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Abstract 

In this article we introduce the concept of first Karnatak College 

Dharwad matrix of a graph 𝐺 i.e., 𝐾𝐶𝐷1(𝐺) and related energy of 

a graph 𝐺. Further, first 𝐾𝐶𝐷 polynomial of some graphs, bounds 

for the largest first 𝐾𝐶𝐷 eigenvalue and first 𝐾𝐶𝐷 energy of graphs 

is determined.   
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first 𝐾𝐶𝐷 energy.  

2010 AMS classification: 05C07, 05C50. 

1. Introduction 

     Let 𝐺 = (𝑉, 𝐸) be a simple, finite and undirected graph with |𝑉(𝐺)| = 𝑛 as the 

vertex set and |𝐸(𝐺)| = 𝑚 as the edge set. 𝑑𝑖 is the degree of vertex 𝑣𝑖 [4]. The 

minimum degree and maximum degree among the vertices of 𝐺 is denoted as 𝛿(𝐺) 

and Δ(𝐺) respectively [9]. 

 The adjacency matrix 𝐴(𝐺) = [𝑎𝑖𝑗] for a graph 𝐺 [9] with 𝑛 vertices is a 𝑛 × 𝑛 

matrix defined as  

 𝑎𝑖𝑗 = {
   1  𝑖𝑓  𝑣𝑖   𝑖𝑠  𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡  𝑡𝑜  𝑣𝑗 ,

   0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .  



 

 

First KCD matrix ............ energy of a graph 

  

 

53 
 

      The characteristic polynomial of 𝐴(𝐺) is given as 𝜙(𝐺: 𝜆) = 𝑑𝑒𝑡(𝜆𝐼 − 𝐴(𝐺)), 

where 𝜆 is a variable of degree 𝑛 and 𝐼 is an identity matrix. The roots of the equation 

𝜙(𝐺: 𝜆) = 0 are called the eigenvalues of 𝐺 and are denoted as 𝜆1, 𝜆2, . . . , 𝜆𝑛. The 

spectrum 𝑆𝑝𝑒𝑐(𝐺) of a graph 𝐺 is the collection of eigenvalues of 𝐺 [5]. The energy 

𝐸(𝐺) [8] of a graph 𝐺 having adjacency matrix 𝐴(𝐺) with eigenvalues 𝜆1 ⩾ 𝜆2 ⩾

. . . ⩾ 𝜆𝑛 is defined as 𝐸(𝐺) = ∑𝑛
𝑖=1 |𝜆𝑖|. The floor function ⌊𝑥⌋ [9], for a real number 

𝑥 is defined as the greatest integer less than or equal to 𝑥. For undefined 

terminologies refer [9]. 

       The energy concept was brought forward by Gutman in 1978 [8]. Following this, 

mathematical literature has received numerous contributions, like maximum degree 

energy of a graph [1], degree sum energy [13], degree product adjacency energy [10] 

and others. These energies are based on vertex degree which is interesting. The vertex 

degree and edge degree together makes the concept more fascinating and opens new 

areas of research. With this motivation we introduce first Karnatak College Dharwad 

matrix 𝐾𝐶𝐷1(𝐺) and first Karnatak College Dharwad energy 𝐸𝐾𝐶𝐷1
(𝐺) of a graph 𝐺. 

 The first 𝐾𝐶𝐷 matrix 𝐾𝐶𝐷1(𝐺) of a graph 𝐺 is defined as  

 𝑘𝑐𝑑1𝑖𝑗
= {

    (𝑑𝑖 + 𝑑𝑗) + 𝑑𝑒  𝑖𝑓  𝑣𝑖   𝑖𝑠  𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡  𝑡𝑜  𝑣𝑗 ,

      0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .  

with 𝑑𝑖 and 𝑑𝑗 representing degree of vertex 𝑣𝑖 and 𝑣𝑗  respectively, 𝑑𝑒 is the edge 

degree given by 𝑑𝑒 = 𝑑𝑖 + 𝑑𝑗 − 2. It is a square matrix of order 𝑛 × 𝑛. 

 The first 𝐾𝐶𝐷 polynomial of a graph 𝐺 is defined as  

 𝑃𝐾𝐶𝐷1(𝐺)(𝛽) = 𝑑𝑒𝑡(𝛽𝐼 − 𝐾𝐶𝐷1(𝐺)) 

with 𝛽 as a variable of degree 𝑛 and 𝐼 as an identity matrix. 

