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Abstract 

Quantitative design and performance of edge detection is an 

essential stage in numerous image processing applications. Due to 

the extra free parameter order α, fractional order based methods 

provide additional degree of freedom in optimizing the performance 

of the technique. This work presents a comparative study of 

fractional order edge detection with Gradient order edge detectors, 

when applied to two types of images, i) Linear image; ii) Non-linear 

image. Further the study will be extending to compare the 

Fractional derivative edge detectors, applied to the above mentioned 

images. 

 

Keywords: Edge detection, Gradient based edge detector, Fractional order based 

edge detector and Figure of merit. 
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1. Introduction 

Edge detection can be defined as the discovery of lines that marks the limit and 

divides of image appearance from other places or things in a digital image. This 

technique help simplifies the data to be processed during any task. A digital system 

uses various methods to process a digital image.It often makes use of integer-order 

differentiation operators, especially order 1 used by the gradient and order 2 by the 
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Laplacian[1, 2]. Edge detectors are used in various fields like astronomy, medical 

science, forensic investigation, Meteorology etc.Chen et al.[3] proposed the edge 

detection technique for fingerprint identification. Again Nikolicet al.[4]studiedEdge 

detection in medical ultrasound images using Canny edge detection algorithm. 

Recently, Abdel-Gawadet al.[5]proposes an optimized edge detection technique 

based on a genetic algorithm. 

Fractional calculus is an old branch of mathematical analysis which deals with the 

integration and differentiation of a function to arbitrary order [6, 7, 8].Due to various 

applicability of this analysis many researchers attract in towards this topic and which 

lead to the introduction and investigation of several fundamental works on various 

aspects of fractional calculus. The fractional calculus is rarely used in image 

processing technique. Yang et al.[9] in their review paper mentioned about fractional 

calculus as one of the method used in ten sub-fields of image processing. Li and 

Xie[10] studied a new medical image enhancement method that adjusts the fractional 

order according to the dynamic gradient feature of the entire image.Recently, Lavin-

Delgado et al.[11] and Aboutabit[12]proposed a new edge detection mask based on 

Caputo-Fabrizio fractional derivative. 

The remainder of this paper is organized as follows. Section 2 describes the related 

theories of edge detection techniques of both classical and fractionaldifferentials. 

Also state the performance measure technique. Section 3 presents a comparison of 

integer order and non-integer order edge detectors. In section 4 we have discussed 

Figure of Merit(FoM) value of Grunwald-Letnikov (G-L) and Riemann-Liouville (R-

L) fractional edge detector. Section 5 presents the conclusions. 

2. Related theories of edge detection and analysis 

The method for edge detection is classified into two categories; first is gradient based 

and second is Laplacian based. In this paper we are using the gradient based edge 

detection [13]. The details of this method areexplained in the following subsection. 

2.1. Gradient based edge detection 

An edge, in a digital image is a significant local change in the image intensity𝑓(𝑥, 𝑦) 

at the edge point.The change of function is expressed by its gradient which is defined 

as follows: 
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 ∇𝑓 = (
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
) (2.1) 

The gradient magnitude |∇𝑓| and orientation 𝜃 can be calculated from  

 |∇𝑓| =  √(
𝜕𝑓

𝜕𝑥
)

2

+ (
𝜕𝑓

𝜕𝑦
)

2

 (2.2) 

  𝜃 = 𝑎𝑟𝑐𝑡𝑔 (
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
⁄ ) (2.3) 

The most used operators are [2, 13]: 

Prewitt:   𝑃𝑥 = [
−1 0 1
−1 0 1
−1 0 1

] ,𝑃𝑦 = [
1 1 1
0 0 0

−1 −1 −1
] 

 

Sobel:   𝑆𝑥 = [
−1 0 1
−2 0 2
−1 0 1

]    ,𝑆𝑦 = [
1 2 1
0 0 0

−1 −2 −1
] 

 

Robert:   𝑅𝑥 =  [
1 0
0 −1

]      ,       𝑅𝑦 = [
0 1

−1 0
]. 

