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Abstract 

 

In the present paper, we focus on the existence theorem for weak solution for a class 

of Caputo fractional differential equation together with initial condition in 

continuous function space using Mönch’s fixed-point theorem associated with the 

technique of measure of weak non-compactness. Further, the existence result of weak 

solution is extended in 𝐿2 space using Arzelà-Ascoli theorem.  
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1. Introduction 

The subject fractional calculus is as old as the calculus [18]. It studies and 

analysis the integration and derivative of a functions to non-integer order. Due to 

various applicability of this subjects, many researchers’ showed their interests in 

solving problems that arises in the fields of science and engineering (for instance, see 



 
 

T. Saikia, and B.K. Dutta 

 

18 

 

[5, 16, 17, 19, 23, 26, 30, 31] and the references therein). Especially, the authors in [7, 

25, 28] use fractional calculus to understand and predict the transmission dynamics of 

COVID-19. 

In recent years, the theory on existence and uniqueness of solutions of fractional 

differential equations have been studied by many authors [3, 6, 9, 14, 27, 32, 33] and 

the references therein.  

In [29] discussed the existence of weak solution in a reflexive Banach space by 

considering the abstract Cauchy problem. 

𝑦′ = 𝑓(𝑡, 𝑦), on [0, 𝑇] 

𝑦(0) = 𝑥0  ∈  𝐸. 

where 𝑓 ∶  [0, 𝑇] ×  𝐸 →  𝐸 is weakly-weakly continuous and 𝐸 is a reflexive Banach 

space. 

Further, Cramer et al. [11] extended the result to arbitrary Banach spaces. In 

[22], the author instigated an existence result for differential equation in Banach 

spaces relative to weak topology. There are a few results devoted to weak solutions of 

nonlinear fractional differential equations. The authors [8] investigated the existence 

of weak solution for fractional differential equations with mixed boundary value 

problem. In [4] presents a general result for the existence of weak solutions to 

fractional differential equations in non-reflexive Banach spaces. Later Abbas et al. [2] 

presented some results concerning the existence of weak solutions for some 

functional implicit differential equations of Hadamard fractional derivative. Recently, 

the study of weak solution for fractional differential equation attracted considerable 

amount of attention of many authors (see [13, 24, 32]). 

Motivated by the work [1, 2], in this paper, we study the existence of weak solutions 

for a class of fractional differential equations with fractional weak derivative of the 

form 

  𝑐𝒟𝛼𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡),  𝑐𝒟𝜌𝑢(𝑡));   𝑡 ∈ 𝐼 = [0, 1] (1.1a) 

with 

 𝑢(0) = 𝜙. (1.1b) 

where  0 ≤ 𝜌 < 𝛼 ≤  1, 𝑇 > 1, 𝜙 ∈  𝐸, 𝑓: 𝐼 ×  𝐸 ×  𝐸 →  𝐸  is a given continuous 

function and 𝐸 is a real(or complex) Banach space with Supremum norm. 
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2. Preliminaries 

Let 𝐶 be the Banach space of all continuous functions 𝑣  from 𝐼  into 𝐸  with the 

suprimum norm 

‖𝑣‖∞ = sup
𝑡∈𝐼
‖𝑣‖𝐸 . 

Also, let 𝐸∗ be the topological dual of 𝐸.  We denoting 𝐴𝐶(𝐼)  is the space of 

absolutely continuous functions from 𝐼 into 𝐸. 
 

Definition 1 (see [4]) A function 𝑢(⋅) is said to be weakly continuous at 𝑡0 ∈ 𝐼 if for 

every 𝑢∗ ∈  𝐸∗, the scalar function 𝑡 → 〈 𝑢∗, 𝑢(𝑡)〉 is continuous at 𝑡0. 

Definition 2 A function ℎ: 𝐸 →  𝐸 is said to be weakly sequentially continuous if ℎ 

takes each weakly convergent sequence in 𝐸 to a weakly convergent sequence in 𝐸 

(i.e., for any (𝑢𝑛) in 𝐸 with 𝑢𝑛 →  𝑢 in (𝐸, 𝑤) then  ℎ(𝑢𝑛) →  ℎ(𝑢) in (𝐸,𝑤)). 

Definition 3 (See [4]) A function 𝑢(⋅) is said to be weakly differentiable at 𝑡0 ∈  𝐼 if 

there exists an element 𝑢𝑤
′ (𝑡0) ∈  𝐸 such that 

lim
ℎ→0

〈𝑢∗,
𝑢(𝑡0 + ℎ) − 𝑢(𝑡0)

ℎ
〉  = 〈 𝑢∗, 𝑢𝑤

′ (𝑡0) 〉  

for every 𝑢∗ ∈  𝐸. The element  𝑢𝑤
′ (𝑡0) will be also denoted by 

𝑑𝑤 

𝑑𝑡
𝑢(𝑡0) and it is 

called the weak derivative of 𝑢(⋅) at 𝑡0 ∈  𝐼. 

For more details we refer to [4, 21, 22] and reference therein. 

A function  𝑢(⋅): 𝐼 →  𝐸 is said Riemann-Pettis integrable (or RP-integrable) 

on 𝐼 if 𝑢(⋅) is scalarly Riemann integrable and, for each interval ⊂  𝐼 , there exists an 

element  𝑝 ∈ 𝐸 such that  〈 𝑢∗, 𝑝 〉  =  ∫ 〈 𝑢∗, 𝑝(𝜏)〉
 

𝐽
𝑑𝜏 for every 𝑢∗ ∈  𝐸∗. 

It is well known that every R-integrable function is RP-integrable, and every 

RP-integrable function is Pettis integrable. 

