑍3 = 𝑝3 − 1 

3 2373 − 21073 + 21063 = 26 8 122723 − 7848973 + 7848963 = 511 

4 7603 − 120973 + 120963

= 63 

9 196653 − 15921373 + 15921363

= 728 

5 18653 − 465013 + 465003

= 124 

10 299803 − 29970013 + 29970003

= 999 

6 38763 − 1393213 + 1393203

= 215 

11 439013 − 53106913 + 53106903

= 1330 

7 71893 − 3519193 + 3519183

= 342 

12 621843 − 89527693 + 89527683

= 1727 

Table3.1 depicts sum of three cubes that equals to 𝑝3 − 1 when integer 𝑝 varies from 

3 to 12. 

3.7    Representation of  Integer 𝟗, 𝟗𝒅𝟑 and Other Integers Expressible as 𝒑𝟑 +

𝟏 

Examination of Equation (16) reveals that if 𝑝 is assumed as −𝑝, this equation gets  

transformed into   

{𝑝 − 3𝑝(𝑝3 + 1)}3 + {1 + 3(𝑝3)(𝑝3 + 1)}3 + {−3(𝑝3)(𝑝3 + 1)}3 = 𝑝3 + 1. (3.18) 

At 𝑝 = 2,         

(−52)3 + (217)3 + (−216)3 = 9. 

On multiplying above said identity with 𝑑3, it gets transformed into  

(−52𝑑 )
3

+ (217𝑑 )
3

+ (−216𝑑)3 = 9𝑑3 

which is a parametrisation for integers expressible as 9𝑝3, where 𝑝 is an integer.  

 

Table3.2 Sum of Three Cubes That Equals to  𝑝3 + 1 

𝑝 𝑋3 + 𝑌3 + 𝑍3 = 𝑝3 + 1 𝑝 𝑋3 + 𝑌3 + 𝑍3 = 𝑝3 + 1 
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3 −2493 + 22693−22683 = 28 8 −123043 + 7879693 − 7879683

= 513 

4 −7763 + 124813 − 124803

= 65 

9 −197013 + 15965113 − 15965103

= 730 

5 −18853 + 472513 − 472503

= 126 

10 −300203 + 30030013 − 30030003

= 1001 

6 −39003 + 1406173 − 1406163

= 217 

11 −439453 + 531186773 − 53186763

= 1332 

7 −72173 + 3539773 − 3539763

= 344 

12 −622323 + 89631373 − 89631363

= 1729 

Table3.2 depicts sum of three cubes that equals to 𝑝3 + 1 where 𝑝 is an integer from 

3 to 12.  

3.8  Representation of Integer 10 and Other Integers Expressible as 𝟏𝟎𝒑𝟑 

Seed equation for integer 10 is (2)3 + (1)3 + (1)3 = 10. That makes 𝑋 = (𝑎 · 𝑥 +

2), 𝑌 = (𝑏 · 𝑥 + 1), 𝑍 = (𝑐 · 𝑥 + 1) and  

 (𝑎 · 𝑥 + 2)3 + (𝑏 · 𝑥 + 1)3 + (𝑐 · 𝑥 + 1)3 = 10.           (3.19) 

On putting,  4𝑎 + 𝑏 + 𝑐 = 0, 𝑏 = 𝑐 = −2𝑎 and simplifying,   

     𝑥 = 2/𝑎  (3.20) 

and on putting this value of  𝑥 in Equation (3.19), we get 

    (4)3 + (−3)3 + (−3)3 = 10.  

Therefore, parametrisation for 10𝑝3 is  

(4𝑝)3 + (−3𝑝)3 + (−3𝑝)3 = 10𝑝3. 

3.9  Representation of Integers Using Pythagorean’s Triples 

Consider 𝐴, 𝐵 and 𝐶 as Pythagorean’s Triple such that  𝐴2 + 𝐵2 = 𝐶2 and its seed 

equation as 𝑘 = 𝐴3 − 𝐵3 + 𝐶3. Therefore,  𝑋 = (𝑎 · 𝑥 + 𝐴) , 𝑌 = (𝑎 · 𝑥 − 𝐵)  and  

𝑍 = (−𝑎 · 𝑥 + 𝐶)  and 

 (𝑎 · 𝑥 + 𝐴)3 + (𝑎 · 𝑥 − 𝐵)3 + (−𝑎 · 𝑥 + 𝐶)3 = 𝐴3 − 𝐵3 + 𝐶3.(3.21) 

On simplification by putting 𝐴2 + 𝐵2 − 𝐶2 = 0, being Pythagorean’s triple, 

 𝑥 = −(3/𝑎)(𝐴 − 𝐵 + 𝐶). 

Substituting this value of 𝑥 in Equation (3.21)  

{−3(𝐴 − 𝐵 + 𝐶) + 𝐴}3 + {−3(𝐴 − 𝐵 + 𝐶) − 𝐵}3 + {3(𝐴 − 𝐵 + 𝐶) + 𝐶}3

= 𝐴3 − 𝐵3 + 𝐶3. 