 

2.2. Fractional based edge detectors 

2.2.1. Grünwald-Letnikovderivative edge detector 

Grünwald-Letnikovderivative is originates from the first order backward difference 

scheme, as described by Podlubny[8]. TheGrünwald–Letnikov(G-L) fractional 

derivative mask [14] are simplified as follows: 

The 𝑥- directional fractional mask of three columns: 
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[
 
 
 
 
 0.5(−1)𝐾−1 (

𝛼

𝐾 − 1
) (−1)𝐾−1 (

𝛼

𝐾 − 1
) 0.5(−1)𝐾−1 (

𝛼

𝐾 − 1
)

⋯ ⋯ ⋯
𝛼2 − 𝛼

4

𝛼2 − 𝛼

2

𝛼2 − 𝛼

4
0.5 1 0.5 ]

 
 
 
 
 

 

 

The 𝑦-directional fractional mask of three rows: 

 

[
 
 
 
 
 
 0.5(−1)𝐾−1 (

𝛼

𝐾 − 1
)⋯

𝛼2 − 𝛼

4

−𝛼

2
0.5

(−1)𝐾−1 (
𝛼

𝐾 − 1
)   …

𝛼2 − 𝛼

2
−𝛼 1

0.5(−1)𝐾−1 (
𝛼

𝐾 − 1
) …

𝛼2 − 𝛼

4

−𝛼

2
0.5]

 
 
 
 
 
 

 

 

2.2.2. Riemann-Liouville edge detector 

The Riemann-Liouville(R-L) based edge detectors considered in this work are eight-

fractional differential masks which are respectively on the directions of positive 𝑥-co-

ordinate, negative 𝑥-co-ordinate, positive 𝑦-co-ordinate, negative 𝑦-co-ordinate, left-

upper diagonal, left-lower diagonal, right-upper diagonal and right-lower diagonal, as 

simplified in[15] are as follows: 

(a) Positive 𝑥-co-ordinate 

[
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … 0 ⋯ 0 0 0

𝐶𝑆−1
𝐶𝑆0

𝐶𝑆1
⋯ 𝐶𝑆𝑘

⋯ 𝐶𝑆𝑛−2
𝐶𝑆𝑛−1

𝐶𝑆𝑛

0 0 0 ⋯ 0 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 

 

 

(b) Negative 𝑥-co-ordinate 
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[
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … 0 ⋯ 0 0 0

𝐶𝑆𝑛
𝐶𝑆𝑛−1

𝐶𝑆𝑛−2
⋯ 𝐶𝑆𝑘

⋯ 𝐶𝑆1
𝐶𝑆0

𝐶𝑆−1

0 0 0 ⋯ 0 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 

 

 

(c) Positive 𝑦-co-ordinate 

[
 
 
 
 
 
 
 
 
 
0 0 ⋯ 0 𝐶𝑆−1

0 ⋯ 0 0

0 0 ⋯ 0 𝐶𝑆0
0 ⋯ 0 0

0 0 ⋯ 0 𝐶𝑆1
0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 𝐶𝑆𝑘

0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 𝐶𝑆𝑛−2

0 ⋯ 0 0

0 0 ⋯ 0 𝐶𝑆𝑛−1
0 ⋯ 0 0

0 0 ⋯ 0 𝐶𝑆𝑛
0 ⋯ 0 0]

 
 
 
 
 
 
 
 
 

 

 

(d) Negative 𝑦-co-ordinate 

[
 
 
 
 
 
 
 
 
 
0 0 ⋯ 0 𝐶𝑆𝑛

0 ⋯ 0 0

0 0 ⋯ 0 𝐶𝑆𝑛−1
0 ⋯ 0 0

0 0 ⋯ 0 𝐶𝑆𝑛−2
0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 𝐶𝑆𝑘

0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 𝐶𝑆1

0 ⋯ 0 0

0 0 ⋯ 0 𝐶𝑆0
0 ⋯ 0 0

0 0 ⋯ 0 𝐶𝑆−1
0 ⋯ 0 0]

 
 
 
 
 
 
 
 
 

 

 

(e) Right lower-diagonal 
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[
 
 
 
 
 
 
 
 
 
