FIRST KCD MATRIX AND FIRST KCD ENERGY OF A GRAPH

Keerthi G. Mirajkar ${ }^{1}$ and Akshata Morajkar ${ }^{2}$
1,2 Department of Mathematics, Karnatak University's Karnatak Arts College,
Dharwad - 580 001, India
Email : ${ }^{1}$ keerthi.mirajkar@gmail.com, ${ }^{2}$ akmorajkar@gmail.com

Received on: 20/07/2020
Accepted on: 18/10/2020

Abstract

In this article we introduce the concept of first Karnatak College Dharwad matrix of a graph G i.e., $K C D_{1}(G)$ and related energy of a graph G. Further, first KCD polynomial of some graphs, bounds for the largest first KCD eigenvalue and first KCD energy of graphs is determined.

Keywords: First $K C D$ matrix, first $K C D$ polynomial, first $K C D$ eigenvalues, first $K C D$ energy.
2010 AMS classification: 05C07, 05C50.

1. Introduction

Let $G=(V, E)$ be a simple, finite and undirected graph with $|V(G)|=n$ as the vertex set and $|E(G)|=m$ as the edge set. d_{i} is the degree of vertex v_{i} [4]. The minimum degree and maximum degree among the vertices of G is denoted as $\delta(G)$ and $\Delta(G)$ respectively [9].

The adjacency matrix $A(G)=\left[a_{i j}\right]$ for a graph G [9] with n vertices is a $n \times n$ matrix defined as

$$
a_{i j}=\left\{\begin{array}{l}
1 \quad \text { if } v_{i} \text { is adjacent to } v_{j} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

\qquad

The characteristic polynomial of $A(G)$ is given as $\phi(G: \lambda)=\operatorname{det}(\lambda I-A(G))$, where λ is a variable of degree n and I is an identity matrix. The roots of the equation $\phi(G: \lambda)=0$ are called the eigenvalues of G and are denoted as $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. The $\operatorname{spectrum} \operatorname{Spec}(G)$ of a graph G is the collection of eigenvalues of G [5]. The energy $E(G)$ [8] of a graph G having adjacency matrix $A(G)$ with eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant$ $\ldots \geqslant \lambda_{n}$ is defined as $E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$. The floor function $\lfloor x\rfloor$ [9], for a real number x is defined as the greatest integer less than or equal to x. For undefined terminologies refer [9].

The energy concept was brought forward by Gutman in 1978 [8]. Following this, mathematical literature has received numerous contributions, like maximum degree energy of a graph [1], degree sum energy [13], degree product adjacency energy [10] and others. These energies are based on vertex degree which is interesting. The vertex degree and edge degree together makes the concept more fascinating and opens new areas of research. With this motivation we introduce first Karnatak College Dharwad matrix $K C D_{1}(G)$ and first Karnatak College Dharwad energy $E_{K C D_{1}}(G)$ of a graph G.

The first $K C D$ matrix $K C D_{1}(G)$ of a graph G is defined as

$$
k c d_{1_{i j}}= \begin{cases}\left(d_{i}+d_{j}\right)+d_{e} & \text { if } v_{i} \text { is adjacent to } v_{j} \\ 0 & \text { otherwise }\end{cases}
$$

with d_{i} and d_{j} representing degree of vertex v_{i} and v_{j} respectively, d_{e} is the edge degree given by $d_{e}=d_{i}+d_{j}-2$. It is a square matrix of order $n \times n$.

The first KCD polynomial of a graph G is defined as

$$
P_{K C D_{1}(G)}(\beta)=\operatorname{det}\left(\beta I-K C D_{1}(G)\right)
$$

with β as a variable of degree n and I as an identity matrix.
$\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ represent the first $K C D$ eigenvalues of $K C D_{1}(G)$. These are arranged as $\beta_{1} \geqslant \beta_{2} \geqslant \ldots \geqslant \beta_{n}$, where β_{1} is the largest and β_{n} is the smallest first $K C D$ eigenvalue and the collection of these first $K C D$ eigenvalues is the first $K C D$ spectra of G. The sum of all absolute first $K C D$ eigenvalues $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ is called the first $K C D$ energy $E_{K C D_{1}}(G)$ of a graph G.
Let J be a matrix with all entries as 1 and I is an identity matrix, then for an r-regular graph G with n vertices $K C D_{1}(G)=2(2 r-1) J-2(2 r-1) I$.

$$
\begin{equation*}
\text { Thus, } P_{K C D_{1}(G)}(\beta)=(\beta-2(2 r-1)(n-1))(\beta+2(2 r-1))^{n-1} . \tag{1.1}
\end{equation*}
$$