Let 𝑆 =  𝐵 − (𝐴 + 𝐶), then the Equation takes the form, 

 (3𝑆 + 𝐴)3 + (3𝑆 − 𝐵)3 + (−3𝑆 + 𝐶)3 = 𝐴3 − 𝐵3 + 𝐶3.                (3.22) 

Since (𝑦2 − 1),    (2𝑦) and (𝑦2 + 1) are also Pythagorean’s triple for all integer  

values of 𝑦, therefore, substituting these for 𝐴, 𝐵 and 𝐶 respectively, identity (3.22) 

takes the form,  

(−5𝑦2 + 6𝑦 − 1)3 + (−6𝑦2 + 4𝑦)3 + (7𝑦2 − 6𝑦 + 1)3 = 2𝑦2(𝑦4 − 4𝑦 + 3).(3.23) 
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At 𝑦 = −1, 2 and 3, we obtain following sum of cubes 

(−12)3 + (−10)3 + (14)3 = 2(8), 

(−9)3 + (−16)3 + (17)3 = 8(11), 

(−28)3 + (−42)3 + (46)3 = 18(72). 

respectively. On putting, 𝑝 = 1/𝑦 in Equation (3.23), 

(−𝑝2 + 6𝑝 − 5)3 + (4𝑝 − 6)3 + (𝑝2 − 6𝑝 + 7) = 2(3𝑝4 − 4𝑝3 + 1).      (3.24) 

At 𝑝 = 2, 7 and 4, we obtain following sum of cubes  

(3)3 + (2)3 + (−1)3 = 34, 

(−12)3 + (22)3 + (14)3 = 11664, 

(3)3 + (10)3 + (−1)3 = 1026. 

respectively. Also, since 𝐴 = 𝑝2 − 𝑞2, 𝐵 =  2𝑝 · 𝑞, 𝐶 =  𝑝2 + 𝑞2 are Pythagorean’s 

triple for all real rational values of 𝑝 and 𝑞, therefore 

{−(5𝑝 − 𝑞)(𝑝 − 𝑞)}3  + {2𝑝(2𝑞 − 3𝑝)}3 + {7𝑝2 + 𝑞2 − 6𝑝 · 𝑞}3 

  = 2𝑝2(𝑝4 + 3𝑞4 − 4𝑝 · 𝑞3).             (3.25) 

At  𝑝, 𝑞 = (1, 0), 𝑝, 𝑞 = (1, 2) and 𝑝, 𝑞 = (2, 1),  we obtain following sum of cubes  

(−5)3 + (−6)3 + (7)3 = 2, 

(3)3 + (2)3 + (−1)3 = 2(17), 

(−9)3 + (−16)3 + (17)3 = 8(11). 

respectively. Table3.3 depicts sum of  cubes for 𝑘 = 𝐴3 − 𝐵3 + 𝐶3 where 𝐴, 𝐵 and 𝐶 

are Pythagorean’s triple 

Table3.3 Sum of  Cubes for 𝑘 = 𝐴3 − 𝐵3 + 𝐶3 

𝐴3 − 𝐵3 + 𝐶3

= 𝑘 

(3𝑆 + 𝐴)3

+ (3𝑆 − 𝐵)3 

−(3𝑆 − 𝐶)3 

𝐴3 − 𝐵3 + 𝐶3 = 𝑘 (3𝑆 + 𝐴)3 + 

(3𝑆 − 𝐵)3 

−(3𝑆 − 𝐶)3 

13 − 03 + 13 = 2 −53−63 + 73 53 − 123 − 133

= −3800 

653 + 483 − 733 

33 − 43 − 53

= −162 

213 + 143

− 233 

53 + 123 + 133

= 4050 

−853 − 783

+ 1033 

33 − 43 + 53

= 88 

−93 − 163

+ 173 

83 + 153 − 173

= −1026 

−103 − 33 + 13 

33 + 43 + 53

= 216 

−333 − 323

+ 413 

83 + 153 + 173

= 8800 

−1123 − 1053

+ 1373 

33 + 43 − 53

= −34 

−33 − 23 + 13 83 − 153 + 173

= 2050 

−223 − 453

+ 473 

53 − 123 + 133

= 594 

−133 − 303

+ 313 

83 − 153 − 173

= −7776 

803 + 573 − 893 

 

4    Parametrisation for Integers Conforming to Some Specific Forms 
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4.1  Parametrisation When Given Integer Is of Form 𝒌 = 𝟗𝒑𝟑 + 𝟏  

When 𝑘 = 9𝑝3 + 1, we will consider seed equation (1)3 + (0)3 + (0)3 = 1 and for 

9𝑝3,  we will find this value from coefficient of  𝑥 after proper assignment of values 

to 𝑎, 𝑏 and 𝑐.  For that, consider 𝑋 = (𝑎 · 𝑥 + 1), 𝑌 = (−𝑎 · 𝑥), 𝑍 = (𝑐 · 𝑥) and 𝑋3 +

𝑌3 + 𝑍3 = (𝑑 · 𝑥 + 1), then 

  (𝑎 · 𝑥 + 1)3 + (−𝑎 · 𝑥)3 + (𝑐 · 𝑥)3 = 𝑑 · 𝑥 + 1.             (4.1) 

On putting, 𝑑 = 3𝑎, 𝑎/𝑐 = 𝑝 and simplifying, it takes the form 

3𝑎𝑥(𝑎𝑥) + 𝑐3𝑥3 = 0,  

     𝑥 = −
3

𝑐
(𝑝2). 

Substituting this value of 𝑥 in Equation (4.1),  

 {3𝑝3 − 1]3 + {−3𝑝3}3 + {3𝑝2}3 = 9𝑝3 − 1. (4.2) 

At 𝑝 = 2, 3 and 4, following are sum of cubes 

233 − 243 + 123 = 9(23) − 1 = 71, 

803 − 813 + 273 = 9(33) − 1 = 242, 

1913 − 1923 + 483 = 9(43) − 1 = 575. 

Substituting −𝑝 for 𝑝 

  {(3𝑝3 + 1)]3 + {−3𝑝3}3 + {−3𝑝2}3 = 9𝑝3 + 1. (4.3) 

At 𝑝 = 1, 2 and 3, following are sum of cubes 

43 − 33 − 33 = 9(13) + 1 = 10, 

253 − 243 − 123 = 9(23) + 1 = 73, 

823 − 813 − 273 = 9(43) − 1 = 244. 

