DEGREE PRODUCT ADJACENCY ENERGIES OF COMPLEMENT OF REGULAR GRAPHS AND COMPLEMENT OF LINE GRAPHS OF REGULAR GRAPHS.

Keerthi G. Mirajkar ${ }^{1}$ and Bhagyashri R. Doddamani ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, Karnatak University's Karnatak Arts College, Dharwad - 580001, Karnataka, INDIA
Email : ' ${ }^{\text {keerthi.mirajkar@gmail.com, }{ }^{2} \text { bhagyadoddamani1 @ gmail.com }}$

Received on: 04/07/2020
Accepted on: 29/10/2020

Abstract

In this article, we find the explicit formulas for the degree product adjacency energy of the complement graph of a r regular graph and also the degree product adjacency energy of $\overline{L(G)}$. In this way one can calculate/compute the degree product adjacency energy of large family of regular graphs.

Keywords: Degree product adjacency energy, complement of a graph, line graph.
2010 AMS classification: 05C05, 05C50

1. Introduction

Graphs considered in this article are simple, connected with n vertices and m edges, d_{i} is the degree of the vertex v_{i}. For undefined terminologies we refer [6].

The graph G is a regular graph, where all its vertices are equal to degree r. The complement \bar{G} of a graph G also has n number of vertices but two vertices are adjacent in \bar{G} if and only if they are not adjacent in G. The line graph $L(G)$ is a graph, in this the number of vertices are equal to the number of edges of graph G and any two vertices of $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent [6].

The adjacency matrix of a graph G is a square matrix and is defined as $A(G)=\left[a_{i j}\right]$, where $a_{i j}$ is [1],

$$
a_{i j}= \begin{cases}1, & \text { ifv } v_{i} \sim v_{j} ; \tag{1}\\ 0, & \text { otherwise } .\end{cases}
$$

Where the notation $v_{i} \sim v_{j}$ stands for the vertex v_{i} is adjacent to vertex v_{j}. The eigenvalues of the adjacency matrix of G are denoted by $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$.

The energy of a graph G is defined as the sum of the absolute values of the eigenvalues of adjacent matrix of graph G. This concept was introduced by I. Gutman [4]. This energy has been well explained in [5] and its mathematical representation is,

$$
E_{A}(G)=\sum_{i=1}^{k}\left|\lambda_{i}\right|
$$

The degree product adjacency energy $E_{D P A}(G)$ is defined as follows [7],
The $D P A(G)$ is the degree product adjacency matrix and is defined as,

$$
d_{i j}= \begin{cases}d_{i} d_{j}, & \text { ifv} v_{i} \sim v_{j} ; \\ 0, & \text { otherwise } .\end{cases}
$$

The degree product adjacency matrix $\operatorname{DPA}(G)$ is a real symmetric matrix and its eigenvalues are $\alpha_{1}, \alpha_{2}, \alpha_{3} \ldots, \alpha_{k}$. The order of eigenvalues be $\alpha_{1} \geq \alpha_{2} \geq$ $\alpha_{3} \geq \ldots \geq \alpha_{k}$. The similar way of adjacency energy, the degree product adjacency energy of a graph defined as [7],

$$
\begin{equation*}
E_{D P A}(G)=\Sigma_{i=1}^{k}\left|\alpha_{i}\right| \tag{2}
\end{equation*}
$$

Degree product adjacency energies of complement of regular graphs
[1] The spectrum of a graph G is the set of numbers, which are eigenvalues of adjacency matrix $A(G)$, together with their multiplicities. Analogues to spectrum of $A(G)$, the spectrum of degree product adjacency matrix is defined as [7],

$$
\operatorname{Spec}(D P A)(G)=\left(\begin{array}{lllll}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \ldots & \alpha_{k} \\
m_{1} & m_{2} & m_{3} & \ldots & m_{k}
\end{array}\right)(3)
$$

where $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \ldots \geq \alpha_{k}$ are the eigenvalues of $D P A(G)$ matrix and $m_{1}, m_{2}, m_{3}, \ldots, m_{k}$ are multiplicities of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ respectively. Here $m_{1}+m_{2}+$ $m_{3}+\ldots+m_{k}=n$

