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Abstract
In this article we introduce the concept of first Karnatak College
Dharwad matrix of a graph G i.e., KCD;(G) and related energy of
a graph G. Further, first KCD polynomial of some graphs, bounds
for the largest first KCD eigenvalue and first KCD energy of graphs
is determined.
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1. Introduction

Let G = (V,E) be a simple, finite and undirected graph with |V(G)| = n as the
vertex set and |E(G)| = m as the edge set. d; is the degree of vertex v; [4]. The
minimum degree and maximum degree among the vertices of G is denoted as §(G)
and A(G) respectively [9].

The adjacency matrix A(G) = [a;;] for a graph G [9] with n vertices is a n X n
matrix defined as

1 if v; is adjacent to vy,
aij =) 0 otherwise.
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The characteristic polynomial of A(G) is given as ¢(G: A1) = det(Al — A(G)),
where A is a variable of degree n and I is an identity matrix. The roots of the equation
¢(G: 1) = 0 are called the eigenvalues of G and are denoted as A4,4,,...,4,. The
spectrum Spec(G) of a graph G is the collection of eigenvalues of G [5]. The energy
E(G) [8] of a graph G having adjacency matrix A(G) with eigenvalues 1, > 1, >
...> Ay is defined as E(G) = X1, |4;|. The floor function |x] [9], for a real number
x is defined as the greatest integer less than or equal to x. For undefined
terminologies refer [9].

The energy concept was brought forward by Gutman in 1978 [8]. Following this,
mathematical literature has received numerous contributions, like maximum degree
energy of a graph [1], degree sum energy [13], degree product adjacency energy [10]
and others. These energies are based on vertex degree which is interesting. The vertex
degree and edge degree together makes the concept more fascinating and opens new
areas of research. With this motivation we introduce first Karnatak College Dharwad
matrix KCD;(G) and first Karnatak College Dharwad energy Excp, (G) of a graph G.

The first KCD matrix KCD,(G) of agraph G is defined as

(di+d;)+d. if v; is adjacent to v,
de1i]- = 0 otherwise .

with d; and d; representing degree of vertex v; and v; respectively, d, is the edge
degree given by d, = d; + d; — 2. Itis a square matrix of order n X n.

The first KCD polynomial of a graph G is defined as

Pkcp,e)(B) = det(Bl — KCD,(G))
with B as a variable of degree n and I as an identity matrix.
B1,B2,..., Bn represent the first KCD eigenvalues of KCD,(G). These are
arranged as 1 > B, >...> B, Where (8, is the largest and B,, is the smallest
first KCD eigenvalue and the collection of these first KCD eigenvalues is the
first KCD spectra of G. The sum of all absolute first KCD eigenvalues
B1, B2, - -, By is called the first KCD energy Ex¢p, (G) of agraph G.
Let J be a matrix with all entries as 1 and I is an identity matrix, then for an
r-regular graph G with n vertices KCD;(G) = 2(2r — 1)] — 2(2r — 1)I.

Thus, Pxep, ) (B) = (B —2(2r = DH(n—1)(B +2(2r — D))" .
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Example: Let H = K, be a complete graph. The first KCD matrix, first KCD
polynomial and first KCD energy of H are as follows

Figure 1: Complete graph

0 10 10 10
10 0 10 10
10 10 0 10
10 10 10 O

KCD,(H) =

Pcp, (H) = B* — 60082 — 800053 — 30000
EKCD]_(H) = 60

2. Preliminaries
Definition 2.1 ( [7]) For n > 1, the ladder graph L,, is defined as L,, =
P, x B,, with B, as a path graph of order n. For n > 4, the wheel graph W,
of order n is the graph K; + C,,_1, with K; as the singleton graph and C,,_
as the cycle graph. For b > 3, the book graph By, is a graph defined as By, =
K, p X P,, with K; ;, as the star graph and P, as the path graph. For w > 3,
the windmill graph W3 is the graph formed by taking 3 copies of the
complete graph K,,, with a vertex in common. For f > 2, the graph
containing f copies of cycle C3 meeting at a common vertex is the friendship
graph Fr. For n > 2, the pentagonal snake PS,, is formed by replacing every
edge of the path B, of order n by a cycle Cs.
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Definition 2.2 ( [11]) For p > 1, the generalized book graph Bs ,, is a graph
having p copies of cycle Cs with a common edge.