KEERTHI G. MIRAJKAR AND AKSHATA MORAJKAR

Example: Let $H=K_{4}$ be a complete graph. The first $K C D$ matrix, first $K C D$ polynomial and first $K C D$ energy of H are as follows

Figure 1: Complete graph

$$
\begin{aligned}
& K C D_{1}(H)=\left(\begin{array}{llll}
0 & 10 & 10 & 10 \\
10 & 0 & 10 & 10 \\
10 & 10 & 0 & 10 \\
10 & 10 & 10 & 0
\end{array}\right) \\
& P_{K C D_{1}}(H)=\beta^{4}-600 \beta^{2}-8000 \beta-30000 \\
& E_{K C D_{1}}(H)=60
\end{aligned}
$$

2. Preliminaries

Definition 2.1 ([7]) For $n \geqslant 1$, the ladder graph L_{n} is defined as $L_{n}=$ $P_{2} \times P_{n}$, with P_{n} as a path graph of order n. For $n \geqslant 4$, the wheel graph W_{n} of order n is the graph $K_{1}+C_{n-1}$, with K_{1} as the singleton graph and C_{n-1} as the cycle graph. For $b \geqslant 3$, the book graph B_{b} is a graph defined as $B_{b}=$ $K_{1, b} \times P_{2}$, with $K_{1, b}$ as the star graph and P_{2} as the path graph. For $w \geqslant 3$, the windmill graph W_{w}^{3} is the graph formed by taking 3 copies of the complete graph K_{w} with a vertex in common. For $f \geqslant 2$, the graph containing f copies of cycle C_{3} meeting at a common vertex is the friendship graph F_{f}. For $n \geqslant 2$, the pentagonal snake $P S_{n}$ is formed by replacing every edge of the path P_{n} of order n by a cycle C_{5}.
\qquad energy of a graph

Definition 2.2 ([11]) For $p \geqslant 1$, the generalized book graph $B_{5, p}$ is a graph having p copies of cycle C_{5} with a common edge.

Figure 2: Examples of graphs mentioned in Definitions 2.1 and 2.2.

The results mentioned below are useful for computation of first $K C D$ polynomial of some graphs, bounds for largest first $K C D$ eigenvalue and first $K C D$ energy of a graph.

Lemma 2.3 ([14]) If a, b, c and d are real numbers, then the determinant of the form

$$
\left|\begin{array}{ll}
(\beta+a) I_{n_{1}}-a J_{n_{1}} & -c J_{n_{1} \times n_{2}} \tag{2.1}\\
-d J_{n_{2} \times n_{1}} & (\beta+b) I_{n_{2}}-b J_{n_{2}}
\end{array}\right|
$$

of order $n_{1}+n_{2}$ can be expressed in the simplified form as

$$
(\beta+a)^{n_{1}-1}(\beta+b)^{n_{2}-1}\left(\left(\beta-\left(n_{1}-1\right) a\right)\left(\beta-\left(n_{2}-1\right) b\right)-n_{1} n_{2} c d\right)
$$

The Cauchy-Schwarz inequality [2] says, if $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ are n real vectors, then
$\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leqslant\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)$

Theorem 2.4 ([12]) Let a_{i} and $b_{i}, 1 \leqslant i \leqslant n$ are nonnegative real numbers, then

KEERTHI G. MIRAJKAR AND AKSHATA MORAJKAR

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leqslant \frac{n^{2}}{4}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} \tag{2.3}
\end{equation*}
$$

where $\quad \mathrm{M}_{1}=\max _{1 \leqslant \mathrm{i} \leqslant n}\left(\mathrm{a}_{\mathrm{i}}\right) ; \quad \mathrm{M}_{2}=\max _{1 \leqslant \mathrm{i} \leqslant \mathrm{n}}\left(\mathrm{b}_{\mathrm{i}}\right) ; \quad \mathrm{m}_{1}=\min _{1 \leqslant \mathrm{i} \leqslant \mathrm{n}}\left(\mathrm{a}_{\mathrm{i}}\right)$; $m_{2}=\min _{1 \leqslant i \leqslant n}\left(b_{i}\right)$.

Theorem 2.5 ([3]) Let a_{i} and $b_{i}, 1 \leqslant i \leqslant n$ are nonnegative real numbers,
then

$$
\begin{equation*}
\left|n \sum_{i=1}^{n} a_{i} b_{i}-\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} b_{i}\right| \leqslant \mu(n)(A-a)(B-b) \tag{2.4}
\end{equation*}
$$

where a, b, A and B are real constants, such that for each $i, 1 \leqslant i \leqslant n, a \leqslant$ $a_{i} \leqslant A$ and $b \leqslant b_{i} \leqslant B$. Further, $\mu(n)=n\left\lfloor\frac{n}{2}\right\rfloor\left(1-\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\right)$.