4.2  Parametrisation, When Given Integer Is of Form  𝒌 = 𝟗(𝒑 + 𝟏)(𝒑𝟐 − 𝟏) 

We will consider seed equation for integer 0 as (1)3 + (−1)3 + (0)3 = 0 and for 

𝑘 = 9(𝑝 + 1)(𝑝2 − 1),  we will  assign values to 𝑎, 𝑏 and 𝑐 so as to obtain this value 

of 𝑘 from coefficient of 𝑥 while transforming it to linear equation. Consider 𝑋 =

(𝑎 · 𝑥 + 1), 𝑌 = (𝑐 · 𝑥 − 1), 𝑍 = (−𝑎 · 𝑥) and 𝑋3 + 𝑌3 + 𝑍3 = 𝑑𝑥, then 

  (𝑎 · 𝑥 + 1)
3

+ (𝑐 · 𝑥 − 1)3 − (𝑎 · 𝑥)
3

= 𝑑 · 𝑥.(4.4) 

On expanding and rearranging , it takes the form 

𝑐3 · 𝑥2 + 3𝑥2 (𝑎 2 − 𝑐2) + 𝑥(3𝑎 + 3𝑐 − 𝑑) = 0. 

On putting, 𝑑 = 3(𝑎 + 𝑐) and 
𝑎

𝑐
= 𝑝 for reducing it to linear equation, it takes the 

form 

𝑥 = −
3

𝑐
(𝑝2 − 1). 

On putting this value of 𝑥 in Equation (4.4), it takes the form 

{3𝑝(𝑝2 − 1) − 1]3 + {3(𝑝2 − 1) + 1]3 + {−3𝑝(𝑝2 − 1)]3 = 9(𝑝 + 1)(𝑝2 − 1).(4.5) 
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At 𝑝 = 2, 3 and 4, we obtain 

(17)3 + (10)3 + (−18)3 = 81, 

713 + 253 − 723 = 9(4)(8) = 288, 

1793 + 463 − 1803 = 9(5)(15) = 675. 

 Substituting  −𝑝 for 𝑝 and rearranging , Equation (4.5) is into  

{3𝑝(𝑝2 − 1) + 1]3 − {3(𝑝2 − 1) + 1]3 − {3𝑝(𝑝2 − 1)]3 = 9(𝑝 − 1)(𝑝2 − 1).(4.6) 

At 𝑝 = 2, 3 and 4, we obtain 

193 − 103 − 183 = 9(1)(3) = 27, 

(73)3 − (25)3 + (−72)3 = 9(2)(8) = 144, 

1813 − 463 − 1803 = 9(3)(15) = 405. 

4.3  Parametrisation, When Given Integer Is of Form  𝒌 = (𝟗𝒑𝟑 − 𝟏)
𝟐
 and 

(𝟗𝒑𝟑 + 𝟏)
𝟐
 

Consider 𝑋 = (𝑎 · 𝑥 + 1), 𝑌 = (−𝑎 · 𝑥), 𝑍 = (𝑐 · 𝑥) and 𝑋3 + 𝑌3 + 𝑍3 =

(𝑑 · 𝑥 + 1)2, then 

 (𝑎 · 𝑥 + 1)3 − (𝑎 · 𝑥)3 + (𝑐 · 𝑥)3 = (𝑑 · 𝑥 + 1)2.             (4.7)                                   

On expansion and simplification,  

𝑥3 · 𝑐3 + 3𝑥2(𝑎) + 3𝑥 · 𝑎2 = 𝑑2 · 𝑥2 + 2𝑑 ·  𝑥. 

For transforming it into a linear equation, we put 𝑑 = 2 and   𝑎 = 4/3 , then 𝑥 =

−4/(3𝑐3). On substituting this value of 𝑥 in Equation (4.7) and putting 𝑝 = 2/3𝑐, 

(−6𝑝3 + 1)3 + (6𝑝3)3 + (−3𝑝2)3 = (9𝑝3 − 1)2.(4.8) 

At 𝑝 = 1, 2 and  3, we obtain 

(−5)3 + (6)3 + (−3)3 = (9 − 1)2 = 64, 

(−47)3 + (48)3 + (−12)3 = (71)2 = 5041, 

(−161)3 + (162)3 + (−27)3 = (242)2 = 58564. 

Substituting −𝑝 for 𝑝 and rearranging  

 (6𝑝3 + 1)3 + (−6𝑝3)3 + (−3𝑝2)3 = (9𝑝3 + 1)2.                          (4.9) 

At 𝑝 = 1, 2 and 3, we obtain 

(7)3 + (−6)3 + (−3)3 = (10)2 = 100, 

(49)3 + (−48)3 + (−12)3 = (73)2 = 5329, 

(163)3 + (−162)3 + (−27)3 = (244)2 = 59536. 

4.4.  Parametrisation, When Given Integer Is of Form  𝒌 = 𝟐(𝟓 − 𝟗𝒑𝟐) 

Consider 𝑋 = (𝑎 · 𝑥 + 1), 𝑌 = (−𝑎 · 𝑥 + 1), 𝑍 = (−𝑐 · 𝑥 − 1) and 𝑋3 + 𝑌3 + 𝑍3 =

𝑑 · 𝑥 + 1, then 

 (𝑎 · 𝑥 + 1)3 + (−𝑎 · 𝑥 + 1)3 + (−𝑐 · 𝑥 − 1)3 = 𝑑 · 𝑥 + 1.           (4.10)                             

On expanding, then putting 𝑑 = −3𝑐 and  𝑝 = 𝑎2/𝑐2, it gets transformed into linear 

equation  
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 𝑥 = 3 (
2𝑎2 − 𝑐2

𝑐3 ) =
3

𝑐
(

2𝑎2

𝑐2
− 1) =

3

𝑐
(2𝑝2 − 1). 