Ly: Ws: Bs: Bs;: @

Ladder graph Wheel graph Book graph Generalized book graph
P
Windmill graph Friendship graph Pentagonal snake graph

Figure 2: Examples of graphs mentioned in Definitions 2.1 and 2.2.

The results mentioned below are useful for computation of first KCD
polynomial of some graphs, bounds for largest first KCD eigenvalue and first
KCD energy of a graph.

Lemma 2.3 ([14]) If a, b, c and d are real numbers, then the determinant of
the form

(ﬂ + a)ln1 - a]n1 _C]nlxnz

_d]nzxnl (ﬁ + b)lnz - b]nz
of order n; + n, can be expressed in the simplified form as

B+a)m™ (B + D) H(B — (. — Da)(B — (n; — 1)b) — nynyed).

The Cauchy-Schwarz inequality [2] says, if (aq,a,,...,a,) and
(by, by, ..., by) are n real vectors, then

iy aib)? < Ty af)(Xiq b7)

Theorem 2.4 ([12]) Let a; and b;, 1 < i < n are nonnegative real numbers,
then
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nZ
i af XLy bf — (B aib)? < - (M;M; — mymy)? (2.3)
where  M; = max;¢icn(ai); Mz = maxicicn(bi); my = mingcicn(@y);

m; = Ming¢ijcn (by).

Theorem 2.5 ([3]) Let a; and b;, 1 < i < n are nonnegative real numbers,
then

In Yy aib; — Xy a; X7y byl < u(n)(A — a)(B — b) (2.4)
where a, b, A and B are real constants, such that for each i, 1 <i < n, a <

a; < Aand b < b; < B. Further, u(n) =n EJ (1 - % EJ)

Theorem 2.6 ( [6]) Let a; and b;, 1 < i < n are nonnegative real numbers,
then
?:1 blz + C1C2 Z?:l aiz < (Cl + C2)(Z?=1 aibi) (25)
where ¢; and c, are real constants, such that for each i, 1 < i < n holds,
c1a; < b; < ¢z

3. First K€D polynomial of some graphs

Theorem 3.1 Let L,, be a ladder graph. Then

Picpy)(B) = (B + 6)*(B +10)*"75((B — 18)(8 — 10(2n — 5)) —

256(2n — 4)).

Proof. The ladder graph L,, by definition has 2n vertices. Among these 2n

vertices, 4 vertices have degree 2 and 2n — 4 vertices have degree 3.

Thus,

6(UJs—11)  8laxn-4)
KDL ) = |8 ansyes 1002t — Lzn-s)

and

Pycp, 1) (B) = |Bl — KCD1(Ly)|

_|(B+6)y =6y —8Jaxan-4)

| =8J2n—a)x4 (B + 10)I2p—4 —10/3p—4
Using Lemma (2.3), the desired result is obtained.

Illustration 3.1 Let L, be a ladder graph. Then
Picp,Lo(B) = (B +6)*(B + 10)*((B — 18)(8 — 30) — 1024).
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Theorem 3.2 Let W, be a wheel graph. Then
Picp,(wy)(B) = (B +10)"2(B(B — 10(n — 2)) — 4(n — 1)(n + 1)?).

Proof. The wheel graph W, by definition has n vertices. Among these n
vertices, n — 1 vertices of cycle C,_; have degree 3 and a central vertex has degree
n—1.

Thus,

KCDl(Wn) _ 10(]n—1 - In—l) (Zn + Z)J(n—l)xl]

(2n+ 2)]1x(n—1) Ji— L
and
PI(CDl(Wn)(,B) = |BI — KCD;(Wy,)]

B +10)-1 = 10/p-1 —(2n+ 2)](n-1)x1
=@+ 2) ik B+ -, '

Using Lemma (2.3), the desired result is obtained.