Definition 4 ([4]) Let 𝑢(⋅): 𝐼 →  𝐸 be a RP-integrable on function define on 𝐼 and 

𝛼 > 0. Then the weak fractional Riemann-Liouville integral of order 𝛼 > 0 exists on 

𝐼 and is defined by 
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 𝐼𝛼  𝑢(𝑡) =
1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑢(𝑠)
𝑡

0

𝑑𝑠, 𝑡 ∈ 𝐼. (2.1) 

The fractional Caputo derivative of order 𝛼 ∈  (0,1) is defined as 

Definition 5 ([4]). Let 𝛼 ∈  (0,1)   and let 𝑢(⋅): 𝐼 →  𝐸be a weakly differentiable 

function on 𝐼 If the derivative 𝑢′(⋅) of 𝑢(⋅) is RP-integrable on 𝐼, then 

  𝑐𝒟𝛼𝑢(𝑡): = 𝐼1−𝛼𝑢′(𝑡) = ∫
(𝑡 − 𝑠)−𝛼

Γ(1 − 𝛼)
𝑢′(𝑠)

𝑡

0

𝑑𝑠, 𝑡 ∈ 𝐼. (2.2) 

exists a.e. on 𝐼. 

Lemma 1 ([4]). If 𝑢(⋅): 𝐼 →  𝐸 is weakly differentiable a.e on 𝐼  and 𝑢′(⋅)  is RP-

integrable on 𝐼 and 𝛼 ∈  (0,1), then 

a) 𝐼𝛼  𝑐𝒟𝛼𝑢(𝑡) =  𝑢(𝑡) − 𝑢(0) on 𝐼. 

b)  𝑐𝒟𝛼𝐼𝛼 𝑢 (𝑡) = 𝑢(𝑡) on 𝐼. 

Theorem 1 If 𝑦(⋅) ∈  𝑅𝑃(𝐼, 𝐸), then the Abel integral equation 

 ∫
(𝑡 − 𝑠)𝛼−1

Γ(𝛼)
𝑢(𝑠)

𝑡

0

𝑑𝑠 = 𝑦(𝑡), 𝑡 ∈ 𝐼. (2.3) 

has a solution in 𝑢(⋅) ∈  𝑅𝑃(𝐼, 𝐸) if and only if the function 𝑦1−𝛼  has the following 

properties: 

a) 𝑦1−𝛼(⋅) is 𝑤𝐴𝐶 on 𝐼 

b) 𝑦1−𝛼(⋅) is weakly differentiable a.e on 𝐼 and 

𝑢(𝑡) =  (𝑦1−𝛼)
′(𝑡), for a. e.  𝑡 ∈  𝐼 

c) 𝑦1−𝛼(0) = 0, 

where (𝑢1−𝛼)′(𝑡) will be denoted by  𝑅𝐿𝐷𝛼𝑢(𝑡) and is called the weak Riemann-

Liouville  derivative of 𝑢(⋅). 

Lemma 2 Let 𝑔(⋅): 𝐼 → 𝐸 be a weakly continuous functions. Then a continuous 

function  𝑢(⋅): 𝐼 →  𝐸  is a weakly solution of  

 𝑐𝒟𝛼𝑢 (𝑡) = 𝑔(𝑡);    𝑡 ∈  𝐼 (2.4a) 

 with 

𝑢(0) = 𝜙, (2.4b) 

 is equivalent to the problem of obtaining the solution of the equation 
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𝑢(𝑡) = 𝜙 +
1

Γ (𝛼)
∫ (𝑡 − 𝑠)𝛼−1 𝑔(𝑠)𝑑𝑠
𝑡

0

. 

 

(2.5) 

Proof.  First we consider 𝑢(⋅) ∶ 𝐼 →  𝐸 is a weak solution of (2.4a). Then by using 

lemma 1, we can easily derive (2.6). 

Conversely, suppose that the continuous function 𝑢 (⋅): 𝐼 →  𝐸 satisfies the integral 

equation (2.6). Then (2.6) can be written as 

∫
(𝑡 − 𝑠)𝛼−1

Γ(𝛼)
  𝑔(𝑠)𝑑𝑠

𝑡

0

= 𝑢(𝑡) − 𝜙 = 𝑣(𝑡) 

where 𝑣(𝑡) ∶=  𝑢(𝑡) − 𝜙. By using Theorem 1 and [4, Remark 2.13], we get 

𝑔(𝑡) = (𝑣1−𝛼)′(𝑡) = (𝑢1−𝛼)′(𝑡) −
𝑡−𝛼 

Γ(1 − 𝛼)
 𝑢(0)  𝑓𝑜𝑟  𝑎. 𝑒  𝑡 ∈  𝐼 

=  𝑐𝒟𝛼𝑢  (𝑡). 

where 𝑣1−𝛼(⋅) is weakly differentiable a.e on 𝐼. 

 

Theorem 2 (Lebesgue Dominance Theorem). Let (𝑓𝑛) be a sequence of integrable 

functions which converges almost everywhere to a real valued measurable function 𝑓. 

If there exists an integrable function 𝑔  such that |𝑓𝑛| ≤  𝑔 for all n, then 𝑓  is 

integrable and 

∫𝑓𝑑𝜇 = lim
 
∫𝑓𝑑𝜇. 

Definition 6 (See [12]) Let 𝐸 be a Banach space, Ω𝐸  be the bounded subsets of 𝐸 and  

𝐵1 the unit ball of 𝐸. The De Blasi measure of weak non-compactness is the map     

𝛽 ∶ Ω𝐸 → [0,∞) defined by     

𝛽(𝑋) = inf 𝑐 > 0 : there exists a weakly compact Ω ⊂ 𝐸 such that 𝑋 ⊂ 𝑐𝐵1  + Ω.  