Theorem 2.6 ([6]) Let a_{i} and $b_{i}, 1 \leqslant i \leqslant n$ are nonnegative real numbers, then

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i}^{2}+c_{1} c_{2} \sum_{i=1}^{n} a_{i}^{2} \leqslant\left(c_{1}+c_{2}\right)\left(\sum_{i=1}^{n} a_{i} b_{i}\right) \tag{2.5}
\end{equation*}
$$

where c_{1} and c_{2} are real constants, such that for each $i, 1 \leqslant i \leqslant n$ holds, $c_{1} a_{i} \leqslant b_{i} \leqslant c_{2} a_{i}$.

3. First $K C D$ polynomial of some graphs

Theorem 3.1 Let L_{n} be a ladder graph. Then

$$
\begin{aligned}
& P_{K C D_{1}\left(L_{n}\right)}(\beta)=(\beta+6)^{3}(\beta+10)^{2 n-5}((\beta-18)(\beta-10(2 n-5))- \\
& 256(2 n-4)) .
\end{aligned}
$$

Proof. The ladder graph L_{n} by definition has $2 n$ vertices. Among these $2 n$ vertices, 4 vertices have degree 2 and $2 n-4$ vertices have degree 3 .
Thus,

$$
K C D_{1}\left(L_{n}\right)=\left[\begin{array}{ll}
6\left(J_{4}-I_{4}\right) & 8 J_{4 \times(2 n-4)} \\
8 J_{(2 n-4) \times 4} & 10\left(J_{2 n-4}-I_{2 n-4}\right)
\end{array}\right]
$$

and

$$
\begin{aligned}
& P_{K C D_{1}\left(L_{n}\right)}(\beta)=\left|\beta I-K C D_{1}\left(L_{n}\right)\right| \\
& =\left|\begin{array}{ll}
(\beta+6) I_{4}-6 J_{4} & -8 J_{4 \times(2 n-4)} \\
-8 J_{(2 n-4) \times 4} & (\beta+10) I_{2 n-4}-10 J_{2 n-4}
\end{array}\right| .
\end{aligned}
$$

Using Lemma (2.3), the desired result is obtained.
Illustration 3.1 Let L_{4} be a ladder graph. Then

$$
P_{K C D_{1}\left(L_{4}\right)}(\beta)=(\beta+6)^{3}(\beta+10)^{3}((\beta-18)(\beta-30)-1024) .
$$

\qquad

Theorem 3.2 Let W_{n} be a wheel graph. Then

$$
P_{K C D_{1}\left(W_{n}\right)}(\beta)=(\beta+10)^{n-2}\left(\beta(\beta-10(n-2))-4(n-1)(n+1)^{2}\right)
$$

Proof. The wheel graph W_{n} by definition has n vertices. Among these n vertices, $n-1$ vertices of cycle C_{n-1} have degree 3 and a central vertex has degree $n-1$.

Thus,

$$
K C D_{1}\left(W_{n}\right)=\left[\begin{array}{ll}
10\left(J_{n-1}-I_{n-1}\right) & (2 n+2) J_{(n-1) \times 1} \\
(2 n+2) J_{1 \times(n-1)} & J_{1}-I_{1}
\end{array}\right]
$$

and

$$
\begin{gathered}
P_{K C D_{1}\left(W_{n}\right)}(\beta)=\left|\beta I-K C D_{1}\left(W_{n}\right)\right| \\
=\left|\begin{array}{ll}
(\beta+10) I_{n-1}-10 J_{n-1} & -(2 n+2) J_{(n-1) \times 1} \\
-(2 n+2) J_{1 \times(n-1)} & (\beta+1) I_{1}-J_{1}
\end{array}\right| .
\end{gathered}
$$

Using Lemma (2.3), the desired result is obtained.

Illustration 3.2 Let W_{5} be a wheel graph. Then

$$
P_{K C D_{1}\left(W_{5}\right)}(\beta)=(\beta+10)^{3}(\beta(\beta-30)-576)
$$

Theorem 3.3 Let B_{b} be a book graph. Then

$$
\begin{aligned}
P_{K C D_{1}\left(B_{b}\right)}(\beta)= & (\beta+6)^{2 b-1}(\beta+4 b+2)((\beta-6(2 b-1))(\beta-(4 b+2)) \\
& \left.-16 b(b+2)^{2}\right)
\end{aligned}
$$

Proof. The book graph B_{b} by definition has $2 b+2$ vertices. Among these $2 b+2$ vertices, $2 b$ vertices have degree 2 and 2 vertices have degree $b+1$.