The following theorems are used to prove the main results.
Theorem 11.1.[1] Let G be a r regular graph with spectra of adjacency matrix as,

$$
\operatorname{Spec}(G)=\left(\begin{array}{lllll}
r & \lambda_{2} & \lambda_{3} & \ldots & \lambda_{k} \\
1 & m_{2} & m_{3} & \ldots & m_{k}
\end{array}\right)
$$

Then \bar{G}, the complement of G is a $(n-r-1)$ regular graph with spectrum

$$
\operatorname{Spec}(\bar{G})=\left(\begin{array}{llll}
n-r-1 & -\lambda_{2}-1 & \ldots & -\lambda_{k}-1 \\
1 & m_{2} & \ldots & m_{k}
\end{array}\right)
$$

Theorem 1.2. [8]2If G is a regular graph with n vertices, then its largest eigenvalue of degree product adjacency matrix is $\alpha_{1}=r^{3}$.

From Theorem 1.2, the degree product adjacency spectrum of G is,

$$
\operatorname{Spec}_{D P A}(G)=\left(\begin{array}{lllll}
r^{3} & \alpha_{2} & \alpha_{3} & \ldots & \alpha_{k} \\
1 & m_{2} & m_{3} & \ldots & m_{k}
\end{array}\right)
$$

Theorem 1.3.3[7]If $K_{m, n}(m=n)$ is a complete bipartite graph. Then the degree product adjacency spectrum of a graph $K_{m, n}(m=n)$ is,

$$
\operatorname{Spec}_{D P A}\left(K_{n, n}\right)=\left(\begin{array}{lllll}
n^{3} & 0 & \ldots & 0 & -n^{3} \\
1 & m_{2} & \ldots & m_{k-1} & 1
\end{array}\right)
$$

Theorem 1.4.[7]If K_{n} is a complete graph with n vertices. Then the degree product adjacency spectrum of K_{n} is

$$
\operatorname{Spec}_{D P A}\left(K_{n}\right)=\left(\begin{array}{ll}
(n-1)^{3} & {\left[-(n-1)^{2}\right]} \\
1 & (n-1)
\end{array}\right) .
$$

Remark 1.5.4[8],

$$
\operatorname{Spec}_{D P A}(L(G))=\left(\begin{array}{llll}
(2 r-2)^{3} & (2 r-2)^{2}\left(\frac{\alpha_{2}}{r^{2}}+r-2\right) & \ldots & -8(r-1)^{2} \\
1 & m_{2} & \ldots & \frac{n(r-2)}{2}
\end{array}\right)
$$

2. Main Results

Theorem 2.1.5If G is ar regular graph and the adjacency eigenvalue of G are λ_{i}; $i=1,2, \ldots, k$, then the degree product adjacency eigenvalue for the graph G are $\alpha_{i}=r^{2} \lambda_{i} ; i=1,2, \ldots, k$.

Proof. Consider the r regular graph G with n vertices where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are the eigenvalues of degree product adjacency matrix of G.

We prove this Theorem by using the following facts.
i. Consider the cycle graph C_{3} and the adjacency eigenvalues of C_{3} are $-1,-1,2$. Now the degree product adjacency eigenvalues of C_{3} are $-4,-4,8$.

Here the cycles are 2 -regular graphs, then the product of square of regularity and eigenvalues of adjacency matrix are equal to eigenvalues of degree product adjacency matrix i.e., $\alpha_{i}=r^{2} \lambda_{i}$.