The De Blasi measure of weak non compactness satisfies the following properties 

[12] 

1. 𝐴 ⊂  𝐵 ⇒ 𝛽(𝐴) ≤ 𝛽(𝐵), 

2. 𝛽(𝐴) = 0 ↔ A is weakly relatively compact, 
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3. 𝛽(𝐴 ∪ 𝐵) = max
 
{(𝛽(𝐴), 𝛽(𝑏)}, 

4. 𝛽(𝐴̅𝜔) = 𝛽(𝐴), (𝐴̅𝜔 denotes the weak closure of 𝐴), 

5. 𝛽(𝐴 + 𝐵) ≤ 𝛽(𝐴) + 𝛽(𝐵), 

6. 𝛽(𝜆𝐴) = |𝜆|𝛽(𝐴), 

7. 𝛽(𝑐𝑜𝑛𝑣(𝐴)) = 𝛽(𝐴), 

8. 𝛽(∪(|𝜆|≤  ℎ) 𝜆 𝐴) = ℎ𝛽(𝐴). 

Preposition 1 (See [2]). Let 𝐸 be a normed space, and 𝑥0 ∈  𝐸 with 𝑥0 ≠  0 . Then, 

there exists 𝜑 ∈  𝐸∗ with ||𝜑|| = 1 and  𝜑(𝑥0) = ||𝑥0||. 

For a given set 𝑉 of functions 𝑣: 𝐼 → E let us denote by  

𝑉(𝑡) = {𝑣(𝑡): 𝑣 ∈  𝑉};  𝑡 ∈  𝐼 

and 

𝑉(𝐼) =  {𝑣(𝑡): 𝑣 ∈  𝑉, 𝑡 ∈  𝐼}. 

Lemma 3 (See [15]). Let 𝐻 ⊂  𝐶 be a bounded and equicontinuous subset. Then the 

function 𝑡 → 𝛽(𝐻(𝑡)) is continuous on I, and 

𝛽𝐶(𝐻)  = max
𝑡∈ 𝐸

𝛽(𝐻(𝑡)) 

and 

𝛽 (∫𝑢(𝑠)𝑑𝑠

 

𝐼

)  ≤  ∫𝛽(𝐻(𝑠))𝑑𝑠

 

𝐼

 , 

where 𝐻(𝑠) = {𝑢(𝑠): 𝑢 ∈  𝐻, 𝑠 ∈  𝐼} , and  𝛽𝐶   is the De-Blasi measure of weak non 

compactness defined on the bounded sets of 𝐶. 

For our purpose, we need following the fixed-point theorem [21]: 

Theorem 3 ([21]). Let 𝑄 be a non empty, closed, convex and equicontinuous subset 

of a metrizable locally convex vector space 𝐶(𝐽, 𝐸) such that 0 ∈  𝑄. Suppose 𝑇: 𝑄 →

 𝑄 is weakly sequentially continuous. If the implication 

𝑉 = 𝑐𝑜𝑛𝑣 ({0} ∪ 𝑇(𝑉)) ⇒  𝑉, is relatively compact, (2.6) 

 holds for every subset 𝑉 ⊂  𝑄, then the operator 𝑇 has a fixed point. 
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Lemma 4. If 𝑉  is a strongly equicontinuous and uniformly bounded subset of 

𝐶𝑤(𝐾, 𝐸) , the space of weakly continuous functions 𝑘 →  𝐸  endowed with the 

topology of weak uniform convergence, then  

(i) the function 𝑡 → 𝛽(𝑉(𝑡)) is continuous on 𝐾; 

(ii) for each compact subset T of K 

𝛽(𝑉(𝑡)) = 𝑠𝑢𝑝{ 𝛽(𝑉(𝑡)): 𝑡 ∈  𝑇 }. 

 

3. Existence of weak solutions 

 

Let us start by defining what we mean by a weak solution of the problem (1.1a)-

(1.1b). 
 

Definition 7. A measurable function 𝑢 ∈  𝐶  is said to be a weak solution of the 

problem (1.1a) if 𝑢 satisfies the condition (1.1b) and the equation (1.1a) on 𝐼. 

We establish our existence of weak solution two functional space. Which are 

discussed in the following subsections. 

3.1 Weak Solutions in the Space of Continuous Functions 

To establish our result concerning the existence of weak solutions (1.1a)-(1.1b), we 

list the following hypotheses: 

(𝐻1)  For a.e 𝑡 ∈  𝐼 , the functions  𝑣 →  𝑓(𝑡, 𝑣, . )  𝑎𝑛𝑑  𝑤 →  𝑓(𝑡, . , 𝑤)  are weakly 

sequentially continuous. 

(𝐻2)  For each 𝑣,𝑤 ∈  𝐸, the function 𝑡 →  𝑓(𝑡, 𝑣, 𝑤) is RP-integrable a.e on 𝐼. 

(𝐻3) There exists 𝑝 ∈  𝐶(𝐼, [0,∞)) such that for all  𝜑 ∈  𝐸^ ∗, we have 

|𝜑(𝑓(𝑡, 𝑣, 𝑤))| ≤
𝑝(𝑡)‖𝜑‖

1 + ‖𝜑‖ + ‖𝑣‖𝐸  + ‖𝑤‖𝐸
 

for a.e 𝑡 ∈  𝐼 and each 𝑣, 𝑤 ∈  𝐸, 

(𝐻4) For each bounded and measurable set 𝐵 ⊂  𝐸 and for each 𝑡 ∈  𝐼, we have 

    𝛽(𝑓(𝑡, 𝐵, ( 𝑐𝒟𝜌 𝐵 ))  ≤  𝑝(𝑡)𝛽(𝐵). 
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For any 𝑝 ∈  𝐶(𝐼, [0,∞)), we define  

𝑝∗ = sup
𝑡∈𝐼

𝑝(𝑡) . (2.7) 

 

Theorem 4. Suppose that 𝑓 (⋅ ,⋅,⋅): 𝐼 ×   𝐸 ×  𝐸 →  𝐸  satisfies the assumption (𝐻1) −

(𝐻4) and if 

𝐿:=
𝑝∗

Γ (1 + 𝛼)
< 1. (2.8) 

Then the problem (1.1a) has atleast one solution defined on 𝐼. 