Substitution of this value of 𝑥 in Equation (4.10) yields 

{6𝑝3 − 3𝑝 + 1}3 + {−6𝑝3 + 3𝑝 + 1}3 + {−6𝑝2 + 2}3 = 2{5 − 9𝑝2}.  (4.11)                  

At 𝑝 =   2, 3 and 4, we obtain 

(43)3 + (−41)3 + (−22)3 = (−72 + 10) = −62, 

(154)3 + (−152)3 + (−52)3 = (−162 + 10) = −152, 

(373)3 + (−371)3 + (−94)3 = (−288 + 10) = −278. 

4.5.   Miscellaneous Parametrisation  

Consider the equation  

(𝑎 · 𝑥 + 1)3 + (−𝑎 · 𝑥 + 1)3 + (−𝑐 · 𝑥 − 𝐶)3 = (𝑑 · 𝑥 + 2 − 𝐶3) .(4.12) 

On expansion, simplification, and putting 𝑑 = −3𝑐 · 𝐶2, it gets transformed into 

linear equation 𝑥 = 3 (
2𝑎2−𝐶·𝑐2

𝑐3 ). Substituting this value of 𝑥 and putting,  
𝑎

𝑐
= 𝑝 in 

Equation (4.12),  

{3(2𝑝3 − 𝐶 · 𝑝) + 1}3 − {3(2𝑝3 − 𝐶 · 𝑝) − 1}3 − {
3

𝑝
(2𝑝3 − 𝐶 · 𝑝) + 𝐶}

3

 

  = {− (
9𝐶2

𝑝
) (2𝑝3 − 𝐶𝑝) + 2 − 𝐶3} .             (4.13) 

When 𝐶 = 𝑝2, Equation (4.13) gets transformed into 

  {3𝑝3 + 1}3 − {3𝑝3 − 1}3 − {4𝑝2}3 = {−10𝑝6 + 2} .           (4.14) 

At 𝑝 = 2, 3 and 4, we obtain 

(25)3 + (−23)3 + (−16)3 = −640 + 2 = −638, 

(82)3 + (−80)3 + (−36)3 = −7290 + 2 = −7288, 

(193)3 + (−191)3 + (−64)3 = −40960 + 2 = −40958. 

 When 𝐶 = 𝑝,  Equation (4.13) gets transformed into 

{3𝑝2(2𝑝 − 1) + 1}3 − {3𝑝2(2𝑝 − 1) − 1}3 − {2𝑝(3𝑝 − 1}
3

= 2(1 + 4𝑝3 − 9𝑝4). 

         (4.15) 

At 𝑝 = −1, 2 and −2, we obtain 

(−8)3 + (10)3 + (−8)3 = 2(−12) = −24, 

(37)3 + (−35)3 + (−20)3 = 2(−111) = −222, 

(−59)3 + (61)3 + (−28)3 = 2(−175) = −350. 

When 𝐶 = −1,Equation (4.13) gets transformed into 

{1 + 3𝑝(2𝑝2 + 1)}3 − {3𝑝(2𝑝2 + 1) − 1}3 − {3(2𝑝2 + 1) − 1}3 = −{6 + 18𝑝2}.  

      (4.16) 

At 𝑝 = 0, 2 and 3, we obtain 

(1)3 + (1)3 + (−2)3 = −6, 
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(55)3 + (−53)3 + (−26)3 = −78, 

(172)3 − (170)3 − (56)3 = −168, 

When 𝐶 = −2,Equation (4.13) gets transformed into 

{1 + 6𝑝(𝑝2 + 1)}3 − {6𝑝(𝑝2 + 1) − 1}3 − {6(𝑝2 + 1) − 2}3 = −{62 + 72𝑝2}.  

              (4.17) 

At 𝑝 = 0, 1 and 2, we obtain 

(1)3 + (1)3 + (−4)3 = −62, 

(13)3 + (−11)3 + (−10)3 = −(62 + 72) = −134, 

(61)3 + (−59)3 + (−28)3 = −(62 + 288) = −350. 

When 𝐶 = 2,Equation (4.13) gets transformed into 

{1 + 6𝑝(𝑝2 − 1)}3 − {6𝑝(𝑝2 − 1) − 1}3 − {6(𝑝2 − 1) + 2}3 = 6{11 − 12𝑝2},  

          (4.18) 

At 𝑝 = 2, 3 and 4, we obtain 

(37)3 + (−35)3 + (−20)3 = 6(11 − 48) = −222, 

(145)3 + (−143)3 + (−50)3 = 6(11 − 108) = −582, 

(361)3 + (−359)3 + (−92)3 = 6(11 − 192) = −1086. 

When  𝐶 = 1/𝑝,Equation (4.13) gets transformed into 

 {𝑝(3𝑝3 − 1)}3 − {𝑝(3𝑝3 − 2)}3 − {(3𝑝3 − 1)}3 = 1 − 2𝑝3.(4.19) 

At 𝑝 =  −1, 2 and −2,  we obtain 

(4)3 + (−5)3 + (4)3 = 3, 

(46)3 + (−44)3 + (−23)3 = −15, 

(50)3 + (−52)3 + (25)3 = 17. 

When  𝐶 = 1/2𝑝,Equation (4.13) gets transformed into 

{𝑝(12𝑝3 − 1)}3 − {𝑝(12𝑝3 − 5)}3 − {2(6𝑝3 − 1)}3 = 4(2 − 5𝑝3).(4.20) 

At  𝑝 =  1, −1 and 2, we obtain 

(11)3 + (−7)3 + (−10)3 = −12, 

(13)3 + (−17)3 + (14)3 = 28, 

(190)3 + (−182)3 + (−94)3 = −152. 