Thus,

KEERTHI G. MIRAJKAR AND AKSHATA MORAJKAR

$$
K C D_{1}\left(B_{b}\right)=\left[\begin{array}{ll}
6\left(J_{2 b}-I_{2 b}\right) & (2 b+4) J_{2 b \times 2} \\
(2 b+4) J_{2 \times 2 b} & (4 b+2)\left(J_{2}-I_{2}\right)
\end{array}\right]
$$

and

$$
\begin{aligned}
& P_{K C D_{1}\left(B_{b}\right)}(\beta)=\left|\beta I-K C D_{1}\left(B_{b}\right)\right| \\
& =\left|\begin{array}{ll}
(\beta+6) I_{2 b}-6 J_{2 b} & -(2 b+4) J_{2 b \times 2} \\
-(2 b+4) J_{2 \times 2 b} & (\beta+(4 b+2)) I_{2}-(4 b+2) J_{2}
\end{array}\right|
\end{aligned}
$$

Using Lemma (2.3), the desired result is obtained.

Illustration 3.3 Let B_{3} be a book graph. Then

$$
P_{K C D_{1}\left(B_{3}\right)}(\beta)=(\beta+6)^{5}(\beta+14)((\beta-30)(\beta-14)-1200) .
$$

Theorem 3.4 Let W_{w}^{3} be a windmill graph. Then

$$
\begin{aligned}
P_{K C D_{1}\left(W_{w}^{3}\right)}(\beta)= & (\beta+4 w-6)^{3 w-4}(\beta(\beta-(3 w-4)(4 w-6))-12(w-1)(4 w \\
& \left.-5)^{2}\right) .
\end{aligned}
$$

Proof. The windmill graph W_{w}^{3} by definition has $3 w-2$ vertices. Among these $3 w-2$ vertices, $3 w-3$ vertices have degree $w-1$ and one vertex has degree $3(w-1)$.

Thus,

$$
K C D_{1}\left(W_{w}^{3}\right)=\left[\begin{array}{ll}
(4 w-6)\left(J_{3 w-3}-I_{3 w-3}\right) & (8 w-10) J_{(3 w-3) \times 1} \\
(8 w-10) J_{1 \times(3 w-3)} & J_{1}-I_{1}
\end{array}\right]
$$

and

$$
\begin{gathered}
P_{K C D_{1}\left(W_{w}^{3}\right)}(\beta)=\left|\beta I-K C D_{1}\left(W_{w}^{3}\right)\right| \\
=\left|\begin{array}{ll}
(\beta+(4 w-6)) I_{3 w-3}-(4 w-6) J_{3 w-3} & -(8 w-10) J_{(3 w-3) \times 1} \\
-(8 w-10) J_{1 \times(3 w-3)} & (\beta+1) I_{1}-J_{1}
\end{array}\right| .
\end{gathered}
$$

Using Lemma (2.3), the desired result is obtained.
\qquad energy of a graph

Illustration 3.4 Let W_{4}^{3} be a windmill graph. Then

$$
P_{K C D_{1}\left(W_{4}^{3}\right)}(\beta)=(\beta+10)^{8}(\beta(\beta-80)-4356)
$$

Theorem 3.5 Let F_{f} be a friendship graph. Then

$$
P_{K C D_{1}\left(F_{f}\right)}(\beta)=(\beta+6)^{2 f-1}\left(\beta(\beta-6(2 f-1))-8 f(2 f+1)^{2}\right) .
$$

Proof. The friendship graph F_{f} by definition has $2 f+1$ vertices. Among these $2 f+$ 1 vertices, $2 f$ vertices have degree 2 and one vertex has degree $2 f$.

Thus,

$$
K C D_{1}\left(F_{f}\right)=\left[\begin{array}{ll}
6\left(J_{2 f}-I_{2 f}\right) & (4 f+2) J_{2 f \times 1} \\
(4 f+2) J_{1 \times 2 f} & J_{1}-I_{1}
\end{array}\right]
$$

and

$$
\begin{aligned}
& P_{K C D_{1}\left(F_{f}\right)}(\beta)=\left|\beta I-K C D_{1}\left(F_{f}\right)\right| \\
& =\left|\begin{array}{ll}
(\beta+6) I_{2 f}-6 J_{2 f} & -(4 f+2) J_{2 f \times 1} \\
-(4 f+2) J_{1 \times 2 f} & (\beta+1) I_{1}-J_{1}
\end{array}\right| .
\end{aligned}
$$

Using Lemma (2.3), the desired result is obtained.