Proof. First we convert the problem (1.1a)-(1.1b) into a fixed point problem by using 

Lemma 2 and consider the operator 𝑇: 𝐶 →  𝐶 defined by 

(𝑇𝑢)(𝑡) = 𝜙 +
1

Γ(𝛼)
∫(𝑡 − 𝑠)𝛼−1𝑔(𝑠)𝑑𝑠

𝑡

0

, (2.9) 

where  𝑔(⋅) ∈  𝐶  with 𝑔(𝑡) = 𝑓(𝑡, 𝑢(𝑡),  𝑐𝒟𝜌𝑢 (𝑡)). 

From the assumption (𝐻2) it will directly imply that 𝑡 ↦   (𝑡 − 𝑠)𝛼−1𝑔(𝑠)𝑑𝑠  for a.e. 

𝑡 ∈  𝐼, is RP-integrable, and for each 𝑢 \𝑖𝑛 𝐶, the function 

𝑡 ↦  𝑓(𝑡, 𝑢(𝑡),  𝑐𝒟𝜌𝑢 (𝑡)), 

is RP-integrable over 𝐼. Thus, the operator 𝑇 is well defined. Let 𝑅 > 0 be such that  

𝑅 >
𝑝∗

Γ(1 + 𝛼)
 

And consider the set 

𝑄 = { 𝑢 ∈  𝐶: ‖𝑢‖𝑐 ≤  𝑅  and ‖(𝑇𝑢)(𝑡2) − (𝑇𝑢)(𝑡1)‖𝐸

≤  
𝑝∗

Γ(1 + 𝛼)
   (𝑡2 − 𝑡1)

𝛼  

+
𝑝∗

Γ(𝛼)
 ∫|(𝑡2  − 𝑠)

𝛼−1  −  (𝑡1 −  𝑠)
𝛼−1|

𝑡1

1

 𝑑𝑠} . 
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Clearly, the subset 𝑄 is closed, convex and equicontinuous. We shall show that the 

operator 𝑇 satisfies all the assumptions of Theorem 3. The proof will be given in 

steps. 

Step 1. T maps Q into itself. 

Let 𝑢 ∈  𝑄, 𝑡 ∈  𝐼 and assume that (𝑇𝑢)(𝑡) ≠  0. Then there exists 𝜑 ∈  𝐸∗ such that  

‖(𝑇𝑢)(𝑡)‖𝐸 = 𝜑 ((𝑇𝑢)(𝑡)) . Thus 

||(𝑇𝑢)(𝑡)||
𝐸
= 𝜑  (𝜙 +

1

Γ(𝛼)
 ∫(𝑡 − 𝑠)𝛼−1𝑔(𝑠)

𝑡1

0

 𝑑𝑠) 

where 𝑔(⋅) ∈  𝐶. 

Since 𝜑 ∈  𝐸∗, using the properties on dual space and (𝐻3)  we get  

‖(𝑇𝑢)(𝑡)‖𝐸 ≤
1

Γ(𝛼)
∫(𝑡 − 𝑠)𝛼−1|𝜑 (𝑔(𝑠))|

𝑡1

0

𝑑𝑠 =
𝑝∗

Γ(1 + 𝛼)
𝑡𝛼 ≤ 𝑅. 

Next, let  𝑡1, 𝑡2 ∈  𝐼 such that 𝑡1 < 𝑡2 and let  𝑢 ∈  𝑄 with 

(𝑇𝑢)(𝑡2) − (𝑇𝑢)(𝑡1) ≠  0. 

Then by Proposition 1 there exists  𝜑 ∈ 𝐸∗ such that  

  ‖(𝑇𝑢)(𝑡2) − (𝑇𝑢)(𝑡1)‖𝐸 = 𝜑 ((𝑇𝑢)(𝑡2) − (𝑇𝑢)(𝑡1) ) 

and  ||𝜑|| = 1. 

Hence 
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‖(𝑇𝑢)(𝑡2) − (𝑇𝑢)(𝑡1)‖𝐸  = 𝜑 ((𝑇𝑢)(𝑡2) − (𝑇𝑢)(𝑡1))

≤ 𝜑 ((𝜙 +
1

Γ(𝛼)
 ∫(𝑡2 − 𝑠)

𝛼−1𝑔(𝑠)𝑑𝑠

𝑡2

0

)

− (𝜙 +
1

Γ(𝛼)
 ∫(𝑡2 − 𝑠)

𝛼−1𝑔(𝑠)𝑑𝑠

𝑡1

0

) )  

≤  ∫|𝑡2  − 𝑠|
𝛼−1

𝑡2

𝑡1

 
|𝜑(𝑔(𝑠))|

Γ(𝛼)
𝑑𝑠 

+
𝑝∗

Γ(𝛼)
∫ |(𝑡2  − 𝑠)

𝛼−1 − (𝑡1  − 𝑠)
𝛼−1|𝑑𝑠.

𝑡1

0

  

Thus, we get 

‖(𝑇𝑢)(𝑡2) − (𝑇𝑢)(𝑡1)‖𝐸  

≤
𝑝∗

Γ(𝛼)
 ∫(𝑡2  − 𝑠)

𝛼−1 𝑑𝑠 

𝑡2

𝑡1

 +  ∫ |(𝑡2  − 𝑠)
𝛼−1 

𝑡1

0

− (𝑡1  − 𝑠)
𝛼−1|

𝑝(𝑠)

Γ(𝛼 )
𝑑𝑠

=
𝑝∗

Γ(𝛼 + 1)
(𝑡2 − 𝑡1)

𝛼  +
𝑝∗

Γ(𝛼)
∫ |(𝑡2 − 𝑠)

𝛼−1 − (𝑡1  − 𝑠)
𝛼−1|𝑑𝑠.

𝑡1

0

  

Hence 𝑁(𝑄) ⊂  𝑄. 

 

Step 2.  𝑇 is weakly-sequentially continuous. 