Ilustration 3.2 Let W5 be a wheel graph. Then

Pcp,ws(B) = (B + 10)°(B(B — 30) — 576).

Theorem 3.3 Let B, be a book graph. Then

Pycp,8,)(B) = (B +6)*P71(B + 4b + 2)((B — 6(2b — 1))(B — (4b + 2))
—16b(b + 2)?).

Proof. The book graph B, by definition has 2b + 2 vertices. Among these
2b + 2 vertices, 2b vertices have degree 2 and 2 vertices have degree b + 1.

Thus,
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6(2p — L2p) (2b + 4)]2px2

KCDy(By) = (2b + )Josapy (4b+2)(J, — 1)

and
PKCDl(Bb)(.B) = |Bl — KCD1(By)|

_|(B+6)p = 6]z, —(2b + D)]opx2
—(2b+D)ox2p B+ (4D +2); — (4b+2))51

Using Lemma (2.3), the desired result is obtained.

Ilustration 3.3 Let B3 be a book graph. Then
Picpy8)(B) = (B + 6)°(B + 14)((B — 30)(B — 14) — 1200).
Theorem 3.4 Let W3 be a windmill graph. Then

Pcp,win(B) = (B + 4w — 6)*"=*(B(B — Bw — ) (4w — 6)) — 12(w — 1) (4w
—5)%).

Proof. The windmill graph W3 by definition has 3w — 2 vertices. Among
these 3w — 2 vertices, 3w — 3 vertices have degree w — 1 and one vertex has degree
3(w-1).

Thus,

KCDy(W3) = (4w — 6)(Jsw-3 — Izw-3) (Bw — 10)](3w—3)x1]

(Bw — 10)/1x3w-3) Ji— L
and
Pycp,wzy(B) = |BI — KCD;y (W)

_ B+ (4w — 6))3yy—3 — (AW — 6)J3y,-3 —(BW — 10)/3w-3)x1
—(8w —10)J1x(3w-3) B+DL -], '

Using Lemma (2.3), the desired result is obtained.
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Illustration 3.4 Let W, be a windmill graph. Then
Pycp,wi(B) = (B + 10)°(B(B — 80) — 4356).

Theorem 3.5 Let F be a friendship graph. Then
Picp,p(B) = (B +6)Y 1 (B(B — 6(2f — 1)) — 8f (2f + 1)?).

Proof. The friendship graph Fy by definition has 2f + 1 vertices. Among these 2f +
1 vertices, 2f vertices have degree 2 and one vertex has degree 2f.

Thus,

KCDy(F;) = [6(]2f — L) (4f + 2)]2f><1]

(Af + 2)ix2r J1— L

and
PKCDl(Ff)(ﬂ) = |.BI - KCDl(Ff)l

B+ 6)ap =6 —(4f +2)]25x1
—|=Af + 2) ik B+DL-];

Using Lemma (2.3), the desired result is obtained.

Ilustration 3.5 Let F5 be a friendship graph. Then

PKCD1(F3)(ﬁ) =B+ 6)5(5(,3 —30) —1176).

Theorem 3.6 Let PS,, be a pentagonal snake graph. Then

Pkcpypsy(B) = (B + 6)*"72(B + 14)"3((B — 6(3n — 2))(B — 14(n — 3))
—100(3n — 1)(n — 2)).
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Proof. The pentagonal snake PS,, by definition has 4n — 3 vertices. Among
these 4n — 3 vertices, 3n — 1 vertices have degree 2 and n — 2 vertices have degree
4,

Thus,

6(szn-1— In-1) 10J@n-1)x(n-2)

KCD{(PS,) =
1( n) 10](n_2)><(3n—1) 14(]71—2_ n—Z)

and
PKCDl(PSn)(B) = |BI — KCD1(PSy)|

_ (:6 + 6)1371—1 - 6]3n—1 _10](3n—1)x(n—2)
—10/(n-2)x(3n-1) B+10)— — 14,

Using Lemma (2.3), the desired result is obtained.