𝛽1, 𝛽2, . . . , 𝛽𝑛 represent the first 𝐾𝐶𝐷 eigenvalues of 𝐾𝐶𝐷1(𝐺). These are 

arranged as 𝛽1 ⩾ 𝛽2 ⩾. . . ⩾ 𝛽𝑛, where 𝛽1 is the largest and 𝛽𝑛 is the smallest 

first 𝐾𝐶𝐷 eigenvalue and the collection of these first 𝐾𝐶𝐷 eigenvalues is the 

first 𝐾𝐶𝐷 spectra of 𝐺. The sum of all absolute first 𝐾𝐶𝐷 eigenvalues 

𝛽1, 𝛽2, . . . , 𝛽𝑛 is called the first 𝐾𝐶𝐷 energy 𝐸𝐾𝐶𝐷1
(𝐺) of a graph 𝐺. 

 Let 𝐽 be a matrix with all entries as 1 and 𝐼 is an identity matrix, then for an 

𝑟-regular graph 𝐺 with 𝑛 vertices 𝐾𝐶𝐷1(𝐺) = 2(2𝑟 − 1)𝐽 − 2(2𝑟 − 1)𝐼. 

 

𝑇ℎ𝑢𝑠, 𝑃𝐾𝐶𝐷1(𝐺)(𝛽) = (𝛽 − 2(2𝑟 − 1)(𝑛 − 1))(𝛽 + 2(2𝑟 − 1))𝑛−1. (1.1) 
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Example: Let 𝐻 = 𝐾4 be a complete graph. The first 𝐾𝐶𝐷 matrix, first 𝐾𝐶𝐷 

polynomial and first 𝐾𝐶𝐷 energy of 𝐻 are as follows 

 

                              
 

                                   Figure 1: Complete graph 

 

𝐾𝐶𝐷1(𝐻) = (

0 10 10 10
10 0 10 10
10 10 0 10
10 10 10 0

) 

 

 𝑃𝐾𝐶𝐷1
(𝐻) = 𝛽4 − 600𝛽2 − 8000𝛽 − 30000 

 𝐸𝐾𝐶𝐷1
(𝐻) = 60. 

 

 

2. Preliminaries  

Definition 2.1 ( [7]) For 𝑛 ⩾ 1, the ladder graph 𝐿𝑛 is defined as 𝐿𝑛 =

𝑃2 × 𝑃𝑛, with 𝑃𝑛 as a path graph of order 𝑛. For 𝑛 ⩾ 4, the wheel graph 𝑊𝑛 

of order 𝑛 is the graph 𝐾1 + 𝐶𝑛−1, with 𝐾1 as the singleton graph and 𝐶𝑛−1 

as the cycle graph. For 𝑏 ⩾ 3, the book graph 𝐵𝑏 is a graph defined as 𝐵𝑏 =

𝐾1,𝑏 × 𝑃2, with 𝐾1,𝑏 as the star graph and 𝑃2 as the path graph. For 𝑤 ⩾ 3, 

the windmill graph 𝑊𝑤
3 is the graph formed by taking 3 copies of the 

complete graph 𝐾𝑤 with a vertex in common. For 𝑓 ⩾ 2, the graph 

containing 𝑓 copies of cycle 𝐶3 meeting at a common vertex is the friendship 

graph 𝐹𝑓. For 𝑛 ⩾ 2, the pentagonal snake 𝑃𝑆𝑛 is formed by replacing every 

edge of the path 𝑃𝑛 of order 𝑛 by a cycle 𝐶5.  
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Definition 2.2 ( [11]) For 𝑝 ⩾ 1, the generalized book graph 𝐵5,𝑝 is a graph 

having 𝑝 copies of cycle 𝐶5 with a common edge.  

 

 
 

         Figure 2: Examples of graphs mentioned in Definitions 2.1 and 2.2. 

 

 The results mentioned below are useful for computation of first 𝐾𝐶𝐷 

polynomial of some graphs, bounds for largest first 𝐾𝐶𝐷 eigenvalue and first 

𝐾𝐶𝐷 energy of a graph. 

 

Lemma 2.3 ( [14]) If 𝑎, 𝑏, 𝑐 and 𝑑 are real numbers, then the determinant of 

the form  

 |
(𝛽 + 𝑎)𝐼𝑛1

− 𝑎𝐽𝑛1
−𝑐𝐽𝑛1×𝑛2

−𝑑𝐽𝑛2×𝑛1
(𝛽 + 𝑏)𝐼𝑛2

− 𝑏𝐽𝑛2

| (2.1) 

 of order 𝑛1 + 𝑛2 can be expressed in the simplified form as  

 (𝛽 + 𝑎)𝑛1−1(𝛽 + 𝑏)𝑛2−1((𝛽 − (𝑛1 − 1)𝑎)(𝛽 − (𝑛2 − 1)𝑏) − 𝑛1𝑛2𝑐𝑑). 