Let (𝑢𝑛) be a sequence in 𝑄 and let  𝑢𝑛(𝑡) →  𝑢(𝑡) in (𝐸,𝑤) for each 𝑡 ∈  𝐼. Since𝑓 

satisfies the assumption (𝐻1),  we have 𝑓(𝑡, 𝑢𝑛(𝑡),  
𝑐𝐷𝜌

𝑛  (𝑡)  converges weakly 

uniformly to  𝑓(𝑡, 𝑢(𝑡),  𝑐𝐷𝜌
𝑛  (𝑡)). 

Then there exist 𝜑 ∈  𝐸∗  such that  
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(𝑇𝑢)(𝑡) = 𝜙 +
1

Γ(𝛼)
∫(𝑡 − 𝑠)𝛼−1𝑔(𝑠)𝑑𝑠

𝑡

0

 

 where 𝑔(⋅) ∈  𝐶  with 𝑔(𝑡) = 𝑓(𝑡, 𝑢(𝑡),  𝑐𝐷𝜌
𝑛  (𝑡) . 

 Then 

  ||(𝑇𝑢)(𝑡)||
𝐸
≤ 𝜑 (

1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑔(𝑠)𝑑𝑠
𝑡

0
) 

=
1

Γ(𝛼)
ℎ(𝑠), 

where  ℎ(𝑠) =  
1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1|𝜑(𝑔(𝑠))|𝑑𝑠
𝑡

0
 .     

Clearly, the function ℎ(𝑠)  is continuous as well as bounded as we have 𝜑 ∈  𝐸∗ 

and  𝑡 ∈ (0,1) . Therefore the function ℎ(𝑠)  is Lebesgue integrable. Hence by 

Lebesgue dominated convergence theorem Theorem 2 for RP-integrable implies 

𝑇(𝑢𝑛) →  𝑇(𝑢). Hence 𝑇: 𝑄 →  𝑄 is weakly-sequentially continuous.  

 

Step 3.  The implication (2.6) holds. 

Let 𝑉 be a subset of 𝑄 such that 𝑈 = 𝑐𝑜𝑛𝑣(𝑇(𝑈) ∪ {0}). Obviously 

𝑈(𝑡) ⊂  𝑐𝑜𝑛𝑣 (((𝑁𝑈)(𝑡)) ∪ {0}) , 𝑡 ∈  𝐼. 

Further, as 𝑉 is bounded and equicontinuous. by [10] and Lemma 2 the function  𝑡 →

 𝑢(𝑡)  = 𝛽(𝑈(𝑡)) is continuous on 𝐼. From (𝐻3), (𝐻4), Lemma 1 and the properties of 

the measure 𝛽, for any 𝑡 ∈  𝐼, we have 

 𝑢(𝑡) ≤  & 𝛽((𝑇𝑈)(𝑡) ∪ {0}) ≤  𝛽((𝑇𝑈)(𝑡)) 

≤
1

Γ(𝛼)
∫(𝑡 − 𝑠)(𝛼−1)𝑝(𝑠)𝛽(𝑈(𝑠)) 𝑑𝑠

𝑡

0

 

≤ 
1

Γ(𝛼)
∫𝑝(𝑠)𝑢(𝑠)(𝑡 − 𝑠)(𝛼−1)𝑑𝑠

𝑡

0

 

                                             ≤
𝑝∗

Γ(𝛼 + 1)
‖𝑢‖𝐶 . 

Thus  
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‖𝑢‖𝐶 ≤  𝐿‖𝑢‖𝐶 . 

From (2.7), we get ‖𝑢‖𝐶 = 0, that is  𝑢(𝑡) = 𝛽(𝑈(𝑡)) = 0, for each 𝑡 ∈  𝐼. and then 

by [20, Theorem 2], 𝑈 is weakly relatively compact in 𝐶 Applying now Theorem 3, 

we conclude that 𝑇  has a fixed point which is a solution of the problem (1.1a)-

(1.1b).■ 

 

3.2 Weak solution in 𝑳𝟐-space 

In this subsection we will established our results in 𝐿2 -space for the fractional 

differential equations (1.1a)-(1.1b). To establish our results we use Arzelà-Ascoli 

theorem. 
 

Lemma 5 (Arzelà-Ascoli). Let  𝐷 ⊂ 𝑅𝑛 be compact and let  { 𝑓𝑛}𝑛=1
∞  be a sequence 

of continuous functions defined on 𝐷 If  𝐹 = {𝑓𝑛: 𝑛 ∈ 𝑁} is uniformly bounded and 

equicontinuous on 𝐷  then there exists a subsequence {𝑓𝑛𝑘}𝑘=1
∞

 that converges 

uniformly to a function 𝑓 ∈  𝐶(𝐷, 𝑅). 

Equation (1.1a)-(1.1b) reduced to the integral form as 

𝑢(𝑡) = 𝜙 +
1

Γ(𝛼)
∫(𝑡 − 𝑠)𝛼−1𝑓(𝑡, 𝑢(𝑡), ( 𝑐𝒟𝜌𝑢)

𝑡

𝑡0

(𝑡))𝑑𝑠, (3.1) 

 

where 𝛼 ∈  (0,1) and 𝑡 ≥  𝑡0. Next, the local existence theorem of the IVP (1.1a)-

(1.1b) is given below. 

𝐽 = [𝑡0 − 𝑎, 𝑡0 + 𝑎], 𝐵 = {𝑢 ∈ ℝ
𝑑| ‖𝑢 − 𝜙‖ ≤ 𝑏}, 

𝐸 = {(𝑡, 𝑢) ∈ ℝ × ℝ𝑑| 𝑡 ∈ 𝐽, 𝑢 ∈ 𝐵}. 