𝐶𝑆−1

0 ⋯ 0 0 0 ⋯ 0 0

0 𝐶𝑆0
0 ⋯ 0 0 ⋯ 0 0

⋮ 0 𝐶𝑆1
0 ⋯ 0 ⋯ 0 0

0 ⋮ 0 ⋱ ⋱ ⋮ 0 0 0
0 0 ⋮ 0 𝐶𝑆𝑘

0 ⋯ 0 0

0 0 0 ⋮ ⋱ ⋱ ⋮ ⋮ 0
0 0 0 0 ⋯ 0 𝐶𝑆𝑛−2

0 ⋮

0 0 0 0 0 ⋯ 0 𝐶𝑆𝑛−1
0

0 0 0 0 0 0 ⋯ 0 𝐶𝑆𝑛]
 
 
 
 
 
 
 
 
 

 

 

 

(f) Left-lower diagonal 

[
 
 
 
 
 
 
 
 
 
𝐶𝑆𝑛

0 ⋯ 0 0 0 ⋯ 0 0

0 𝐶𝑆𝑛−1
0 ⋯ 0 0 ⋯ 0 0

⋮ 0 𝐶𝑆𝑛−2
0 ⋯ 0 ⋯ 0 0

0 ⋮ 0 ⋱ ⋱ ⋮ 0 0 0
0 0 ⋮ 0 𝐶𝑆𝑘

0 ⋯ 0 0

0 0 0 ⋮ ⋱ ⋱ ⋮ ⋮ 0
0 0 0 0 ⋯ 0 𝐶𝑆1

0 ⋮

0 0 0 0 0 ⋯ 0 𝐶𝑆0
0

0 0 0 0 0 0 ⋯ 0 𝐶𝑆−1]
 
 
 
 
 
 
 
 
 

 

 

(g) Right-upper diagonal 

[
 
 
 
 
 
 
 
 
 

0 0 ⋯ 0 0 0 ⋯ 0 𝐶𝑆𝑛

0 0 0 ⋯ 0 0 ⋯ 𝐶𝑆𝑛−1
0

⋮ 0 0 0 ⋯ 0 𝐶𝑆𝑛−2
0 0

0 ⋮ 0 ⋱ ⋱ . . 0 0 0
0 0 ⋮ 0 𝐶𝑆𝑘

0 ⋯ 0 0

0 0 0 . . ⋱ ⋱ ⋮ ⋮ 0
0 0 𝐶𝑆1

0 ⋯ 0 0 0 ⋮

0 𝐶𝑆0
0 0 0 ⋯ 0 0 0

𝐶𝑆−1
0 0 0 0 0 ⋯ 0 0 ]
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(h) Left- lower diagonal 

[
 
 
 
 
 
 
 
 
 

0 0 ⋯ 0 0 0 ⋯ 0 𝐶𝑆−1

0 0 0 ⋯ 0 0 ⋯ 𝐶𝑆0
0

⋮ 0 0 0 ⋯ 0 𝐶𝑆1
0 0

0 ⋮ 0 ⋱ ⋱ . . 0 0 0
0 0 ⋮ 0 𝐶𝑆𝑘

0 ⋯ 0 0

0 0 0 . . ⋱ ⋱ ⋮ ⋮ 0
0 0 𝐶𝑆𝑛−2

0 ⋯ 0 0 0 ⋮

0 𝐶𝑆𝑛−1
0 0 0 ⋯ 0 0 0

𝐶𝑆𝑛
0 0 0 0 0 ⋯ 0 0 ]

 
 
 
 
 
 
 
 
 

 

 

2.3. Edge creation 

In order to obtain an edge map, after gradient operator application, it is necessary to 

use post-processing, such as some of the thresholding methods [13, 16], the non-

maximum suppression or a three-module strategy. In this work, we will use Otsu 

thresholding method [17]. This thresholding algorithm returns a single intensity 

threshold that separate pixels into two classes, foreground and background. 

Thresholding produces wide edges. To get edges with a one-pixel width it is 

necessary to apply a suitable thinning procedure, usually morphological algorithm 

[13]. 

