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Abstract

In the present research work, effort has been made to define new energy
with respect to block adjacency concept. Hence a new kind of block
adjacency matrix BA(G) is introduced.The block adjacency energy of the
graph is defined as the sum of the absolute values of the eigenvalues of
block adjacency matrix.The results are established on spectra and
energy of block adjacency of matrix for some class of graphs. Further
we obtained the bounds for eigenvalues and energy for block adjacency
energy for the some class of graphs.
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1. Introduction

The genesis of graph energy concept was traced back to chemistry. The
famous Huckel Molecular Orbital Theory was proposed by Erich Huckel in 1930. In
theoretical chemistry, Huckel theory is used to compute m-electron energy of a
conjugated hydrocarbon molecule. This motivates mathematician to define the
concept of graph energy. Gutman in 1978[8] introduced the concept of graph energy.
Very recently graph energy has become a matter of interest to mathematicians and
inspired to carryout research in various innovative concepts of graph energy.
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Let G be a simple, finite, undirected graph with n vertices and m edges.
Undefined terminologies are referred from [9].

The adjacency matrix[8] of the graph G is the symmetric square matrix
denoted by A(G) = (a;;) of order n whose (i, j)-entry is defined as

1, if v; and v; are adjacent;
0, otherwise .

AG) = (@) =

The eigenvalues 4;,1,,43,..4, of A(G), assumed in nonincreasing order are the
eigenvalues of the graph G. Since A(G) is a symmetric matrix with zero trace, these
eigenvalues are real with sum equal to zero.

The sum of the absolute eigenvalues of graph is called as graph energy E4(G) [8].
E4(G) = X7 4] 1)
Where 1, > A, = A3 =>...> A, are the eigenvalues of A(G) matrix.

The collection of these eigenvalues along with their multiplicities is known as
the spectrum of a graph G[5].

A A s e Ay ) @

SpeC(A)(G)=(m(,11) m(d) mAz) ... m(d,)

Inspired by the research work of [1] and [10] on energy, we defined and investigated
block adjacency matrix and its properties.

Blockadjacency = matrix.LetG  be  graph  with  B-blocks,where B
={bq, by, b3,...by; k € N} be the total number of blocks in G and B> 2. Then the
block adjacency matrix BA(G) = [b;;] is defined as

1, if b; and b; are adjacent;

BA(G) = [by] = {0, otherwise .

The block adjacency matrix BA(G) is a real symmetric matrix. If y;,v,,v3...,Yp are
eigenvalue of BA(G), then they are arranged as y; = y, = y3 =...= yg. The block
adjacency energy of a graph Eg4(G) is defined as
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B
Epa(6) = ) Iy
i=1

and the block adjacency matrix spectrum is defined as,

V1 Y2 V3 -+ VB )

SPeC(BA)(G)z(m(yl) m(yz) mys) ... m(ys)

©)

The Helm graph H, [7], where t > 3 indicates the number of pendent edges, is the
graph obtained from a n-wheel graph W}, by joining a pendent edge at each vertex of
the cycle. The maximum number of blocks in H, are (t + 1).

A n-Barbell graph B,, [2] is formed by joining each end point of bridge by a
complete graph k,,. The maximum number of blocks in B,, are 3.

In this paper, the results are established on energy and spectra of block
adjacency matrix of some class of graphs and further bounds for eigenvalue and
energy of block adjacency energy are also computed.

2. Preliminaries
Theorem 2.1[3] The Cauchy-Schwarz inequality states that if (a4, a,, as, ..., a,) and
(b1, by, b3, ..., by) are real n-vectors then,

(X, aib)? < (X1, af) (B, bP).

Theorem 2.2[12] Suppose a; and b;, 1 < i < n are positive real numbers, then

2
n 2vn 2 1 ’M1M2 mym; n 2
1 A; * ., b; <- —— 4+ |—= * . oa;b;
=1 " =1 % 4( myms MM, (21_1 i l)

Where M; = maxy<i<n(a;); My = maxi<j<n(b;); mqy = mingci<n(a;); my =
Miny<i<n(b;)

Theorem 2.3[11] Let a; and b;, 1 < i < n are nonnegative real numbers, then

2

n n n 2
2 2 n 2

i=1
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Where M; M, and m;m, are defined similarly to Theorem 2.2.

Theorem 2.4[4] Suppose a; and b;, 1 < i < n are positive real numbers, then

n n
n ) ab;— ) a; ) bi|<um)(A—a)B—>b)
=1 i=1

n
i=1
Where a, b, A and B are real constants, that for each i, 1<i<n,a<aq; <A and
n 1,n
b < by < B. Further, u(n) = n|5] (1 - - |3]).
Theorem 2.5 [6] Let a; and b;, 1 < i < n are nonnegative real numbers, then
b+ TRYM, a? < (r+R)QM, a;by)
Where r and R are real constants. So that foreach i, 1 < i < n holds ra; < b; < Ra;.

3.Results

3.1. Block adjacency Energy and spectrum of some class of graphs
In this section, the results on block adjacency energy and spectrum for some class of

graphs are obtained.