Theorem 5. Assume that the function 𝑓: 𝐸 → 𝑅𝑑  satisfies the following conditions: 

1. 𝑓(𝑡, 𝑢,  𝑐𝒟𝜌𝑢) is Lebesgue measurable with respect to 𝑡 on 𝐽;  

2. 𝑓(𝑡, 𝑢,  𝑐𝒟𝜌𝑢) is continuous with respect to 𝑢 on 𝐵; 

3. There exists a real valued function 𝑚(𝑡) ∈  𝐿2(𝐽)  such that 

‖𝑓(𝑡, 𝑢,  𝑐𝒟𝜌𝑢) ‖ ≤ 𝑚(𝑡) 

for almost every 𝑡 ∈ 𝐽and all 𝑢 ∈ 𝐵. 
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Then, for 𝛼 >
1

2
 there at least exists a solution of the IVP (1.1a)-(1.1b) on the 

interval [𝑡0 − ℎ, 𝑡0 + ℎ] for some positive number ℎ. 

Proof. Here the initial value problem (1.1a)-(1.1b) for the case where 𝑡 ∈  [𝑡0, 𝑡0 + ℎ]  

are only discussed. The proof is divided into three steps. 

Step 1. In the first step it is to prove that (𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑢(𝑠),  𝑐𝒟𝜌𝑢(𝑠)) is Lebesgue 

integrable with respect to 𝑠 ∈  [𝑡_0, 𝑡] (𝑡 ≤  𝑡0 + ℎ ≤  𝑎)  for all 𝑡  in between 𝐽 

provided that 𝑢(𝑠) is Lebesgue measurable on the interval [𝑡0, 𝑡0 + ℎ]. When 𝑢(𝑡) is 

chosen to be a constant vector, that is 𝑢(𝑡) = 𝑐(𝑡0 ≤  𝑡 ≤  𝑡0 + ℎ), 𝑓(𝑡, 𝑐 ) is 

Lebesgue measurable due to condition (1) 

Generally, for any Lebesgue measurable 𝑢(𝑡) on [𝑡0, 𝑡0 + ℎ], there exists a 

sequence of step functions, denoted by { 𝑢𝑘(𝑡)}(𝑘 = 1, 2,⋯ ) , such that 𝑢𝑘(𝑡)  is 

convergent to 𝑢(𝑡) almost everywhere as 𝑘 → ∞. Consequently, the limit function 

𝑓(𝑡, 𝑢(𝑡),  𝑐𝒟𝜌𝑢(𝑡)) is Lebesgue measurable on [𝑡0, 𝑡0 + ℎ],  

Moreover, it follows from condition (3) that 

‖(𝑡 − 𝑠)𝛼−1𝑓(𝑡, 𝑢(𝑡),  𝑐𝒟𝜌𝑢(𝑡)) ‖  ≤ (𝑡 − 𝑠)𝛼−1𝑚(𝑠) (3.2) 

 

  

for almost every 𝑠 ≤ 𝑡 with 𝑠, 𝑡 ∈ 𝐽. It is observed that (𝑡 − 𝑠)𝛼−1 ∈ 𝐿2[𝑡0, 𝑡] if 𝛼 >
1

2
. In the light of Hölder inequality, we obtain that (𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑢(𝑠),  𝑐𝒟𝜌𝑢(𝑠))   is 

Lebesgue integrable with respect to  𝑠 ∈  [𝑡0, 𝑡] for all 𝑡, and  

∫‖(𝑡 − 𝑠)𝛼−1(𝑡, 𝑢(𝑡),  𝑐𝒟𝜌𝑢(𝑡))‖𝑑𝑠 ≤ ‖(𝑡 − 𝑠)𝛼−1‖𝐿2[𝑡0,𝑡],

𝑡

𝑡0

 (3.3) 

where ‖𝐻(𝑡)‖𝐿𝑃[𝐼] = (∫ |𝐻(𝑠)|
 

𝐼
)
1

𝑃 for any 𝐿𝑃 -integrable function 𝐻: 𝐼 → ℝ. This 

completes Step 1. 

Step 2. Here, a sequence of vector-valued functions are constructed and their uniform 

boundedness and equicontinuity are verified, respectively.   

Note the completely continuity of the function 𝑚2(𝑡) implies that for a given positive 

number 𝑀, there must exist a number ℎ′ > 0 satisfying 
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∫ 𝑚2(𝑠)𝑑𝑠 ≤  𝑀
𝑡0+ℎ

𝑡0

 (3.4) 

whenever ℎ <  min
 
{ℎ′, 𝑎, ⌈

𝑏2Γ2(𝛼)(2𝛼−1)

𝑀
⌉

1

2𝛼−1
} . Once we select a proper ℎ  , a 

sequence of vector-valued functions, denoted by {𝑢𝑛(𝑡)}𝑛=1
∞ , can be defined as 

𝑢𝑛(𝑡)

=

{
 
 

 
 𝜙, 𝑡0 ≤ 𝑡 ≤ 𝑡0 +

ℎ

𝑛

𝜙 +
1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑢𝑛(𝑠), 𝐷

𝜌𝑢𝑛(𝑠))𝑑𝑠

𝑡−
ℎ

𝑛

𝑡0

, 𝑡0 +
ℎ

𝑛
≤ 𝑡 ≤ 𝑡0 + ℎ

. 

From the above definition, when𝑡0 +
ℎ

𝑛
≤ 𝑡 ≤ 𝑡0 +

2ℎ

𝑛
, one has 𝑡0 ≤ 𝑡 −

ℎ

𝑛
≤ 𝑡0 +

ℎ

𝑛
, 

which implies that 𝑓(𝑠, 𝑢𝑛(𝑠),  
𝑐𝒟𝜌𝑢𝑛(𝑠)) ≡ 𝑓(𝑠, 𝜙)  as 𝑡0 ≤ 𝑠 ≤ 𝑡 −

ℎ

𝑛
. Therefore, 

𝑓(𝑠, 𝑢𝑛(𝑠),  
𝑐𝒟𝜌𝑢𝑛(𝑠)) is Lebesgue measurable and (𝑡 −

𝑠)𝛼−1𝑓(𝑠, 𝑢𝑛(𝑠),  
𝑐𝒟𝜌𝑢𝑛(𝑠))𝑑𝑠 is Lebesgue integrable on [𝑡0, 𝑡 −

ℎ

𝑛
] . 