 

 

 The Cauchy-Schwarz inequality [2] says, if (𝑎1, 𝑎2, . . . , 𝑎𝑛) and 

(𝑏1, 𝑏2, . . . , 𝑏𝑛) are 𝑛 real vectors, then  

(∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖)2 ⩽ (∑𝑛

𝑖=1 𝑎𝑖
2)(∑𝑛

𝑖=1 𝑏𝑖
2) (2.2) 

 

 

Theorem 2.4 ( [12]) Let 𝑎𝑖 and 𝑏𝑖, 1 ⩽ 𝑖 ⩽ 𝑛 are nonnegative real numbers, 

then  
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 ∑n
i=1 ai

2 ∑n
i=1 bi

2 − (∑n
i=1 aibi)

2 ⩽
n2

4
(M1M2 − m1m2)2 (2.3) 

 where M1 = max1⩽i⩽n(ai); M2 = max1⩽i⩽n(bi); m1 = min1⩽i⩽n(ai); 

m2 = min1⩽i⩽n(bi).  

 

Theorem 2.5 ( [3]) Let 𝑎𝑖 and 𝑏𝑖, 1 ⩽ 𝑖 ⩽ 𝑛 are nonnegative real numbers, 

then  

 |𝑛 ∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖 − ∑𝑛

𝑖=1 𝑎𝑖 ∑𝑛
𝑖=1 𝑏𝑖| ⩽ 𝜇(𝑛)(𝐴 − 𝑎)(𝐵 − 𝑏) (2.4) 

 where 𝑎, 𝑏, 𝐴 and 𝐵 are real constants, such that for each 𝑖, 1 ⩽ 𝑖 ⩽ 𝑛, 𝑎 ⩽

𝑎𝑖 ⩽ 𝐴 and 𝑏 ⩽ 𝑏𝑖 ⩽ 𝐵. Further, 𝜇(𝑛) = 𝑛 ⌊
𝑛

2
⌋ (1 −

1

𝑛
⌊

𝑛

2
⌋).  

 

 

Theorem 2.6 ( [6]) Let 𝑎𝑖 and 𝑏𝑖, 1 ⩽ 𝑖 ⩽ 𝑛 are nonnegative real numbers, 

then  

 ∑𝑛
𝑖=1 𝑏𝑖

2 + 𝑐1𝑐2 ∑𝑛
𝑖=1 𝑎𝑖

2 ⩽ (𝑐1 + 𝑐2)(∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖) (2.5) 

 where 𝑐1 and 𝑐2 are real constants, such that for each 𝑖, 1 ⩽ 𝑖 ⩽ 𝑛 holds, 

𝑐1𝑎𝑖 ⩽ 𝑏𝑖 ⩽ 𝑐2𝑎𝑖.  

 

3. First 𝑲𝑪𝑫 polynomial of some graphs 

Theorem 3.1 Let 𝐿𝑛 be a ladder graph. Then  

 𝑃𝐾𝐶𝐷1(𝐿𝑛)(𝛽) = (𝛽 + 6)3(𝛽 + 10)2𝑛−5((𝛽 − 18)(𝛽 − 10(2𝑛 − 5)) −

256(2𝑛 − 4)). 

Proof. The ladder graph 𝐿𝑛 by definition has 2𝑛 vertices. Among these 2𝑛 

vertices, 4 vertices have degree 2 and 2𝑛 − 4 vertices have degree 3. 

Thus,  

 𝐾𝐶𝐷1(𝐿𝑛) = [
6(𝐽4 − 𝐼4) 8𝐽4×(2𝑛−4)

8𝐽(2𝑛−4)×4 10(𝐽2𝑛−4 − 𝐼2𝑛−4)
] 

 and  

 𝑃𝐾𝐶𝐷1(𝐿𝑛)(𝛽) = |𝛽𝐼 − 𝐾𝐶𝐷1(𝐿𝑛)| 

 = |
(𝛽 + 6)𝐼4 − 6𝐽4 −8𝐽4×(2𝑛−4)

−8𝐽(2𝑛−4)×4 (𝛽 + 10)𝐼2𝑛−4 − 10𝐽2𝑛−4
|. 

 Using Lemma (2.3), the desired result is obtained. 

                                                                                                                         ◻ 

Illustration 3.1 Let 𝐿4 be a ladder graph. Then  

 𝑃𝐾𝐶𝐷1(𝐿4)(𝛽) = (𝛽 + 6)3(𝛽 + 10)3((𝛽 − 18)(𝛽 − 30) − 1024). 
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Theorem 3.2 Let 𝑊𝑛 be a wheel graph. Then  

𝑃𝐾𝐶𝐷1(𝑊𝑛)(𝛽) = (𝛽 + 10)𝑛−2(𝛽(𝛽 − 10(𝑛 − 2)) − 4(𝑛 − 1)(𝑛 + 1)2). 

Proof. The wheel graph 𝑊𝑛 by definition has 𝑛 vertices. Among these 𝑛 

vertices, 𝑛 − 1 vertices of cycle 𝐶𝑛−1 have degree 3 and a central vertex has degree 

𝑛 − 1. 