On putting 𝑝 = 2𝑡 in Equation (4.13), we obtain 

{𝑡(96𝑡3 − 1)}3 − {𝑡(96𝑡3 − 5)}3 − {(48𝑡3 − 1)}3 = (1 − 20𝑡3).          (4.21) 

At 𝑡 = 1, −1 and 2, 

953 − 913 − 473 = −19, 

973 − 1013 + 493 = 21, 

15343 − 15263 − 3833 = −159. 

In general, consider equation  

(𝑎 · 𝑥 + 𝑞)3 − (𝑎 · 𝑥 − 𝑞)3 − (𝑐 · 𝑥 + 𝐶)3 = (𝑑 · 𝑥 + 2𝑞3 − 𝐶3). (4.22)                       
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On expanding, simplifying, putting, 𝑑 = −3𝑐 · 𝐶2 and 
𝑎

𝑐
= 𝑝, it gets transformed into 

linear equation  

𝑥 =
3

𝑐
(2𝑞 · 𝑝2 − 𝐶). 

Substituting this value of 𝑥 in Equation (4.22),  

{3𝑝(2𝑞 · 𝑝2 − 𝐶) + 𝑞}3 − {3𝑝(2𝑞 · 𝑝2 − 𝐶) − 𝑞}3 − {3(2𝑞 · 𝑝2 − 𝐶) + 𝐶}3 

    = 2𝐶2(4𝐶 − 9𝑝2 · 𝑞) + 2𝑞3.  (4.23) 

 We consider one more general equation  

 (𝑎 · 𝑥 + 𝑟)3 − (𝑎 · 𝑥 − 𝑞)3 − (𝑐 · 𝑥 + 𝐶)3 = (𝑑 · 𝑥 + 𝑞3 + 𝑟3 − 𝐶3).  

(4.24) 

On expanding, simplifying, putting,  
𝑎

𝑐
= 𝑝 and 𝑑 = 3𝑐{𝑝(𝑟2 − 𝑞2) − 𝐶2}, it gets 

transformed into 

𝑥 =
3

𝑐
{𝑝2(𝑟 + 𝑞) − 𝐶}. 

Substituting this value of 𝑥 in Equation (4.24),  

[3𝑝{𝑝2(𝑟 + 𝑞) − 𝐶} + 𝑟]3 − [3𝑝{𝑝2(𝑟 + 𝑞) − 𝐶} − 𝑞]3 − [{3𝑝2(𝑟 + 𝑞) − 2𝐶}]3 

 = 9{𝑝2(𝑟 + 𝑞) − 𝐶}{𝑝(𝑟2 − 𝑞2) − 𝐶2} + 𝑟3 + 𝑞3 − 𝐶3.     (4.25) 

On putting different values of 𝑝, 𝑟, 𝑞 and 𝐶, we will get parametrisation for various 

values of 𝑘. 

4.6.    Parametric Solutions to Representation of Integers of the Form ±𝟐 

Modulo 9 and ±𝟑 Modulo 9 by Sum of Three Cubes 

We have already taken up the cases, when integer 𝑘 = 9𝑥 ±  1 in paragraphs 4.1 to 

4.6. Although a few cases of integer 𝑘 = 9𝑥 ± 2 and 𝑘 = 9𝑥 ± 3 have also been 

considered in aforementioned paragraphs, we, in order, to further elaborate, take up 

these cases in this sub paragraph.  

a. When Integers are of the form ±2 modulo 9. 

Let (𝑎 · 𝑥 + 1)3 + (−𝑎 · 𝑥)3 + (𝑐 · 𝑥 + 1)3 = 𝑑 · 𝑥 + 2. On simplifying, putting 𝑑 =

3(𝑎 + 𝑐) and 𝑝 = 𝑎/𝑐, we get, 𝑥 = −(3/𝑐)(1 + 𝑝2). On substituting this value of 

𝑥 in the equation, (𝑎 · 𝑥 + 1)3 + (−𝑎 · 𝑥)3 + (𝑐 · 𝑥 + 1)3 = 𝑑 · 𝑥 + 2 and, then 

rearranging, we get parametric solution,   

{−3𝑝(1 + 𝑝2) + 1}3 + {3𝑝(1 + 𝑝2)}3 + {−3(1 + 𝑝2) + 1}3

= −9(𝑝 + 1)(1 + 𝑝2) + 2 

Let 𝑝 = −𝑞, then 

 {3𝑞(1 + 𝑞2) + 1}3 + {−3𝑞(1 + 𝑞2)}3 + {−3(1 + 𝑞2) + 1}3 

   = 9(𝑞 − 1)(1 + 𝑞2) + 2.             (4.26) 

At 𝑞 = 2, 3 and 4, we get  
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(31)3 + (−30)3 − (14)3 = 47, 

(91)3 + (−90)3 + (−29)3 = 182, 

 (205)3 + (−204)3 + (−50)3 = 461 

respectively. In addition to the above parametric solution, we can have another 

parametric solution by putting 𝑟 = 7, 𝑞 = −5 and 𝐶 = 6 in Equation  (4.25) which 

gets transformed into 

 [3𝑝{2𝑝2 − 6} + 7]3 − [3𝑝{2𝑝2 − 6} + 5]3 − [{6𝑝2 − 12}]3 

   = 216{𝑝2 − 3}{2𝑝 − 3} + 2.            (4.27) 

At 𝑝 = 2, 1, 3, we get  

(19)3 + (−17)3 + (−12)3 = 218, 

(−5)3 + (7)3 + (6)3 = 434 

(115)3 + (−113)3 + (42)3 = 3890 

respectively. Thus Equations (4.26) and (4.27) yield parametric solution to represent 

integer 𝑘 = 9𝑥 + 2 by sum of three cubes.  