Next, we shall prove that 𝑢𝑛(𝑡) is continuous on [𝑡0, 𝑡0 +
2ℎ

𝑛
] for all 𝑛. It is obvious 

that 𝑢𝑛(𝑡) is continuous on [𝑡0, 𝑡0 +
ℎ

𝑛
] for all 𝑛 . If additionally the interval [𝑡0 +

ℎ

𝑛
, 𝑡0 +

2ℎ

𝑛
] is taken into account, two cases are discussed respectively. 

Case A. When  𝑡0 ≤ 𝑡1 ≤ 𝑡0 +
ℎ

𝑛
< 𝑡2 ≤ 𝑡0 +

2ℎ

𝑛
, it follows from (3.2) and (3.3) 

that 

‖𝑢𝑛(𝑡2) − 𝑢𝑛(𝑡1)‖ ≤
1

Γ(𝛼)
∫ (𝑡2 − 𝑠)

𝛼−1‖𝑓(𝑠, 𝑢𝑛(𝑠),  
𝑐𝒟𝜌𝑢𝑛(𝑠))‖

𝑡2−
ℎ

𝑛

𝑡0

𝑑𝑠 

≤
1

Γ(𝛼)
∫ (𝑡2 − 𝑠)

𝛼−1𝑚(𝑠)𝑑𝑠

𝑡2−
ℎ

𝑛

𝑡0

 

         ≤
1

Γ(𝛼)
√

𝑀

2𝛼 − 1
[𝑡0 − (𝑡0 +

ℎ

𝑛
)]
𝛼−

1

2

. 



 

 

A study of weak solution on a class of FDE 

 

31 

 

Hence for any positive number 𝛿 < [
𝜖2Γ2(𝛼)(2𝛼−1)

𝑀
]

1

2𝛼−1
  such that for all 𝑡2 −

(𝑡0 +
ℎ

𝑛
 ) ≤ 𝑡2 − 𝑡1 ≤ 𝛿 and for all 𝑛. 

Case B. When 𝑡0  +
ℎ

𝑛
≤ 𝑡1 ≤ 𝑡2 ≤ 𝑡0  +

2ℎ

𝑛
, one has  

𝐼1  =  ∫ [ (𝑡1 − 𝑠)
𝛼−1 − (𝑡2 − 𝑠)

𝛼−1  ]2 𝑑𝑠

𝑡1−
ℎ

𝑛

𝑡0

   =
1

2𝛼 − 1
(𝑆1 + 𝑆2) 

 

where 

𝑆1 = |(𝑡1 − 𝑡0)
2𝛼−1 − (𝑡2 − 𝑡0)

2𝛼−1|, 

𝑆2 =  ( 𝑡2 − 𝑡1 +
ℎ

𝑛
 )
2𝛼−1

− (
ℎ

𝑛
)
2𝛼−1

. 

Thereby, substitution of these inequalities into the following estimation gives 

that for all 𝑡2 − 𝑡1 ≤ 𝛿 = 𝑚𝑖𝑛 { 𝛿1 , 𝛿2, 𝛿3 }, 

𝐼2 =
1

Γ(𝛼)
∫ [(𝑡1 − 𝑠)

𝛼−1 − (𝑡2 − 𝑠)
𝛼−1]‖𝑓(𝑠, 𝑢𝑛(𝑠),  

𝑐𝒟𝜌𝑢𝑛(𝑠))‖

𝑡1−
ℎ

𝑛

𝑡0

𝑑𝑠 

≤
1

Γ(𝛼)
∫ [(𝑡1 − 𝑠)

𝛼−1 − (𝑡2 − 𝑠)
𝛼−1]𝑚(𝑠)𝑑𝑠

𝑡1−
ℎ

𝑛

𝑡1

<
𝜖

2
. 

Meanwhile, for all 𝑡2 − 𝑡1 ≤ 𝛿, it yields 

𝐼2 =
1

Γ(𝛼)
∫ (𝑡2 − 𝑠)

𝛼−1‖𝑓(𝑠, 𝑢𝑛(𝑠),  
𝑐𝒟𝜌𝑢𝑛(𝑠))‖

𝑡2−
ℎ

𝑛

𝑡1

𝑑𝑠 

≤
1

Γ(𝛼)
∫ (𝑡2 − 𝑠)

𝛼−1𝑚(𝑠)𝑑𝑠

𝑡2−
ℎ

𝑛

𝑡1

<
𝜖

2√2
. 

This consequently implies that whenever  𝑡2 − 𝑡1 ≤ 𝛿, 
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‖𝑢𝑛(𝑡2) − 𝑢𝑛(𝑡1)‖ ≤ 𝐼2 + 𝐼3 < 𝜖. 

Therefore, the above performed two cases leads to a conclusion that 𝑢𝑛(𝑡)  is 

continuous with respect to 𝑡 on [𝑡0, 𝑡0 +
2ℎ

𝑛
] for all positive integers 𝑛. 

On the other hand, one has that for all  𝑡 ∈  [𝑡0, 𝑡0 +
ℎ

𝑛
], 

‖𝑢𝑛(𝑡) − 𝜙‖ = 0, 

and for all  𝑡 ∈  [𝑡0 +
ℎ

𝑛
, 𝑡0 +

2ℎ

𝑛
] , 

‖𝑢𝑛(𝑡) − 𝜙‖ =
1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑚(𝑠)𝑑𝑠

𝑡−
ℎ

𝑛

𝑡0

 

≤ √
𝑀

2𝛼 − 1
ℎ𝛼−

1

2 ≤   𝑏, 

which implies that𝑓(𝑡, 𝑢𝑛(𝑡),  
𝑐𝒟𝜌𝑢𝑛(𝑡)) ∈ 𝐸 for all 𝑛.  