Thus,  

 𝐾𝐶𝐷1(𝑊𝑛) = [
10(𝐽𝑛−1 − 𝐼𝑛−1) (2𝑛 + 2)𝐽(𝑛−1)×1

(2𝑛 + 2)𝐽1×(𝑛−1) 𝐽1 − 𝐼1
] 

 and   

𝑃𝐾𝐶𝐷1(𝑊𝑛)(𝛽) = |𝛽𝐼 − 𝐾𝐶𝐷1(𝑊𝑛)| 

= |
(𝛽 + 10)𝐼𝑛−1 − 10𝐽𝑛−1 −(2𝑛 + 2)𝐽(𝑛−1)×1

−(2𝑛 + 2)𝐽1×(𝑛−1) (𝛽 + 1)𝐼1 − 𝐽1
|. 

 Using Lemma (2.3), the desired result is obtained. 

                                                                                                                         ◻ 

Illustration 3.2 Let 𝑊5 be a wheel graph. Then  

 𝑃𝐾𝐶𝐷1(𝑊5)(𝛽) = (𝛽 + 10)3(𝛽(𝛽 − 30) − 576). 

 

Theorem 3.3 Let 𝐵𝑏 be a book graph. Then  

𝑃𝐾𝐶𝐷1(𝐵𝑏)(𝛽) = (𝛽 + 6)2𝑏−1(𝛽 + 4𝑏 + 2)((𝛽 − 6(2𝑏 − 1))(𝛽 − (4𝑏 + 2))

− 16𝑏(𝑏 + 2)2). 

 

Proof. The book graph 𝐵𝑏 by definition has 2𝑏 + 2 vertices. Among these 

2𝑏 + 2 vertices, 2𝑏 vertices have degree 2 and 2 vertices have degree 𝑏 + 1. 

Thus,  
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 𝐾𝐶𝐷1(𝐵𝑏) = [
6(𝐽2𝑏 − 𝐼2𝑏) (2𝑏 + 4)𝐽2𝑏×2

(2𝑏 + 4)𝐽2×2𝑏 (4𝑏 + 2)(𝐽2 − 𝐼2)
] 

 and  

 𝑃𝐾𝐶𝐷1(𝐵𝑏)(𝛽) = |𝛽𝐼 − 𝐾𝐶𝐷1(𝐵𝑏)| 

 = |
(𝛽 + 6)𝐼2𝑏 − 6𝐽2𝑏 −(2𝑏 + 4)𝐽2𝑏×2

−(2𝑏 + 4)𝐽2×2𝑏 (𝛽 + (4𝑏 + 2))𝐼2 − (4𝑏 + 2)𝐽2
|. 

 Using Lemma (2.3), the desired result is obtained. 

                                                                                                                         ◻ 

Illustration 3.3 Let 𝐵3 be a book graph. Then 

 𝑃𝐾𝐶𝐷1(𝐵3)(𝛽) = (𝛽 + 6)5(𝛽 + 14)((𝛽 − 30)(𝛽 − 14) − 1200). 

Theorem 3.4 Let 𝑊𝑤
3 be a windmill graph. Then 

𝑃𝐾𝐶𝐷1(𝑊𝑤
3)(𝛽) = (𝛽 + 4𝑤 − 6)3𝑤−4(𝛽(𝛽 − (3𝑤 − 4)(4𝑤 − 6)) − 12(𝑤 − 1)(4𝑤

− 5)2). 

Proof. The windmill graph 𝑊𝑤
3 by definition has 3𝑤 − 2 vertices. Among 

these 3𝑤 − 2 vertices, 3𝑤 − 3 vertices have degree 𝑤 − 1 and one vertex has degree 

3(𝑤 − 1). 

Thus,  

 𝐾𝐶𝐷1(𝑊𝑤
3) = [

(4𝑤 − 6)(𝐽3𝑤−3 − 𝐼3𝑤−3) (8𝑤 − 10)𝐽(3𝑤−3)×1

(8𝑤 − 10)𝐽1×(3𝑤−3) 𝐽1 − 𝐼1
] 

 and  

 𝑃𝐾𝐶𝐷1(𝑊𝑤
3)(𝛽) = |𝛽𝐼 − 𝐾𝐶𝐷1(𝑊𝑤

3)| 

= |
(𝛽 + (4𝑤 − 6))𝐼3𝑤−3 − (4𝑤 − 6)𝐽3𝑤−3 −(8𝑤 − 10)𝐽(3𝑤−3)×1

−(8𝑤 − 10)𝐽1×(3𝑤−3) (𝛽 + 1)𝐼1 − 𝐽1
|. 

 Using Lemma (2.3), the desired result is obtained. 

                                                                                                                         ◻ 
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Illustration 3.4 Let 𝑊4
3 be a windmill graph. Then 

 𝑃𝐾𝐶𝐷1(𝑊4
3)(𝛽) = (𝛽 + 10)8(𝛽(𝛽 − 80) − 4356). 