Illustration 3.5 Let F_{3} be a friendship graph. Then

$$
P_{K C D_{1}\left(F_{3}\right)}(\beta)=(\beta+6)^{5}(\beta(\beta-30)-1176)
$$

Theorem 3.6 Let $P S_{n}$ be a pentagonal snake graph. Then

$$
\begin{aligned}
P_{K C D_{1}\left(P S_{n}\right)}(\beta)= & (\beta+6)^{3 n-2}(\beta+14)^{n-3}((\beta-6(3 n-2))(\beta-14(n-3)) \\
& -100(3 n-1)(n-2))
\end{aligned}
$$

KEERTHI G. MIRAJKAR AND AKSHATA MORAJKAR

Proof. The pentagonal snake $P S_{n}$ by definition has $4 n-3$ vertices. Among these $4 n-3$ vertices, $3 n-1$ vertices have degree 2 and $n-2$ vertices have degree 4.

Thus,

$$
K C D_{1}\left(P S_{n}\right)=\left[\begin{array}{ll}
6\left(J_{3 n-1}-I_{3 n-1}\right) & 10 J_{(3 n-1) \times(n-2)} \\
10 J_{(n-2) \times(3 n-1)} & 14\left(J_{n-2}-I_{n-2}\right)
\end{array}\right]
$$

and

$$
\begin{aligned}
& P_{K C D_{1}\left(P S_{n}\right)}(\beta)=\left|\beta I-K C D_{1}\left(P S_{n}\right)\right| \\
& =\left|\begin{array}{ll}
(\beta+6) I_{3 n-1}-6 J_{3 n-1} & -10 J_{(3 n-1) \times(n-2)} \\
-10 J_{(n-2) \times(3 n-1)} & (\beta+14) I_{n-2}-14 J_{n-2}
\end{array}\right| .
\end{aligned}
$$

Using Lemma (2.3), the desired result is obtained.

Illustration 3.6 Let $P S_{4}$ be a pentagonal snake graph. Then

$$
P_{K C D_{1}\left(P S_{4}\right)}(\beta)=(\beta+6)^{10}(\beta+14)((\beta-60)(\beta-14)-2200) .
$$

Theorem 3.7 Let $B_{5, p}$ be a generalized book graph. Then

$$
\begin{aligned}
P_{K C D_{1}\left(B_{5, p}\right)}(\beta)= & (\beta+6)^{3 p-1}(\beta+4 p+2)((\beta-6(3 p-1))(\beta-(4 p+2)) \\
& \left.-24 p(p+2)^{2}\right) .
\end{aligned}
$$

Proof. The generalized book graph $B_{5, p}$ by definition has $3 p+2$ vertices. Among these $3 p+2$ vertices, $3 p$ vertices have degree 2 and 2 vertices have degree $p+1$.

Thus,

$$
K C D_{1}\left(B_{5, p}\right)=\left[\begin{array}{ll}
6\left(J_{3 p}-I_{3 p}\right) & (2 p+4) J_{3 p \times 2} \\
(2 p+4) J_{2 \times 3 p} & (4 p+2)\left(J_{2}-I_{2}\right)
\end{array}\right]
$$

and

$$
P_{K C D_{1}\left(B_{5, p}\right)}(\beta)=\left|\beta I-K C D_{1}\left(B_{5, p}\right)\right|
$$

\qquad

$$
=\left|\begin{array}{ll}
(\beta+6) I_{3 p}-6 J_{3 p} & -(2 p+4) J_{3 p \times 2} \\
-(2 p+4) J_{2 \times 3 p} & (\beta+(4 p+2)) I_{2}-(4 p+2) J_{2}
\end{array}\right|
$$

Using Lemma (2.3), the desired result is obtained.

Illustration 3.7 Let $B_{5,2}$ be a generalized book graph. Then
$P_{K C D_{1}\left(B_{5,2}\right)}(\beta)=(\beta+6)^{5}(\beta+10)((\beta-30)(\beta-10)-768)$.
4. Bounds for the largest first $K C D$ eigenvalue and first $K C D$ energy

Theorem 4.1 The eigenvalues of $K C D_{1}(G)$ satifies the relations

$$
\begin{aligned}
& \text { 1. } \sum_{i=1}^{n} \beta_{i}=0 \\
& \text { 2. } \sum_{i=1}^{n} \beta_{i}^{2}=2 Q, \text { where } Q=\sum_{i<j} 4\left(d_{i}+d_{j}-1\right)^{2}
\end{aligned}
$$