2.4. Edge Detector Performance 

To compare the various edge detection techniques, it is necessary to design some 

quantitative criteria for the edge detection performance. Pinho and Almeida[18] 

introduced Figure of Merit (FoM) for the edge detection performance. FoM uses ideal 

edge map of an image and compares it with that to the edge map obtained after 

applying edge detection technique, which is defined in the following: 

 Figure of Merit (𝐹𝑜𝑀) =
1

max(𝑁𝐼 − 𝑁𝐴)
∑

1

1 + 𝐶𝑑𝑛
2

𝑁𝐴

𝑛=1

 (3.4) 

where 𝑁𝑙and𝑁𝐴 are the number of ideal and the number of actual detected edge 

pixels, respectively, 𝑑𝑛is considered as the distance between the predicted edge pixel 

and the closest ideal edge pixel obtained from a ground truth image, and 𝐶is a scaling 
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factor that is chosen as
1

9
-th by following Pratt’s work. It is clear that0 ≤ 𝐹𝑜𝑀 ≤

1.The more the detected edges match the real edges, the closer the value of 𝐹𝑜𝑀 is to 

1.If𝐹𝑜𝑀 = 1, then two compared binary image (edge map) are the same. Binary 

image with real edges is often referred to as a ground truth. For more details 

regardingFoM one can refer to the book [2].  

 

3. Comparing integer order and non-integer order edge detectors 

In this section, we will discuss about edge detection and compare the performance of 

various edge detectors considering two different types of image: linear and non-linear 

image. 

3.1. Comparison for Linear image 

A linear image is consideredand apply classical gradient and fractional derivative 

edge detector to detect the edges. We consider order 1.2 and mask size 3 for both G-

L and R-L edge detectors. 
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Fig.1 : Edge detection on linear image 
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Fig.2 : Graphs for linear image. 

  

 

 

 

 

 

 

 

 

3.2. Comparison for Non-linear image 

Here we consider a non-linear image and apply classical gradient and fractional 

derivative edge detector to detect its edges. We consider order 1.2 and mask size 3 

for both G-L and R-L edge detectors. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Prewitt Robert G-L R-L

FOM

FOM

Edge detectors FoM 

Sobel 0.131739 

Prewitt 0.129047 

Robert 0.125542 

G-L 0.255758 

R-L 0.345896 

Table 1 : FoM values for linear image 
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  Fig.3:Edge detection of Non-linear image 
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Table 2:FoM values of non-linear image. 

 

 

Fig.4: FoM of non-linear image 

 

4. Comparing G-Land R-L fractional edge detector for different order 

In the previous section we have observed that fractional based edge detectors produce 

better result in case of linear and non-linear images when compared with gradient 

edge detectors. Thus in this section, we calculated theFoM values of G-L and R-L 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sobel Prewitt Robert G-L R-L

FOM

FOM

Edge detectors FoM 

Sobel 0.252299 

Prewitt 0.248102 

Robert 0.208276 

G-L 0.748263 

R-L 0.580541 
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fractional edge detectors for different orders i.e. 1 < 𝛼 < 2 , for linear and non-linear 

images. 

4.1. Comparing Linear image  

We consider the order 𝛼 = 1, 1.2,1.4, 1.6, 1.8, 2 for G-L and R-L fractional edge 

detectors. 
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Fig.5:G-L edge detection of linear image. 

 

Fig.6:  R-L edge detection of linear image  

 

From the Fig.7 FoM values for order 1.2 produces better results for both the edge 

detectors. But as the order is tending towards 2, R-L edge detector is showing an 

alternate result compare with G-L edge detector. And in most of the paper in the 

review considers order 1.2and mask size 3. 
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Fig.7:FoM of G-L and R-L edge detectors 

4.2. Comparing non-linear image 

We consider the non-linear image and apply G-L and R-L fractional order edge 

detection respectively for order𝛼 = 1,1.2, 1.4, 1.6, 1.8, 2. 

 

Fig.8:G-L edge detectors for non-linear. 
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Fig.9: R-L edge detection fornon-linear. 

 

From Fig.10 the FoM values for order 1.2 produces better results for both the edge 

detectors. But as the order is tending towards 2, R-L edge detectors showing an 

alternate result whereas, G-L edge detectors show better result for orders from 1.2 to 

1.8. 
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Fig.10:FoM values of G-L and R-L edge detectors 

Conclusion 

This paper investigates different edge detectors namely, Gradient and Laplacian edge 

detectors used in image processing. And compare the results with two fractional G-L 

and R-L edge detectors. For comparison a set of linear and non-linear image are 

considered in Matlab and compared with the fractional edge detectors. The different 

FoM are presented in the Table 1-3. From the analysis thefractional order edge 

detectors produces better or almost identical results when applied to linear and non-

linear image as compared to classical edge detectors. Also the G-L based edge 

detector produces a better result.  
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