And this condition holds for all cycle graphs $C_{n} ; n \geq 3$.
ii. Now consider the complete graph K_{n} and its eigenvalues for the adjacency matrix are $n-1$ with multiplicity 1 and -1 with multiplicity $n-1$. Now from Theorem 1.4, The eigenvalues of degree product adjacency matrix of K_{n} are $(n-1)^{3}$ with multiplicity 1 and $-(n-1)^{2}$ with multiplicity $(n-1)$.

Degree product adjacency energies of complement of regular graphs

The complete graph K_{n} is $(n-1)$ regular, therefore the eigenvalues of degree product adjacency matrix are equal to product of square of regularity and eigenvalues of adjacency matrix of K_{n}.

From these two conditions, it follows that all regular graphs holds the equality i.e., $\alpha_{i}=r^{2} \lambda_{i}$ and also by observation one can conclude that the eigenvalues of $D P A(G)$, where G is regular graph are equal to product of square of regularity and eigenvalues ($\lambda_{i} ; i=1,2, \ldots, k$) of $A(G)$ i.e., $\alpha_{i}=r^{2} \lambda_{i}$.

Theorem 2.2. 6If G is ar regular graph, then

$$
\operatorname{Spec}_{D P A}(\bar{G})=\left(\begin{array}{llll}
(n-r-1)^{3} & {\left[(n-r-1)^{2}\left(\frac{\alpha_{2}}{r^{2}}-1\right)\right]} & \ldots & {\left[(n-r-1)^{2}\left(\frac{\alpha_{k}}{r^{2}}-1\right)\right]} \\
1 & m_{2} & \ldots & m_{k}
\end{array}\right) .
$$

and
$E_{D P A}(\bar{G})=(n-r-1)^{2}\left(2-n-\sum_{i=2}^{n} \frac{\alpha_{i}}{r^{2}}\right)$

Proof. Consider the r regular graph G and the graph \bar{G} is complement of G. From Theorem 1.1, the graph \bar{G} is $(n-r-1)$ regular.

Now from Theorem 1.2, the maximum eigenvalue of $\operatorname{DPA}(G)$ is r^{3} for all regular graphs. Hence from Theorem 1.1 and Theorem 2.1, the degree product adjacency spectra of \bar{G} is,
$\operatorname{Spec}_{D P A}(\bar{G})=\left(\begin{array}{llll}(n-r-1)^{3} & {\left[(n-r-1)^{2}\left(\frac{\alpha_{2}}{r^{2}}-1\right)\right]} & \ldots & (n-r-1)^{2}\left(\frac{\alpha_{k}}{r^{2}}-1\right) \\ 1 & m_{2} & \ldots & m_{k}\end{array}\right)$.
By using the spectrum of $D P A(\bar{G})$,

$$
E_{D P A}(\bar{G})=(n-r-1)^{2}\left(2-n-\sum_{i=2}^{n} \frac{\alpha_{i}}{r^{2}}\right)
$$

Theorem 2.3.7If G is regular graph but not complete bipartite having the smallest eigenvalue greater than or equal to $r^{2}(1-r)$, then

$$
E_{D P A}(\overline{L(G)})=\left(\frac{n r-2(2 r-1)}{2}\right)^{2}((r-1)(2 n-4)-2)
$$

Proof. Consider the r regular graph G with n vertices and is not complete bipartite, then from Theorem $1.2, r^{3} \geq \alpha_{2} \geq \alpha_{3} \geq \ldots \geq \alpha_{k}$ are the distinct eigenvalues of $D P A(G)$. Therefore the spectrum of $D P A(G)$ is,

$$
\operatorname{Spec}_{D P A}(G)=\left(\begin{array}{lllll}
r^{3} & \alpha_{2} & \alpha_{3} & \ldots & \alpha_{k} \\
1 & m_{2} & m_{3} & \ldots & m_{k}
\end{array}\right)
$$