Assuming 𝑝 to be −𝑝, Equation (4.27) gets transformed into 

 [3𝑝{2𝑝2 − 6} − 7]3 − [3𝑝{2𝑝2 − 6} − 5]3 + [{6𝑝2 − 12}]3 

  = 216{𝑝2 − 3}{2𝑝 + 3} − 2   (4.28) 

At 𝑝 = 2, 3, 4, we get  

(5)3 + (−7)3 + (12)3 = 1510, 

(101)3 + (−103)3 + (42)3 = 11662, 

(305)3 + (−307)3 + (84)3 = 30884 

respectively. Thus Equations (4.28) yields parametric solution to represent integer 

𝑘 = 9𝑥 − 2 by sum of three cubes.  

b. When Integers are of the form ±3 modulo 9. 

Using Equation (4.25) and putting 𝑟 = 1, 𝑞 = 1, 𝐶 = −1, we get 

−[3𝑝{2𝑝2 + 1} + 1]3 + [3𝑝{2𝑝2 + 1} − 1]3 + [6𝑝2 + 2]3 = 9{2𝑝2 + 1} − 3.(4.29) 

At 𝑝 = 1, 2, 3, we get  

(−10)3 + (8)3 + (8)3 = 24, 

(−55)3 + (53)3 + (26)3 = 78, 

(−172)3 + (170)3 + (56)3 = 168 

respectively. Thus Equations (4.29)  yields parametric solution to represent integer 

𝑘 = 9𝑥 − 3 by sum of three cubes.  

Substituting 𝑝 with – (3𝑞 + 1) in Equation (4.19), we get  

[3(3𝑞 + 1)4 + 3𝑞 + 1]3 − [3(3𝑞 + 1)4 + 6𝑞 + 2]3 + [3(3𝑞 + 1)3 + 1]3 

   = 2(3𝑞 + 1)3 + 1.              (4.30) 

This is a parametrisation for representing integer of the form 9𝑥 + 3. At 𝑞 = 0, 1, 2, 

we get  
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(4)3 + (−5)3 + (4)3 = 3, 

(772)3 + (−776)3 + (193)3 = 129, 

(7210)3 + (−7217)3 + (1030)3 = 687. 

respectively. 

 

5.     Method When Seed Equation Is Not Helpful  

There may be cases, where use of seed equation may not be fruitful in determining 

cubes by transformation of cubic into linear equation. For example, it is per se 

difficult to find three cubes that sum up to 6 except its seed equation (2)3 + (−1)3 +

(−1)3 = 6. For finding another set of three cubes, we consider 𝑋 = (𝑎 · 𝑥 + 2), 𝑌 =

(𝑏 · 𝑥 − 1), 𝑍 = 𝑐 · 𝑥 − 1, therefore, 

  (𝑎 · 𝑥 + 2)3 + (𝑏 · 𝑥 − 1)3 + (𝑐 · 𝑥 − 1)3 = 6. (5.1) 

On expansion and simplification, it gets transforms into quadratic equation 

 𝑥2(𝑎3 + 𝑏3 + 𝑐3) + 3𝑥(2𝑎2 − 𝑏2 − 𝑐2) + 3(4𝑎 + 𝑏 + 𝑐) = 0.             (5.2) 

On transforming it into linear equation, we put 𝑏 + 𝑐 = −4𝑎 and   𝑐/𝑎 = 𝑦. Resultant 

equation is  

𝑥 = − (
2

𝑎
)

𝑦2 + 4𝑦 + 7 

4𝑦2 + 16𝑦 + 21 
= − (

2

𝑎
) 𝑧. 

where 𝑧 =
𝑦2+4𝑦+7 

4𝑦2+16𝑦+21 
 . On putting this value of 𝑧 in Equation (5.1), we get  

 {−4𝑧 + 2}3 + {2𝑧(4 + 𝑦) − 1}3 + {−2𝑦 · 𝑧 − 1}3 = 6.(5.3) 

For ensuring adding cubes to be integers, value of 𝑦 should be such that 𝑧 must have 

either integer value or a value of the form 𝑝/2 , where 𝑝 is an integer. This value is 

not easily found out. To determine this value of 𝑦, different integer values are 

assigned one by one to 𝑦 and at each value , it is checked whether resultant value of 𝑧 

satisfies our requirement. Consider 𝑝1 as that value of 𝑧 say at 𝑦 = 𝑦1, then  

{−4𝑝1 + 2}3 + {2𝑝1(4 + 𝑦1) − 1}3 + {−2𝑦1 · 𝑧1 − 1}3 = 6. 

Alternatively, in stead of integer values,  we can either  assign values to 𝑦 as 𝑦1/2 or 

𝑦1 where  𝑦1 is an integer so that  𝑧 must, then have integer value. Purpose of such 

assignments is that  {−4𝑧 + 2} ,    {2𝑧(4 + 𝑦) − 1}  and {−2𝑦 · 𝑧 − 1}  must have 

integer values.  

In above method, we have put a condition that 𝑏 + 𝑐 = −4𝑎 so that quadratic (5.2) 

transforms into a linear equation. However, a general solution can also be found out  

by solving the quadratic equation for its real roots. Let 𝑎 = 𝑎1 · 𝑐 and  𝑏 = 𝑏1 · 𝑐  

where 𝑎1 and 𝑏1 are real rational quantities, then quadratic equation takes the form  

𝑐2 · 𝑥2(𝑎1
3 + 𝑏1

3 + 1) + 3𝑐 · 𝑥(2𝑎1
2 − 𝑏1

2 − 1) + 3(4𝑎1 + 𝑏1 + 1) = 0(5.4) 

which has roots 
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   𝑐 · 𝑥 =
−𝑄±(𝑄2−4𝑃·𝑅)

1
2

2𝑃
= 𝑧 (say),  (5.5) 

where 𝑃 = (𝑎1
3 + 𝑏1

3 + 1), 𝑄 = 3(2𝑎1
2 − 𝑏1

2 − 1) and 𝑅 = 3(4𝑎1 + 𝑏1 + 1). 