Illustration 3.6 Let PS, be a pentagonal snake graph. Then

Picp,ypsy(B) = (B + 6)*°(B + 14)((B — 60)(B — 14) — 2200).

Theorem 3.7 Let Bs ,, be a generalized book graph. Then

Pcp, (85, (B) = (B + 6)*P~1(B +4p +2)(B—6(3p — 1))(B — (4p + 2))
— 24p(p + 2)?).

Proof. The generalized book graph Bs, by definition has 3p + 2 vertices.
Among these 3p + 2 vertices, 3p vertices have degree 2 and 2 vertices have degree
p+1

Thus,

6(J3p — I3p) (2p + 4)]3px2

KCDl(BS,p) = (2p + 4)]2><3p (4p + 2)(]2 - 12)

and

PKcnl(Bs,p)(ﬁ) = |ﬁl - KCDl(BS,p)|
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B+ 6)z, —6J3, —(2p+4)]3px2
|- @p + Daxzp B+ (Ap +2), — (4p + 2)]|

Using Lemma (2.3), the desired result is obtained.

O
Illustration 3.7 Let Bs , be a generalized book graph. Then
Pcpy(8s)(B) = (B +6)°(B + 10)((B — 30)(B — 10) — 768).
4.  Bounds for the largest first K€D eigenvalue and first KCD energy
Theorem 4.1 The eigenvalues of KC D, (G) satifies the relations
LY Bi=0
2.3, B} =2Q, where Q=Y. 4(d;+d;—1)>2
Proof. By the definition of KCD, (G),
?:1 Bi =0.
Further,
n, B? = trace((KCDy(G))?)
= Xty Xj=y dijdji
=izt ?:1 dizj
=2%ij ((d; + d)) + dp)?, where d,=d;+d;—2
=2%i<j 4(d; +d; — 1)°
= 2Q, where Q =Y 4(d; +d; —1)% 4.2)
O

Illustration 4.1 For the graph H in the Figure 1, ¥*_, 5; = 0 and Y.\, B2 = 2Q =
1200.
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Theorem 4.2 If G is a graph with n vertices, then

fr < [0, (4.3)

Proof. Leta; = 1 and b; = f5; fori = 1,2,...,n in inequality (2.2)
then,

iy B> < (- DXL, A7) (4.4)

From Egs. (4.1) and (4.2), we get

ez Bi=—p1 and X, B} =2Q - pi.

Thus inequality (4.4) implies,

(=B < (n—1)(2Q — BD).

’2Q -1
p1 < %

Equality for 8, holds if graph G is regular.

O

Ilustration 4.2 Consider the graph W5 in the Figure 2. It has §; = 36 and 2Q =
1952, therefore satisfies inequality in Theorem 4.2. Further, for the regular graph H
in the Figure 1, §; = 30 and 2Q = 1200, thus satisfying the equality in the Theorem

Theorem 4.3 If G is a graph with n vertices, then

V2Q < Excp, (6) < /2nQ.

Proof. For a; = 1 and b; = f; in inequality (2.2)

we obtain,

Q1 18:D? < n(Eiy 1Bl
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Using definition of first KCD energy of a graph G and Eq. (4.2), we get

(Ekcp, (6))* < 2nQ.

Thus,

Excp, (6) < /2nQ. (4.5)
Since,

(Excp, () = (Bi=y 1B:D? > Tt 1Bil? = 2Q.
Thus,

Ekcp,(G) > m (4.6)

From Egs. (4.5) and (4.6), required result is generated.

lllustration 4.3 Consider the graph Ws in the Figure 2. It has Excp, (Ws) = 72.
Further, 2Q = 1952 and 2nQ = 9760, therefore satisfying the Theorem 4.3.