Theorem 3.5 Let 𝐹𝑓 be a friendship graph. Then 

𝑃𝐾𝐶𝐷1(𝐹𝑓)(𝛽) = (𝛽 + 6)2𝑓−1(𝛽(𝛽 − 6(2𝑓 − 1)) − 8𝑓(2𝑓 + 1)2). 

Proof. The friendship graph 𝐹𝑓 by definition has 2𝑓 + 1 vertices. Among these 2𝑓 +

1 vertices, 2𝑓 vertices have degree 2 and one vertex has degree 2𝑓. 

Thus,  

 𝐾𝐶𝐷1(𝐹𝑓) = [
6(𝐽2𝑓 − 𝐼2𝑓) (4𝑓 + 2)𝐽2𝑓×1

(4𝑓 + 2)𝐽1×2𝑓 𝐽1 − 𝐼1
] 

 and  

 𝑃𝐾𝐶𝐷1(𝐹𝑓)(𝛽) = |𝛽𝐼 − 𝐾𝐶𝐷1(𝐹𝑓)| 

 = |
(𝛽 + 6)𝐼2𝑓 − 6𝐽2𝑓 −(4𝑓 + 2)𝐽2𝑓×1

−(4𝑓 + 2)𝐽1×2𝑓 (𝛽 + 1)𝐼1 − 𝐽1
|. 

 Using Lemma (2.3), the desired result is obtained. 

                                                                                                                         ◻ 

Illustration 3.5 Let 𝐹3 be a friendship graph. Then  

 𝑃𝐾𝐶𝐷1(𝐹3)(𝛽) = (𝛽 + 6)5(𝛽(𝛽 − 30) − 1176). 

 

 

Theorem 3.6 Let 𝑃𝑆𝑛 be a pentagonal snake graph. Then 

𝑃𝐾𝐶𝐷1(𝑃𝑆𝑛)(𝛽) = (𝛽 + 6)3𝑛−2(𝛽 + 14)𝑛−3((𝛽 − 6(3𝑛 − 2))(𝛽 − 14(𝑛 − 3))

− 100(3𝑛 − 1)(𝑛 − 2)). 
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Proof. The pentagonal snake 𝑃𝑆𝑛 by definition has 4𝑛 − 3 vertices. Among 

these 4𝑛 − 3 vertices, 3𝑛 − 1 vertices have degree 2 and 𝑛 − 2 vertices have degree 

4. 

Thus,  

𝐾𝐶𝐷1(𝑃𝑆𝑛) = [
6(𝐽3𝑛−1 − 𝐼3𝑛−1) 10𝐽(3𝑛−1)×(𝑛−2)

10𝐽(𝑛−2)×(3𝑛−1) 14(𝐽𝑛−2 − 𝐼𝑛−2)
] 

 and  

 𝑃𝐾𝐶𝐷1(𝑃𝑆𝑛)(𝛽) = |𝛽𝐼 − 𝐾𝐶𝐷1(𝑃𝑆𝑛)| 

 = |
(𝛽 + 6)𝐼3𝑛−1 − 6𝐽3𝑛−1 −10𝐽(3𝑛−1)×(𝑛−2)

−10𝐽(𝑛−2)×(3𝑛−1) (𝛽 + 14)𝐼𝑛−2 − 14𝐽𝑛−2
|. 

 Using Lemma (2.3), the desired result is obtained. 

                                                                                                                         ◻ 

Illustration 3.6 Let 𝑃𝑆4 be a pentagonal snake graph. Then  

 𝑃𝐾𝐶𝐷1(𝑃𝑆4)(𝛽) = (𝛽 + 6)10(𝛽 + 14)((𝛽 − 60)(𝛽 − 14) − 2200). 

Theorem 3.7 Let 𝐵5,𝑝 be a generalized book graph. Then 

𝑃𝐾𝐶𝐷1(𝐵5,𝑝)(𝛽) = (𝛽 + 6)3𝑝−1(𝛽 + 4𝑝 + 2)((𝛽 − 6(3𝑝 − 1))(𝛽 − (4𝑝 + 2))

− 24𝑝(𝑝 + 2)2). 

Proof. The generalized book graph 𝐵5,𝑝 by definition has 3𝑝 + 2 vertices. 

Among these 3𝑝 + 2 vertices, 3𝑝 vertices have degree 2 and 2 vertices have degree 

𝑝 + 1. 

Thus,  

𝐾𝐶𝐷1(𝐵5,𝑝) = [
6(𝐽3𝑝 − 𝐼3𝑝) (2𝑝 + 4)𝐽3𝑝×2

(2𝑝 + 4)𝐽2×3𝑝 (4𝑝 + 2)(𝐽2 − 𝐼2)
] 

 and  

 𝑃𝐾𝐶𝐷1(𝐵5,𝑝)(𝛽) = |𝛽𝐼 − 𝐾𝐶𝐷1(𝐵5,𝑝)| 
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 = |
(𝛽 + 6)𝐼3𝑝 − 6𝐽3𝑝 −(2𝑝 + 4)𝐽3𝑝×2

−(2𝑝 + 4)𝐽2×3𝑝 (𝛽 + (4𝑝 + 2))𝐼2 − (4𝑝 + 2)𝐽2
|. 