Substituting the value of 𝑥 given by Equation (5.5) in Equation (5.1), we get  

(𝑎1 · 𝑧 + 2)3 + (𝑏1 · 𝑧 − 1)3 + (𝑧 − 1)3 = 6. 

That requires  𝑎1 and 𝑏1  should have such real rational values that 𝑧,    (𝑎1 · 𝑧)  and 

(𝑏1 · 𝑧) given  by Equation (5.5) must have integer values. Finding such values of 𝑎1 

and 𝑏1 requires assumption of different values for these till the condition is satisfied. 

 

6.      Method When Seed Equation Is Not Determinable   

So far, we dealt with those cases where seed equation was easily determinable. But 

there are cases, where it is not possible to find  or difficult to find a seed equation for 

a given integer 𝑘. In such cases, an equation will be found for arbitrary integer 𝑘1  

which is different from 𝑘. Let the equation for 𝑘1 is 𝑎1
3 + 𝑏1

3 + 𝑐1
3 = 𝑘1. Please mind 

this equation unlike the seed equations already described, will not transform cubic 

equation into quadratic equation. Sum of cubes can, then be written as  

  (𝑎 · 𝑥 + 𝑎1)3 + (𝑏 · 𝑥 + 𝑏1)3 + (𝑐 · 𝑥 + 𝑐1)3 = 𝑘.             (6.1) 

On expansion and simplification by assuming 𝑎 = 𝑎2 · 𝑐 ,  𝑏 = 𝑏2 · 𝑐 and  𝑐 · 𝑥 = 𝑧, 

where 𝑎2 and 𝑏2 are real rational quantities, 

𝑧3(𝑎2
3 + 𝑏2

3 + 1) + 3𝑧2(𝑎1 · 𝑎2
2  + 𝑏1 · 𝑏2

2   + 𝑐1) + 3𝑧(𝑎1
2 · 𝑎2 + 𝑏1

2 · 𝑏2 + 𝑐1
2) − 𝑑 

  = 0       (6.2) 

where  𝑘 − 𝑘1 = 𝑑. Equation (6.2) is a cubic equation which can have roots either (1) 

two complex and one real or (2) two irrational and one rational root or (3) three real 

rational roots. Nature of roots  depends upon values of coefficients of  𝑧3, 𝑧2, 𝑧 and 

constant term. Assignment of different integer values to 𝑎2, 𝑏2 and 𝑐  will  give 

different roots and the root (or roots) that has (or have) integer value(s) will be the 

required root(s). Let that integer root be 𝑐 · 𝑥 = 𝑧 or 𝑥 = 𝑧/𝑐, then required cubes 

will be  

 (𝑎2 · 𝑧 + 𝑎1)3 + (𝑏2 · 𝑧 + 𝑏1)3 + (𝑧 + 𝑐1)3 = 𝑘             (6.3) 

Different procedures and algorithms have been devised by mathematicians to find the 

desired roots but we are not going into details of these as the purpose of this paper is 

to represent a given integer by sum of three cubes using novel approach of seed 

equation. 

 

7.    Multiple Representations as Sums of Three Cubes for Integer, Where 𝒌 ≠

𝟒 or 𝒌 ≠ 𝟓 Modulo 𝟗 
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It is reiterated, method of seed equation employs use of a seed or skeletal equation for 

populating cubes that sum up to a given integer 𝑘. To illustrate it, some seed 

equations and populated equations are given in the Table 7.1. It has been proved in 

the paper that every seed equation populates one more equation, that itself proves 

there is always more than one set of cubes that sum up to given integer. Using the 

populated equation as seed equation, we can further populate another equation and so 

on. Notwithstanding, the list given in Table  7.1, there are many other integers that 

have been described in this paper as expressible by more than one set of three adding 

cubes. It is prudent to draw attention to sub paragraph 3.2a dealing with integer of the 

type  3(P!/2!)3 and Lemma3.4 that states, if integer  

Table 7.1 Some Seed Equations And Populated Equations 

𝑘 Seed Equation Populated Equation 

1 (1)3 + (0)3 + (0)3 (1 − 9𝑝3)3 + (3𝑝 − 9𝑝4)3 + (9𝑝4)3 

2 (1)3 + (1)3 + (0)3 (1 − 6𝑝3)3 + (1 + 6𝑝3)3 + (−6𝑝2)3 

3 (1)3 + (1)3 + (1)3 (4)3 + (4)3 + (−5)3 

7 (2)3 + (−1)3 + (0)3 (44)3 + (−169)3 + (168)3 

8 (2)3 + (0)3 + (0)3 (−16)3 + (−12)3 + (18)3 

9 (2)3 + (1)3 + (0)3 (−52)3 + (217)3 + (−216)3 

10 (2)3 + (1)3 + (1)3 (4)3 + (−3)3 + (−3)3 

p = (P!/2!)3 and P ≥ 3, then integer 𝑘 = 3(P!/2!)3 is representable by sum of cubes 

in as many ways as  P! has distinct factors of the form d(d + 1). When P ≥ 5, then 

3p3 can be represented by adding cubes in as many sets as equal to or more than P. 