Proof. By the definition of $K C D_{1}(G)$,

$$
\begin{equation*}
\sum_{i=1}^{n} \beta_{i}=0 \tag{4.1}
\end{equation*}
$$

Further,

$$
\begin{align*}
& \sum_{i=1}^{n} \beta_{i}^{2}=\operatorname{trace}\left(\left(\operatorname{KCD}_{1}(G)\right)^{2}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j} d_{j i} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}^{2} \\
& =2 \sum_{i<j}\left(\left(d_{i}+d_{j}\right)+d_{e}\right)^{2}, \text { where } d_{e}=d_{i}+d_{j}-2 \\
& =2 \sum_{i<j} 4\left(d_{i}+d_{j}-1\right)^{2} \\
& =2 Q, \text { where } Q=\sum_{i<j} 4\left(d_{i}+d_{j}-1\right)^{2} \tag{4.2}
\end{align*}
$$

Illustration 4.1 For the graph H in the Figure $1, \sum_{i=1}^{4} \beta_{i}=0$ and $\sum_{i=1}^{4} \beta_{i}^{2}=2 Q=$ 1200.

KEERTHI G. MIRAJKAR AND AKSHATA MORAJKAR

Theorem 4.2 If G is a graph with n vertices, then

$$
\begin{equation*}
\beta_{1} \leqslant \sqrt{\frac{2 Q(n-1)}{n}} \tag{4.3}
\end{equation*}
$$

Proof. Let $a_{i}=1$ and $b_{i}=\beta_{i}$ for $i=1,2, \ldots, n$ in inequality (2.2)
then,

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \beta_{i}\right)^{2} \leqslant(n-1)\left(\sum_{i=1}^{n} \beta_{i}^{2}\right) \tag{4.4}
\end{equation*}
$$

From Eqs. (4.1) and (4.2), we get

$$
\sum_{i=2}^{n} \beta_{i}=-\beta_{1} \quad \text { and } \quad \sum_{i=2}^{n} \beta_{i}^{2}=2 Q-\beta_{1}^{2}
$$

Thus inequality (4.4) implies,

$$
\left(-\beta_{1}^{2}\right) \leqslant(n-1)\left(2 Q-\beta_{1}^{2}\right)
$$

Hence,

$$
\beta_{1} \leqslant \sqrt{\frac{2 Q(n-1)}{n}}
$$

Equality for β_{1} holds if graph G is regular.

Illustration 4.2 Consider the graph W_{5} in the Figure 2. It has $\beta_{1}=36$ and $2 Q=$ 1952, therefore satisfies inequality in Theorem 4.2. Further, for the regular graph H in the Figure $1, \beta_{1}=30$ and $2 Q=1200$, thus satisfying the equality in the Theorem 4.2.

Theorem 4.3 If G is a graph with n vertices, then

$$
\sqrt{2 Q} \leqslant E_{K C D_{1}}(G) \leqslant \sqrt{2 n Q}
$$

Proof. For $a_{i}=1$ and $b_{i}=\beta_{i}$ in inequality (2.2)
we obtain,

$$
\left(\sum_{i=1}^{n}\left|\beta_{i}\right|\right)^{2} \leqslant n\left(\sum_{i=1}^{n}\left|\beta_{i}\right|^{2}\right)
$$

\qquad

Using definition of first $K C D$ energy of a graph G and Eq. (4.2), we get

$$
\left(E_{K C D_{1}}(G)\right)^{2} \leqslant 2 n Q
$$

Thus,

$$
\begin{equation*}
E_{K C D_{1}}(G) \leqslant \sqrt{2 n Q} \tag{4.5}
\end{equation*}
$$

Since,

$$
\left(E_{K C D_{1}}(G)\right)^{2}=\left(\sum_{i=1}^{n}\left|\beta_{i}\right|\right)^{2} \geqslant \sum_{i=1}^{n}\left|\beta_{i}\right|^{2}=2 Q
$$

Thus,

$$
\begin{equation*}
E_{K C D_{1}}(G) \geqslant \sqrt{2 Q} \tag{4.6}
\end{equation*}
$$

From Eqs. (4.5) and (4.6), required result is generated.

Illustration 4.3 Consider the graph W_{5} in the Figure 2. It has $E_{K C D_{1}}\left(W_{5}\right)=72$. Further, $2 Q=1952$ and $2 n Q=9760$, therefore satisfying the Theorem 4.3.