Theorem 4.4 If G is a graph with n vertices, then

Ficoy(6) > (200 ~ "2 (1Bs] = 1))

where |S;] is maximum and |3, | is minimum of the absolute value of f;'s.
Proof. For a; = 1 and b; = f; in inequality (2.3)

we obtain,
2
ey 1PEE 1Bi1? = By 1B:D? <7 (Bl = 1BaD)?

2nQ — (Bxcp, (6))* < (11| = 1Bal)?

Fucoy(6) > (200 ~ "2 (1Bs] = 1)
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|

Illustration 4.4 Consider the graph H in the Figure 1. It has |8, = 30, |8.] = 10,
2nQ = 4800, n = 4. Further Ex¢p, (H) = 60. Therefore it satisfies the Theorem 4.4.

Theorem 4.5 If G is a (n,m) graph, then
Excp, (6) >y 2nQ — u(m)(1B1] — |Ba)?

n

wneren =] (122
Proof. Let a; = |B;| = by, A = |B1| = Band a = |B,| = b in inequality (2.4)
then,

InZiey 18i17 — Bizq 18D < p()(IB1] — 1Bn)? (4.7)

Since,

Excp,(6) = 2i=1 |Bil and X1, |Bi|* = 20.
Inequality (4.7) gives
2nQ — (Excp, (6))* < p(m)(B1] = 1B D?. (4.8)

Simplification of inequality (4.8) generates desired result.

Illustration 4.5 For the graph H in the Figure 1, |8,| = 30, |B4] = 10, 2nQ = 4800,
n =4, u(n) = 4. Further Ex¢p, (H) = 60. Thus it satisfies the Theorem 4.5.

Theorem 4.6 If G is a (n,m) graph , then

2Q + n|B4||Bnl
1B1] + 1Bl

where is maximum and is minimum of the absolute value of ;’s.
1 n i

Excp,(G) >

Proof. Leta; = 1, b; = |B;|, c1 = |Bn| and ¢, = |B1] in inequality (2.5)
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then,

o1 1Bl + 1Bul1Bnl izt 12 < (8] + B iy 1B:D (4.9)
Since,
Excpio) = Yiz1 |Bil and XL, |.3i|2 = 20.
Simplification of inequality (4.9) is
2Q +n|BlIBnl < (Bl + |Bul)Ekcp, (6)- (4.10)
Simple calculation of inequality (4.10) yields the required result.

O
Illustration 4.6 Consider the graph H in the Figure 1, it has |B;| = 30, |B4| = 10,

2Q = 1200, n = 4. Further Excp, (H) = 60. Hence it satisfies the Theorem 4.6.

Theorem 4.7 If G is a r-regular graph, then the first KCD eigenvalues of G
are —2(2r — 1) and 2(n — 1)(2r — 1) with multiplicities (n-1) and 1 respectively
and EKCDl(G) = 4(71 - 1)(2T - 1)

Proof.
B —202r—-1) —22r—-1) - =22r-1)
—202r—-1) B —2@2r—-1) - =2@2r-1)
Bl —KCD,(G)| = |-2(2r—1) —-2@2r—-1) B e =202r-1)
'—2(27’ —1) .—2(2r —1) .—2(27" -1) " B
B —202r—-1) —2@r-1) - =2Q2r-1)
=@ +2@2r-1))" -1 0 1 0
10 0 I

=B -mn-12Qr-1)(B+22r—-1))* L

Hence,
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Ekcp,(G) =4(n—1)(2r —1).

Illustration 4.7 For the regular graph H in the Figure 1, the first KCD eigenvalues of
H are -10 (3 times) and 30 (1 time). Thus Ex¢p, (H) = 60.

5. Conclusion
In this article, we have introduced a new graph matrix called first KCD matrix
and its related energy. Further, the computation of first K€D polynomials of
some graphs has added a depth to this concept. The work is extended with the
calculation of bounds for the largest first KCD eigenvalue and first KCD energy
of a graph.

Acknowledgement: We are thankful to the unknown reviewer for constructive as
well as creative suggestions.
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