Also If P! has n sets of distinct  factors, then there will be n distinct sets of three 

cubes to represent integer 3(P!/2!)3. We have also given an example for integer 

3(6!/2)3 which can be represented by as many as eight sets of three cubes by putting 

different values of 𝑑 using the method adopted by us.We have also proved in sub 

paragraph 3.7 that if 𝐴, 𝐵 and 𝐶 are Pythagorean’s triple and 𝑘 = 𝐴3 − 𝐵3 + 𝐶3, 

then 𝑘 can also be expressed by relation  𝑘 = (3𝑆 + 𝐴)3 + (3𝑆 − 𝐵)3 + (−3𝑆 + 𝐶)3 

where 𝑆 =  𝐵 − (𝐴 + 𝐶). That also proves multiplicity of representation of 𝑘. Thus a 

given integer 𝑘 has multiple representation by three adding cubes.   

8.    Results AndConclusions  

The To sum up, let us have a relook what we have proved in the paper. An integer, 

say 𝑋, can be expressed  by the relation, 𝑋 = 𝑎 · 𝑥 + 𝐴, similarly  𝑌 as 𝑏 · 𝑥 + 𝐵  

and 𝑍 as 𝑐 · 𝑥 + 𝐶,  where 𝑎, 𝑏, 𝑐,  𝐴, 𝐵 and 𝐶 are real rational quantities and 𝑥 is a 

variable. If 𝑋3 + 𝑌3 + 𝑍3 = 𝑘, then this relation can be written in cubic equation 

with variable 𝑥. To transform this equation, first into quadratic equation, 𝑘 must be 

equal to 𝐴3 + 𝐵3 + 𝐶3.  We will, therefore, assign such values to 𝐴, 𝐵 and 𝐶 that 
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𝐴3 + 𝐵3 + 𝐶3 = 𝑘. For example, integer  1 can be written as (1)3 + (0)3 + (0)3, 

integer 2 can be written as (1)3 + (1)3 + (0)3 and so on. Such equation for 𝑘 is 

called seed equation as this will populate other three cubes that sum up to 𝑘. To 

illustrate it,  some seed equations are given  in Table1.1. When cubic equation is 

transformed into quadratic, then quadratic can be transformed into linear equation by 

equating constant term to 0. Linear equation gives value of 𝑥 which can be substituted 

in 𝑋 = 𝑎 · 𝑥 + 𝐴, 𝑌 = 𝑏 · 𝑥 + 𝐵  and 𝑍 = 𝑐 · 𝑥 + 𝐶. Once 𝑋, 𝑌 and 𝑍 are known, three 

cubes that sum up to 𝑘  are known. Values of 𝐴, 𝐵 and 𝐶 depend upon the value of 𝑘 

but values of 𝑎, 𝑏 and 𝑐 are so chosen that 𝑋 = 𝑎 · 𝑥 + 𝐴, 𝑌 = 𝑏 · 𝑥 + 𝐵  and 𝑍 = 𝑐 ·

𝑥 + 𝐶 are integers.   

We have also proved when 𝑘 = 3(𝑃!/2!)3, then 𝑘 can be represented by sum of three 

cubes in as many ways as number of factor 𝑑(𝑑 + 1). For example when  𝑘 =

3(6!/2!)3 then  𝑘 can be represented by as many as eight sets of three cubes. We also 

proved if 𝐴, 𝐵 and 𝐶 are Pythagorean’s triple, then 𝑘 = 𝐴3 − 𝐵3 + 𝐶3, can also be 

represented by relation 𝑘 = (3𝑆 + 𝐴)3 + (3𝑆 − 𝐵)3 + (−3𝑆 + 𝐶)3, where 𝑆 =  𝐵 −

(𝐴 + 𝐶). Under such circumstances, an integer 𝑘 can be represented in multiple ways 

by sum of three cubes provided 𝑘 ≠ 9𝑥 ± 4 or 𝑘 ≠ 9𝑥 ± 5 thanks  to Roger-

Brown conjecture [4]. We have proved in Sub-paragraph3.4 why it is not possible to 

have three cubes that sum up to  𝑘 where 𝑘 = 9𝑥 ± 4 or 𝑘 = 9𝑥 ± 5. 

Parametrisation for representing integer  𝑘 of the form 𝑘 = 9𝑝3 + 1,  𝑘 =

9(𝑝 + 1)(𝑝2 − 1), 𝑘 = (9𝑝3 − 1)2, 𝑘 = 2(5 − 9𝑝2), 𝑘 = {−10𝑝6 + 2} , 𝑘 =

2(1 + 4𝑝3 − 9𝑝4), 𝑘 = −{6 + 18𝑝2} , 𝑘 = −{62 + 72𝑝2} , 𝑘 = 6{11 −

12𝑝2} , 𝑘 = 1 − 2𝑝3, 𝑘 = 4(2 − 5𝑝3), 𝑘 = (1 − 20𝑝3), 𝑘 = 9(𝑞 − 1)(1 + 𝑞2) + 2,

𝑘 = 216{𝑝2 − 3}{2𝑝 − 3} + 2,   9{2𝑝2 + 1} − 3, and  𝑘 = 2(3𝑞 + 1)3 + 1 as sum 

of three cubes, has also been given in the paper. Notwithstanding these,  general 

parametrisation for 𝑘 = 2𝐶2(4𝐶 − 9𝑝2 · 𝑞) + 2𝑞3 and 𝑘 = 9{𝑝2(𝑟 + 𝑞) −

𝐶}{𝑝(𝑟2 − 𝑞2) − 𝐶2} + 𝑟3 + 𝑞3 − 𝐶3 have also been determined. These can 

facilitate determining three cubes that sum up to a given integer  𝑘 of the above said 

forms where 𝑝, 𝑞, 𝑟 and  𝐶 are integers.  We have also given a method to find three 

cubes when seed equation is not helpful or is difficult to find out. In addition to these, 

we have given exhaustive examples to illustrate the  novel method of finding three 

cubes that sum up to a given number  𝑘. 
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