 Using Lemma (2.3), the desired result is obtained.                                             

                                                                                                                                      ◻ 

Illustration 3.7 Let 𝐵5,2 be a generalized book graph. Then 

𝑃𝐾𝐶𝐷1(𝐵5,2)(𝛽) = (𝛽 + 6)5(𝛽 + 10)((𝛽 − 30)(𝛽 − 10) − 768). 

4.    Bounds for the largest first 𝑲𝑪𝑫 eigenvalue and first 𝑲𝑪𝑫 energy 

 

Theorem 4.1 The eigenvalues of 𝐾𝐶𝐷1(𝐺) satifies the relations  

 1. ∑𝑛
𝑖=1 𝛽𝑖 = 0 

 2. ∑𝑛
𝑖=1 𝛽𝑖

2 = 2𝑄,    𝑤ℎ𝑒𝑟𝑒    𝑄 = ∑𝑖<𝑗 4(𝑑𝑖 + 𝑑𝑗 − 1)2. 

Proof. By the definition of 𝐾𝐶𝐷1(𝐺),  

 ∑𝑛
𝑖=1 𝛽𝑖 = 0. (4.1) 

 Further,  

 ∑𝑛
𝑖=1 𝛽𝑖

2 = 𝑡𝑟𝑎𝑐𝑒((𝐾𝐶𝐷1(𝐺))2) 

 = ∑𝑛
𝑖=1 ∑𝑛

𝑗=1 𝑑𝑖𝑗𝑑𝑗𝑖 

 = ∑𝑛
𝑖=1 ∑𝑛

𝑗=1 𝑑𝑖𝑗
2  

 = 2 ∑𝑖<𝑗 ((𝑑𝑖 + 𝑑𝑗) + 𝑑𝑒)2, 𝑤ℎ𝑒𝑟𝑒    𝑑𝑒 = 𝑑𝑖 + 𝑑𝑗 − 2 

 = 2 ∑𝑖<𝑗 4(𝑑𝑖 + 𝑑𝑗 − 1)2 

 = 2𝑄, 𝑤ℎ𝑒𝑟𝑒    𝑄 = ∑𝑖<𝑗 4(𝑑𝑖 + 𝑑𝑗 − 1)2.                              (4.2) 

                                                                                                                                   ◻                                 

Illustration 4.1 For the graph 𝐻 in the Figure 1, ∑4
𝑖=1 𝛽𝑖 = 0 and ∑4

𝑖=1 𝛽𝑖
2 = 2𝑄 =

1200. 
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Theorem 4.2 If 𝐺 is a graph with 𝑛 vertices, then  

 𝛽1 ⩽ √
2𝑄(𝑛−1)

𝑛
.                                                                              (4.3) 

Proof. Let 𝑎𝑖 = 1 and 𝑏𝑖 = 𝛽𝑖 for 𝑖 = 1,2, . . . , 𝑛 in inequality (2.2) 

then,  

 (∑𝑛
𝑖=1 𝛽𝑖)

2 ⩽ (𝑛 − 1)(∑𝑛
𝑖=1 𝛽𝑖

2)                                                  (4.4) 

 From Eqs. (4.1) and (4.2), we get  

 ∑𝑛
𝑖=2 𝛽𝑖 = −𝛽1    𝑎𝑛𝑑    ∑𝑛

𝑖=2 𝛽𝑖
2 = 2𝑄 − 𝛽1

2. 

 Thus inequality (4.4) implies,  

 (−𝛽1
2) ⩽ (𝑛 − 1)(2𝑄 − 𝛽1

2). 

 Hence,  

 𝛽1 ⩽ √
2𝑄(𝑛−1)

𝑛
. 

 Equality for 𝛽1 holds if graph 𝐺 is regular. 

                                                                                                                        ◻ 

Illustration 4.2 Consider the graph 𝑊5 in the Figure 2. It has 𝛽1 = 36 and 2𝑄 =

1952, therefore satisfies inequality in Theorem 4.2. Further, for the regular graph 𝐻 

in the Figure 1, 𝛽1 = 30 and 2𝑄 = 1200, thus satisfying the equality in the Theorem 

4.2. 

Theorem 4.3 If 𝐺 is a graph with 𝑛 vertices, then  

√2𝑄 ⩽ 𝐸𝐾𝐶𝐷1
(𝐺) ⩽ √2𝑛𝑄. 