  

By induction, we can contend that the function {𝑢𝑛(𝑡)}  is continuous with 

respect to 𝑡 on [𝑡0, 𝑡0 + ℎ], satisfying 𝑓(𝑡, 𝑢𝑛(𝑡),  
𝑐𝒟𝜌𝑢𝑛(𝑡)) ∈ 𝐸for all 𝑛 In fact, it 

can be assumed that for a given integer 𝑘 and all  0 ≤  𝑖 < 𝑘 < 𝑛, 𝑢𝑛(𝑡) is continuous 

on [𝑡0 +
𝑖ℎ

𝑛
, 𝑡0 +

(𝑖+1)ℎ

𝑛
]  and ‖𝑢𝑛(𝑡) − 𝜙‖ ≤ 𝑏  for all 𝑛. Note that if 𝑡 ∈

 [𝑡0 +
𝑘ℎ

𝑛
, 𝑡0 +

(𝑘+1)ℎ

𝑛
] . Then, by using similar argument performed above, it can be 

concluded that  𝑢𝑛(𝑡) is continuous on [𝑡0 +
𝑘ℎ

𝑛
, 𝑡0 +

(𝑘+1)ℎ

𝑛
] and ‖𝑢𝑛(𝑡) − 𝜙‖ ≤ 𝑏 

for all 𝑛. 

 

Step  3. Using The Arzelà-Ascoli lemma and the conclusion derived in step 2, there 

must exist a subsequence {𝑢𝑛𝑘(𝑡)𝑘=1
∞ }  ≜   {𝑢𝑘(𝑡)𝑘=1

∞ }    contained in 

{𝑢𝑛(𝑡)𝑛=1
∞ } such that {𝑢𝑘(𝑡)𝑘=1

∞ }  is uniformly convergent to 𝑢(𝑡)  which is 

continuous with respect to 𝑡 on [𝑡0, 𝑡0 + ℎ]. So, in what follows it is to prove that this 

limit function 𝑢(𝑡) is a solution of equation (1.1a). 
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It follows from condition (2) that for any positive 𝜁 there exist 𝑁1 ∈ 𝑁, such that for 

all 𝑘 >  𝑁1 , 

‖𝑓(𝑡, 𝑢𝑘(𝑡)) − 𝑓 (𝑡, 𝑢(𝑡))‖  <
Γ(𝛼 + 1)𝜁

2ℎ𝛼
 

 

due to condition (2). Now, we prove that 𝑢(𝑡) satisfies (1.1a). We have that 

𝐼4 = ‖‖
1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑢𝑘(𝑠),  

𝑐𝒟𝜌𝑢𝑘(𝑠))𝑑𝑠

𝑡−
ℎ

𝑘

𝑡0

−
1

Γ(𝛼)
∫(𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑢𝑘(𝑠),  

𝑐𝒟𝜌𝑢𝑘(𝑠))𝑑𝑠

𝑡

𝑡0

‖‖ 

=
1

Γ(𝛼)
‖‖∫(𝑡 − 𝑠)𝛼−1[𝑓(𝑠, 𝑢𝑘(𝑠),  

𝑐𝒟𝜌𝑢𝑘(𝑠)) − 𝑓(𝑠, 𝑢(𝑠),  
𝑐𝐷𝜌𝑢(𝑠))]𝑑𝑠

𝑡

𝑡0

− ∫(𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑢𝑘(𝑠),  
𝑐𝒟𝜌𝑢𝑘(𝑠))𝑑𝑠

𝑡

𝑡−
ℎ

𝑘

‖‖ 

≤
1

Γ(𝛼)
∫(𝑡 − 𝑠)𝛼−1‖𝑓(𝑠, 𝑢𝑘(𝑠),  

𝑐𝒟𝜌𝑢𝑘(𝑠)) − 𝑓(𝑠, 𝑢(𝑠),  
𝑐𝒟𝜌𝑢(𝑠))‖𝑑𝑠

𝑡

𝑡0

+ ∫(𝑡 − 𝑠)𝛼−1‖𝑓(𝑠, 𝑢𝑘(𝑠),  
𝑐𝒟𝜌𝑢𝑘(𝑠))‖𝑑𝑠

𝑡

𝑡−
ℎ

𝑘

 

≜ 𝐼5 + 𝐼6. 

Using (1.1a), one obtains 

𝐼5 =
Γ(𝛼 + 1)𝜁

2ℎ𝛼
ℎ𝛼

Γ(𝛼 + 1)
 <

𝜁

2
. 

Also there exists a natural number 𝑁2 = [(
2𝑏

𝜁
)

2

2𝛼−1
]such that for all  𝑘 >  𝑁2 , 
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𝐼6 ≤ 
1

Γ(𝛼)
∫(𝑡 − 𝑠)𝛼−1 𝑚(𝑠)𝑑𝑠

𝑡

𝑡−
ℎ

𝑘

 ≤
1

Γ(𝛼)
√

𝑀

2𝛼 − 1
(
ℎ

𝑘
)
𝛼−1

 <    
𝜁

2
 , 

Hence, setting 𝑁 = max
 
{𝑁1, 𝑁2}, one arrives at 𝐼4 < 𝜁 for all 𝑘 > 𝑁. 

Consequently, 𝑢(𝑡) satisfies 

𝑢(𝑡) = 𝜙 +
1

Γ(𝛼)
∫(𝑡 − 𝑠)𝛼−1𝑓(𝑠, 𝑢𝑘(𝑠), ( 

𝑐𝒟𝜌𝑢𝑘)

𝑡

𝑡0

(𝑠))𝑑𝑠. 

This implies that there at least exists a solution of (3.1) on [𝑡0, 𝑡0 + ℎ]. Hence, the 

initial value problem (1.1a)-(1.1b) has at least exists a solution on the interval 

[𝑡0, 𝑡0 + ℎ]. Moreover, the similar arguments could be applied to obtain a solution of 

the initial value problem 1.1a)-(1.1b)  on [𝑡0 − ℎ, 𝑡0]. This finally completes the 

proof.■ 

 

Acknowledgement: We are thankful to the unknown reviewer for constructive as 
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