Now from Remark 1.5, Theorem 2.1 and Theorem 2.2,

$$
\operatorname{Spec}_{D P A}(\overline{L(G)})=\left(\begin{array}{lll}
\left(\frac{n r-2(2 r-1)}{2}\right)^{3} & {\left[\left(\frac{n r-2(2 r-1)}{2}\right)^{2}\left(\frac{-\alpha_{2}}{r^{2}}-r+1\right)\right]} & \ldots \\
1 & m_{2} & \left(\frac{n r-2(2 r-1)}{2}\right)^{2} \\
1 & \ldots & \frac{n(r-2)}{2}
\end{array}\right)
$$

Since $\frac{-\alpha_{i}}{r^{2}}-r+1 \leq 0 ; i=2,3, \ldots, k$ is always true, thus

$$
\begin{aligned}
& E_{D P A}(\overline{L(G)})=\left(\frac{n r-2(2 r-1)}{2}\right)^{3}+\left(\frac{n r-2(2 r-1)}{2}\right)^{2} \sum_{i=2}^{k} m_{i}\left(\frac{\alpha_{i}}{r^{2}}-r+1\right) \\
& +\left(\frac{n r-2(2 r-1)}{2}\right)^{2} \frac{n(r-2)}{2} \\
& =\left(\frac{n r-2(2 r-1)}{2}\right)^{2}\left(\frac{n r}{2}-2 r+1+\frac{n r}{2}-\frac{2 n}{2}\right) \\
& +\left(\frac{n r-2(2 r-1)}{2}\right)^{2}\left(\sum_{i=2}^{k} \frac{m_{i} \alpha_{i}}{r^{2}}+(r-1) \sum_{i=2}^{k} m_{i}\right)
\end{aligned}
$$

From Theorem 1.2 and number of multipilicities in the spectra of $D P A(G)$,

$$
\begin{array}{ll}
r^{3}+\sum_{i=2}^{k} m_{i} \alpha_{i}=0 \quad \text { and } & 1+\sum_{i=2}^{k} m_{i}=n \\
\text { i.e., } \quad \sum_{i=2}^{k} \frac{m_{i} \alpha_{i}}{r^{2}}=-r i . e ., \quad \sum_{i=2}^{k} m_{i}=n-1
\end{array}
$$

By using the equation (4) in $E_{D P A}(\overline{L(G)})$,

Degree product adjacency energies of complement of regular graphs

$$
E_{D P A}(\overline{L(G)})=\left(\frac{n r-2(2 r-1)}{2}\right)^{2}(n r-2 r-n+1)+\left(\frac{n r-2(2 r-1)}{2}\right)^{2}(-r+(r-1)(n-1))
$$

After simplification,

$$
E_{D P A}(\overline{L(G)})=\left(\frac{n r-2(2 r-1)}{2}\right)^{2}((r-1)(2 n-4)-2)
$$

Theorem 2.4. 8If G is a complete bipartite and regular graph having the second smallest eigenvalue greater than or equal to $r^{2}(1-r)$, then

$$
E_{D P A}(\overline{L(G)})=\left(\frac{n r-2(2 r-1)^{2}}{2}\right)^{2}((r-1)(2 n-4))
$$

Proof. Consider the r regular graph G with n vertices and is complete bipartite graph.

Now from Theorem 1.3 the complete bipartite graph $K_{n, n}$ is n regular then the regularity r of $K_{n, n}$ is n i.e., $r=n$, then $r^{3} \geq \alpha_{2} \geq \alpha_{3} \geq \ldots \geq \alpha_{k-1} \geq-r^{3}$ are the distinct eigenvalues of $D P A(G)$. Therefore the spectrum of $D P A(G)$ is,

$$
\operatorname{Spec}_{D P A}(G)=\left(\begin{array}{llllll}
r^{3} & \alpha_{2} & \alpha_{3} & \ldots & \alpha_{k-1} & -r^{3} \\
1 & m_{2} & m_{3} & \ldots & m_{k-1} & 1
\end{array}\right)
$$