Proof. For 𝑎𝑖 = 1 and 𝑏𝑖 = 𝛽𝑖 in inequality (2.2) 

we obtain,  

 (∑𝑛
𝑖=1 |𝛽𝑖|)2 ⩽ 𝑛(∑𝑛

𝑖=1 |𝛽𝑖|
2) 



 

 

First KCD matrix ............ energy of a graph 

  

 

63 
 

 Using definition of first 𝐾𝐶𝐷 energy of a graph 𝐺 and Eq. (4.2), we get  

 (𝐸𝐾𝐶𝐷1
(𝐺))2 ⩽ 2𝑛𝑄. 

 Thus,  

 𝐸𝐾𝐶𝐷1
(𝐺) ⩽ √2𝑛𝑄.                                                              (4.5) 

 Since,  

 (𝐸𝐾𝐶𝐷1
(𝐺))2 = (∑𝑛

𝑖=1 |𝛽𝑖|)2 ⩾ ∑𝑛
𝑖=1 |𝛽𝑖|2 = 2𝑄. 

 Thus,  

 𝐸𝐾𝐶𝐷1
(𝐺) ⩾ √2𝑄.                                                                (4.6) 

 From Eqs. (4.5) and (4.6), required result is generated. 

                                                                                                                             ◻ 

                                                                                                                                      

Illustration 4.3 Consider the graph 𝑊5 in the Figure 2. It has 𝐸𝐾𝐶𝐷1
(𝑊5) = 72. 

Further, 2𝑄 = 1952 and 2𝑛𝑄 = 9760, therefore satisfying the Theorem 4.3.  

Theorem 4.4 If 𝐺 is a graph with 𝑛 vertices, then  

 𝐸𝐾𝐶𝐷1
(𝐺) ⩾ √2𝑛𝑄 −

𝑛2

4
(|𝛽1| − |𝛽𝑛|)2. 

 where |𝛽1| is maximum and |𝛽𝑛| is minimum of the absolute value of 𝛽𝑖 ′𝑠. 

Proof. For 𝑎𝑖 = 1 and 𝑏𝑖 = 𝛽𝑖 in inequality (2.3) 

we obtain,  

 ∑𝑛
𝑖=1 12 ∑𝑛

𝑖=1 |𝛽𝑖|2 − (∑𝑛
𝑖=1 |𝛽𝑖|)2 ⩽

𝑛2

4
(|𝛽1| − |𝛽𝑛|)2 

 2𝑛𝑄 − (𝐸𝐾𝐶𝐷1
(𝐺))2 ⩽

𝑛2

4
(|𝛽1| − |𝛽𝑛|)2 

 𝐸𝐾𝐶𝐷1
(𝐺) ⩾ √2𝑛𝑄 −

𝑛2

4
(|𝛽1| − |𝛽𝑛|)2. 



 
 

KEERTHI G. MIRAJKAR AND AKSHATA MORAJKAR 

 

64 
 

                                                                                                                     ◻                                                                                                                                      

Illustration 4.4 Consider the graph 𝐻 in the Figure 1. It has |𝛽1| = 30, |𝛽4| = 10, 

2𝑛𝑄 = 4800, 𝑛 = 4. Further 𝐸𝐾𝐶𝐷1
(𝐻) = 60. Therefore it satisfies the Theorem 4.4. 

 

Theorem 4.5 If 𝐺 is a (𝑛, 𝑚) graph, then  

𝐸𝐾𝐶𝐷1
(𝐺) ⩾ √2𝑛𝑄 − 𝜇(𝑛)(|𝛽1| − |𝛽𝑛|)2 

 where 𝜇(𝑛) = 𝑛 ⌊
𝑛

2
⌋ (1 −

1

𝑛
⌊

𝑛

2
⌋).  

Proof. Let 𝑎𝑖 = |𝛽𝑖| = 𝑏𝑖, 𝐴 = |𝛽1| = 𝐵 and 𝑎 = |𝛽𝑛| = 𝑏 in inequality (2.4) 

then,  

 |𝑛 ∑𝑛
𝑖=1 |𝛽𝑖|2 − (∑𝑛

𝑖=1 |𝛽𝑖|)2| ⩽ 𝜇(𝑛)(|𝛽1| − |𝛽𝑛|)2                     (4.7) 

 Since,  

 𝐸𝐾𝐶𝐷1(𝐺) = ∑𝑛
𝑖=1 |𝛽𝑖|    𝑎𝑛𝑑    ∑𝑛

𝑖=1 |𝛽𝑖|
2 = 2𝑄. 

 Inequality (4.7) gives  

 2𝑛𝑄 − (𝐸𝐾𝐶𝐷1
(𝐺))2 ⩽ 𝜇(𝑛)(|𝛽1| − |𝛽𝑛|)2.                                   (4.8) 

 Simplification of inequality (4.8) generates desired result. 