Theorem 4.4 If G is a graph with n vertices, then

$$
E_{K C D_{1}}(G) \geqslant \sqrt{2 n Q-\frac{n^{2}}{4}\left(\left|\beta_{1}\right|-\left|\beta_{n}\right|\right)^{2}}
$$

where $\left|\beta_{1}\right|$ is maximum and $\left|\beta_{n}\right|$ is minimum of the absolute value of $\beta_{i}{ }^{\prime} s$.
Proof. For $a_{i}=1$ and $b_{i}=\beta_{i}$ in inequality (2.3)
we obtain,

$$
\begin{aligned}
& \sum_{i=1}^{n} 1^{2} \sum_{i=1}^{n}\left|\beta_{i}\right|^{2}-\left(\sum_{i=1}^{n}\left|\beta_{i}\right|\right)^{2} \leqslant \frac{n^{2}}{4}\left(\left|\beta_{1}\right|-\left|\beta_{n}\right|\right)^{2} \\
& 2 n Q-\left(E_{K C D_{1}}(G)\right)^{2} \leqslant \frac{n^{2}}{4}\left(\left|\beta_{1}\right|-\left|\beta_{n}\right|\right)^{2} \\
& E_{K C D_{1}}(G) \geqslant \sqrt{2 n Q-\frac{n^{2}}{4}\left(\left|\beta_{1}\right|-\left|\beta_{n}\right|\right)^{2}}
\end{aligned}
$$

KEERTHI G. MIRAJKAR AND AKSHATA MORAJKAR

Illustration 4.4 Consider the graph H in the Figure 1. It has $\left|\beta_{1}\right|=30,\left|\beta_{4}\right|=10$, $2 n Q=4800, n=4$. Further $E_{K C D_{1}}(H)=60$. Therefore it satisfies the Theorem 4.4.

Theorem 4.5 If G is $a(n, m)$ graph, then

$$
E_{K C D_{1}}(G) \geqslant \sqrt{2 n Q-\mu(n)\left(\left|\beta_{1}\right|-\left|\beta_{n}\right|\right)^{2}}
$$

where $\mu(n)=n\left\lfloor\frac{n}{2}\right\rfloor\left(1-\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\right)$.
Proof. Let $a_{i}=\left|\beta_{i}\right|=b_{i}, A=\left|\beta_{1}\right|=B$ and $a=\left|\beta_{n}\right|=b$ in inequality (2.4)
then,

$$
\begin{equation*}
\left.\left|n \sum_{i=1}^{n}\right| \beta_{i}\right|^{2}-\left(\sum_{i=1}^{n}\left|\beta_{i}\right|\right)^{2} \mid \leqslant \mu(n)\left(\left|\beta_{1}\right|-\left|\beta_{n}\right|\right)^{2} \tag{4.7}
\end{equation*}
$$

Since,

$$
E_{K C D_{1}(G)}=\sum_{i=1}^{n}\left|\beta_{i}\right| \quad \text { and } \quad \sum_{i=1}^{n}\left|\beta_{i}\right|^{2}=2 Q
$$

Inequality (4.7) gives

$$
\begin{equation*}
2 n Q-\left(E_{K C D_{1}}(G)\right)^{2} \leqslant \mu(n)\left(\left|\beta_{1}\right|-\left|\beta_{n}\right|\right)^{2} \tag{4.8}
\end{equation*}
$$

Simplification of inequality (4.8) generates desired result.

Illustration 4.5 For the graph H in the Figure $1,\left|\beta_{1}\right|=30,\left|\beta_{4}\right|=10,2 n Q=4800$, $n=4, \mu(n)=4$. Further $E_{K C D_{1}}(H)=60$. Thus it satisfies the Theorem 4.5.

Theorem 4.6 If G is $a(n, m)$ graph, then

$$
E_{K C D_{1}}(G) \geqslant \frac{2 Q+n\left|\beta_{1}\right|\left|\beta_{n}\right|}{\left|\beta_{1}\right|+\left|\beta_{n}\right|}
$$

where $\left|\beta_{1}\right|$ is maximum and $\left|\beta_{n}\right|$ is minimum of the absolute value of $\beta_{i}{ }^{\prime}$ s.
Proof. Let $a_{i}=1, b_{i}=\left|\beta_{i}\right|, c_{1}=\left|\beta_{n}\right|$ and $c_{2}=\left|\beta_{1}\right|$ in inequality (2.5)
\qquad
then,

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\beta_{i}\right|^{2}+\left|\beta_{1}\right|\left|\beta_{n}\right| \sum_{i=1}^{n} 1^{2} \leqslant\left(\left|\beta_{1}\right|+\left|\beta_{n}\right|\right)\left(\sum_{i=1}^{n}\left|\beta_{i}\right|\right) \tag{4.9}
\end{equation*}
$$

Since,

$$
E_{K C D_{1}(G)}=\sum_{i=1}^{n}\left|\beta_{i}\right| \quad \text { and } \quad \sum_{i=1}^{n}\left|\beta_{i}\right|^{2}=2 Q .
$$

Simplification of inequality (4.9) is

$$
\begin{equation*}
2 Q+n\left|\beta_{1}\right|\left|\beta_{n}\right| \leqslant\left(\left|\beta_{1}\right|+\left|\beta_{n}\right|\right) E_{K C D_{1}(G)} . \tag{4.10}
\end{equation*}
$$

Simple calculation of inequality (4.10) yields the required result.