Now from Remark 1.5, Theorem 2.1 and Theorem 2.2,
$\operatorname{Spec}_{\text {DPA }}(\overline{L(G)})=\left(\begin{array}{lll}\left(\frac{n r-2(2 r-1)}{2}\right)^{3} & {\left[\left(\frac{n r-2(2 r-1)}{2}\right)^{2}\left(-\alpha_{2}-r+1\right)\right]} & \ldots\left(\frac{n r-2(2 r-1)}{2}\right)^{2} \\ 1 & m_{2} & \ldots \\ \frac{n(r-2)}{2}+1\end{array}\right)$.
Since $\frac{-\alpha_{i}}{r^{2}}-r+1 \leq 0 ; i=2,3, \ldots, k$ is always true,
thus

$$
\begin{aligned}
& E_{D P A}(\overline{L(G)})=\left(\frac{n r-2(2 r-1)}{2}\right)^{3}+\left(\frac{n r-2(2 r-1)}{2}\right)^{2} \sum_{i=2}^{k-1} m_{i}\left(\alpha_{i}+r-1\right) \\
& \quad+\left(\frac{n r-2(2 r-1)}{2}\right)^{2}\left(\frac{n(r-2)}{2}+1\right) \\
& =\left(\frac{n r-2(2 r-1)}{2}\right)^{2}(n r-2 r+2-n) \\
& \quad+\left(\sum_{i=2}^{k-1} m_{i} \alpha_{i}+\sum_{i=2}^{k-1} m_{i}(r-1)\right)\left(\frac{n r-2(2 r-1)}{2}\right)^{2}
\end{aligned}
$$

From the spectra of $\operatorname{DPA}\left(K_{n, n}\right)$,

$$
\begin{array}{lll}
r^{3}+\sum_{i=2}^{k-1} m_{i} \alpha_{i}+\left(-r^{3}\right)=0 & \text { and } & 1+\sum_{i=2}^{k-1} m_{i}+1=n \\
\text { i.e., } \quad \sum_{i=2}^{k-1} m_{i} \alpha_{i}=0 & \text { i.e., } \quad \sum_{i=2}^{k-1} m_{i}=n-2 \tag{}
\end{array}
$$

By using the equation (5) in $E_{D P A}(\overline{L(G)})$,

$$
E_{D P A}(\overline{L(G)})=\left(\frac{n r-2(2 r-1)}{2}\right)^{2}(n r-2 r+2-n)+\left(\frac{n r-2(2 r-1)}{2}\right)^{2}(0+(r-1)(n-2))
$$

After simplification,

$$
E_{D P A}(\overline{L(G)})=\left(\frac{n r-2(2 r-1)}{2}\right)^{2}((r-1)(2 n-4))
$$

References

[1] N. Biggs, Algebraic graph theory, Cambridge Uni. Press, Cambridge, UK, (1993).
[2] F. Buckley, Iterated line graphs, Congr. Numer., 33, (1981), 390-394.
[3] F. Buckley, The size of iterated line graphs, Graph Theory Notes N. Y., 25 (1993), 33-36.
[4] I. Gutman, The energy of a graph, Berlin Mathematics-Statistics Forschungszentrum, 103, (1978), 1-22.
[5] I. Gutman and O.E. Polansky, Mathematical concepts in organic chemistry, Springer- Verlag, Berlin, (1986).

Degree product adjacency energies of complement of regular graphs
[6] F. Harary, Graph Theory, Addison - Wesely, Reading, (1969).
[7] K.G. Mirajkar and B. R. Doddamani, On energy and spectrum of degree product adjacency matrix for some class of graphs, Int. J. Appl. Eng. Research, 14(7), (2019), 1546-1554.
[8] K.G. Mirajkar and B. R. Doddamani, Equienergetic line graphs of regular graphs of degree product adjacency matrix, J. Appl. Sci. Comp., 6(3), (2019), 2100-2105.