                                                                                                                                                  ◻ 

                                                                                                                         

Illustration 4.5 For the graph 𝐻 in the Figure 1, |𝛽1| = 30, |𝛽4| = 10, 2𝑛𝑄 = 4800, 

𝑛 = 4, 𝜇(𝑛) = 4. Further 𝐸𝐾𝐶𝐷1
(𝐻) = 60. Thus it satisfies the Theorem 4.5.  

Theorem 4.6 If 𝐺 is a (𝑛, 𝑚) graph , then  

𝐸𝐾𝐶𝐷1
(𝐺) ⩾

2𝑄 + 𝑛|𝛽1||𝛽𝑛|

|𝛽1| + |𝛽𝑛|
 

 where |𝛽1| is maximum and |𝛽𝑛| is minimum of the absolute value of 𝛽𝑖 ′𝑠.  

Proof. Let 𝑎𝑖 = 1, 𝑏𝑖 = |𝛽𝑖|, 𝑐1 = |𝛽𝑛| and 𝑐2 = |𝛽1| in inequality (2.5) 
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then,  

 ∑𝑛
𝑖=1 |𝛽𝑖|2 + |𝛽1||𝛽𝑛| ∑𝑛

𝑖=1 12 ⩽ (|𝛽1| + |𝛽𝑛|)(∑𝑛
𝑖=1 |𝛽𝑖|) (4.9) 

 Since,  

 𝐸𝐾𝐶𝐷1(𝐺) = ∑𝑛
𝑖=1 |𝛽𝑖|    𝑎𝑛𝑑    ∑𝑛

𝑖=1 |𝛽𝑖|
2 = 2𝑄. 

 Simplification of inequality (4.9) is  

 2𝑄 + 𝑛|𝛽1||𝛽𝑛| ⩽ (|𝛽1| + |𝛽𝑛|)𝐸𝐾𝐶𝐷1(𝐺). (4.10) 

 Simple calculation of inequality (4.10) yields the required result.                                                                                                                                                                                      

                                                                                                                                      ◻                                                                                                                         

Illustration 4.6 Consider the graph 𝐻 in the Figure 1, it has |𝛽1| = 30, |𝛽4| = 10, 

2𝑄 = 1200, 𝑛 = 4. Further 𝐸𝐾𝐶𝐷1
(𝐻) = 60. Hence it satisfies the Theorem 4.6.  

 

Theorem 4.7 If 𝐺 is a 𝑟-regular graph, then the first 𝐾𝐶𝐷 eigenvalues of 𝐺 

are −2(2𝑟 − 1) and 2(𝑛 − 1)(2𝑟 − 1) with multiplicities (n-1) and 1 respectively 

and 𝐸𝐾𝐶𝐷1
(𝐺) = 4(𝑛 − 1)(2𝑟 − 1).  

Proof. 

|𝛽𝐼 − 𝐾𝐶𝐷1(𝐺)| =
|
|

𝛽 −2(2𝑟 − 1) −2(2𝑟 − 1) ⋯ −2(2𝑟 − 1)
−2(2𝑟 − 1) 𝛽 −2(2𝑟 − 1) ⋯ −2(2𝑟 − 1)
−2(2𝑟 − 1) −2(2𝑟 − 1) 𝛽 ⋯ −2(2𝑟 − 1)
⋮ ⋮ ⋮ ⋮ ⋮
−2(2𝑟 − 1) −2(2𝑟 − 1) −2(2𝑟 − 1) ⋯ 𝛽

|
|
 

                                                                                                                           

               = (𝛽 + 2(2𝑟 − 1))𝑛−1
|
|

𝛽 −2(2𝑟 − 1) −2(2𝑟 − 1) ⋯ −2(2𝑟 − 1)
−1 1 0 ⋯ 0
−1 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
−1 0 0 ⋯ 1

|
| 

 = (𝛽 − (𝑛 − 1)2(2𝑟 − 1))(𝛽 + 2(2𝑟 − 1))𝑛−1. 

 Hence,  
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 𝐸𝐾𝐶𝐷1
(𝐺) = 4(𝑛 − 1)(2𝑟 − 1).  

                                                                                                                      ◻ 

                                                                                                                          

Illustration 4.7 For the regular graph 𝐻 in the Figure 1, the first 𝐾𝐶𝐷 eigenvalues of 

𝐻 are -10 (3 times) and 30 (1 time). Thus 𝐸𝐾𝐶𝐷1
(𝐻) = 60. 

5.    Conclusion 

In this article, we have introduced a new graph matrix called first 𝐾𝐶𝐷 matrix 

and its related energy. Further, the computation of first 𝐾𝐶𝐷 polynomials of 

some graphs has added a depth to this concept. The work is extended with the 

calculation of bounds for the largest first 𝐾𝐶𝐷 eigenvalue and first 𝐾𝐶𝐷 energy 

of a graph. 

Acknowledgement: We are thankful to the unknown reviewer for constructive as 

well as creative suggestions. 
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