Illustration 4.6 Consider the graph H in the Figure 1, it has $\left|\beta_{1}\right|=30,\left|\beta_{4}\right|=10$, $2 Q=1200, n=4$. Further $E_{K C D_{1}}(H)=60$. Hence it satisfies the Theorem 4.6.

Theorem 4.7 If G is a r-regular graph, then the first $K C D$ eigenvalues of G are $-2(2 r-1)$ and $2(n-1)(2 r-1)$ with multiplicities $(n-1)$ and 1 respectively and $E_{K C D_{1}}(G)=4(n-1)(2 r-1)$.

Proof.

$$
\begin{aligned}
&\left|\beta I-K C D_{1}(G)\right|=\left|\begin{array}{lllll}
\beta & -2(2 r-1) & -2(2 r-1) & \cdots & -2(2 r-1) \\
-2(2 r-1) & \beta & -2(2 r-1) & \cdots & -2(2 r-1) \\
-2(2 r-1) & -2(2 r-1) & \beta & \cdots & -2(2 r-1) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
-2(2 r-1) & -2(2 r-1) & -2(2 r-1) & \cdots & \beta
\end{array}\right| \\
&=(\beta+2(2 r-1))^{n-1}\left|\begin{array}{lllll}
\beta & -2(2 r-1) & -2(2 r-1) & \cdots & -2(2 r-1) \\
-1 & 1 & 0 & \cdots & 0 \\
-1 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
-1 & 0 & 0 & \cdots & 1
\end{array}\right| \\
&=(\beta-(n-1) 2(2 r-1))(\beta+2(2 r-1))^{n-1} .
\end{aligned}
$$

Hence,

KEERTHI G. MIRAJKAR AND AKSHATA MORAJKAR

$$
E_{K C D_{1}}(G)=4(n-1)(2 r-1) .
$$

Illustration 4.7 For the regular graph H in the Figure 1, the first $K C D$ eigenvalues of H are $-10(3$ times $)$ and $30(1$ time $)$. Thus $E_{K C D_{1}}(H)=60$.

5. Conclusion

In this article, we have introduced a new graph matrix called first $K C D$ matrix and its related energy. Further, the computation of first $K C D$ polynomials of some graphs has added a depth to this concept. The work is extended with the calculation of bounds for the largest first $K C D$ eigenvalue and first $K C D$ energy of a graph.

Acknowledgement: We are thankful to the unknown reviewer for constructive as well as creative suggestions.

References

[1] Adiga C., and Smitha M., (2009), On maximum degree energy of a graph,
Int. J. Contemp. Math. Sci., 4(8), 385-396.
[2] Bernard S., and Child J. M., (2001), Higher Algebra, Macmillan India Ltd., New Delhi.
[3] Biernacki M., Pidek H., and Ryll-Nardzewsk C., (1950), Sur une iné galité entre des intégrales définies, Maria Curie SkÅĆodowska Univ., A(4), 1-4.
[4] Chartrand G. and Lesniak L., (2000), Graphs and Digraphs, Chapman and Hall/ CRC, Washington, D. C.
[5] Cvetković D., Doob M. and Sachs H., (1980), Spectra of Graphs: Theory and Applications, Academic Press, New York.
[6] Diaz J. B. and Metcalf F. T., (1963), Stronger forms of a class of inequalities of G. Póly-G. Szegö and L. V. Kantorovich, Bull. Amer. Math. Soc., 69(3), 415-418.
[7] Gallian J. A., (2018), A Dynamic Survey of Graph Labeling, Electron. J. Combin., \#DS6.
\qquad
[8] Gutman I., (1978), The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz., 103, 1-22.
[9] Harary F., (1969), Graph Theory, Addison-Wesely, Reading, Mass.
[10] Mirajkar K. G. and Doddamani B. R., (2019), Bounds for the eigenvalues and energy of degree product adjacency matrix of a graph, J. Comput. Math. Sci., 10(3), 565-573.
[11] Narayana N. S., (2016), Tutte polynomial of generalized flower graphs, Int. J. Math. Combin., 2, 29-42.
[12] Ozeki N., (1968), On the estimation of inequalities by maximum and minimum values, J. College Arts and Sci., Chiba Univ., 5, 199-203.
[13] Ramane H. S., Revankar D. S. and Patil J. B., (2013) Bounds for the degree sum eigenvalues and degree sum energy of a graph, Int. J. Pure Appl. Math. Sci., 6, 161167.
[14] Ramane H. S. and Shinde S. S., (2017), Degree exponent polynomial of graphs obtained by some graph operations, Electron. Notes Discrete Math., 63, 161-168.