Theorem 3.11f G be a graph with B mutually adjacent blocks, then the block
adjacency energy and spetrum of G is

Epa(G) = 2(B—1)

Spec(BA)(G) = (EBl_ b (B I 1))

Proof. Let G be a graph with mutually adjacent blocks and BA(G) be its block
adjacency matrix. The eigenvalues —1 and (B —1) of BA(G) occur with
multiplicities (B — 1) and 1 respectively. Then by equation (2) block adjacency
energy of G is

Epa(G) :ZiB=1Mi|
Epa(G) = |- (B -D[+[(B-1)|

=2(B-1)
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Also from equation (3) the spectrum of BA(G) is,

Spec(BA)(G) = ((—31_ 5 I(B B 1))

Theorem 3.2If H;, t > 3 be a Helm graph with B > 4 blocks, then the block
adjacency energy and spectrum of H; is

Epa(He) =2VB -1

VB -1 0 B—1)

specaaytiy = (TP L0 P

Proof. Let H, be a Helm graph and BA(H,) be its block adjacency matrix. The
eigenvalues —vB — 1, 0, VB — 1 of BA(H,) occur with multiplicities 1, (B — 2) and
1 times respectively. Then by equation (2), block adjacency energy of H; is

Epa(G) = ZF=1ML'|
Ega(Hy) = |-VB—1|+ 0+ |VB —1]
=2vB -1
Also, from equation (3) the spectrum of BA(H;) is,

—~VB=1 0 B—1)

Spec(BA)(H,) = ( ety B

Theorem 3.3If B,, be a Barbell graph, then the block adjacency energy and spectrum
of B, is

EBA(Bn) = 2VB - 1
—VB=1 0 +B-1
Spec(BA)(By) =( 1 1 1 )

Proof. Let B,, be a Barbell graph and BA(B,) be its block adjacency matrix. The

eigenvalues —vB — 1, 0, VB — 1 of BA(B,) occur with multiplicities 1 each. Then
by equation (2), block adjacency energy of B,, is
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Epa(G) = 2113:1|)L1'|
Ega(By) =|—VvVB—=1|+ 0+ |VB — 1]
=2VvB -1
Also from equation (3), the spectrum of BA(B,,) is,
—VB-1 0 +VB-1
Spec(BA)(By,) = 1 1 1

Remark 3.4The above result (thorem 3.3) holds for all block graphs which are
isomorphic to path graph P;.

3.2.Bounds for the eigenvalues and energy of block adjacency matrix of Helm
and Barbell graphs.

3.2.1. Bounds for the largest eigenvalue of BA(G)
The following lemma is used in the proof of theorems.

Lemma A. The eigenvalues of BA(G) satisfy the following results only if
trace[BA(G)] = 0.

OIS vi=0

(i) Xi5 vi = trace(BA(G))?
=yt X bi;?

=Yt i 12
=2(B—-1)=2S

whereS=B -1

Theorem 3.51f G be a graph with B blocks, then
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,25(3 —1)
Y1 = — 75

Proof. Let G be a graph with B blocks. BA(G) be its block adjacency matrix and
Y1, Y2, V3, ---,Yp are the eigenvalues. where y; is the largest eigenvalue.Using
Cauchy-Schwarz inequality theorem 2.1, the bound for y; is computed as

o <B A

i=1 =1 i=1

Leta; = 1and b; = y;, Vi = 2,3,..., B then the inequality becomes,

(2, W) < (BE; 17)(ZE, ) (4)
From Lemma A(i),

YPivi=0

Vi+Xi,vi=0

(T, 7)" = (=n)? (5)
And from Lemma A(ii),

e (r)? =28

(y)? + X, (r)? =28

Yo )% =25 — (r1)? (6)
Substituting (5) and (6) in equation (4), we get

(—r1)? < (B—1)(2S —¥{)

yi <2S(B-1)—-yf(B-1)

f 25(B-1)
"ns | |—/5

Theorem 3.61f G be a graph with B blocks, then
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V28 < Ega(G) < V2BS

Proof. Let G be a graph with B blocks and BA(G) be its block adjacency matrix.
Y1, Y2, V3, ---,Yp are the eigenvalues of BA(G). From theorem 2.1, Cauchy-Schwarz

S 5405

i=1 i=1

Onassuming a; = 1and b; = |y;|, i = 1,2,..., B, we get the above inequality as

(S 1eInl)” < (S 122y nl?)

(CE, )" < BEL, nil?)
On simplifying and by using Lemma A(ii), we get

Epa(G) <V2BS ()
since CE, nil)* = 22, nil?
By using Lemma A(ii), we get

Epa(G) 22S @)
From equation (7) and (8), we get

V2§ < Ep,(G) < V2BS

3.2.2.Lower bounds for the block adjacency energy Eg,(G)
Theorem 3.71f G be a graph with B blocks, then

2,/2BS|y1llysl

Epa(G) =
Ba lyal + |vsl

Proof. Let G be a graph with B blocks and |y;| = |yz| = lyz| =...= |yl are the
eigenvalues of BA(G). The maximum and minimum eigenvalues of BA(G) are |y4|
and |yg| respectively.
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From theorem 2.2, we have

2 l M1M2 m1mz
21 af By b 4w’mm2 MM, (Z 1ab)

On assuming a; = 1, b; = |y;|, MM, = |y;| and mym, = |yg|, we get

g e <2 (2 ) o o) o

By using Lemma A(ii), simplifying equation (9) we get

1 + 2
pas < L[ral + vaD) ](EBA(G))Z
4 [v1llvel

8BS|y11lvsl
INGARIZDE

2/ 2BS|y1llvsl

[v1] + Vsl

(Epa(G))? =

Epa(G) 2

Theorem 3.8If G be a graph with B blocks, then

BZ
Epa(G) 2 JZBS — (rl = lvs1)?

Proof. Let G be a graph with blocks B and |y1| = |y2| = |yz|..-= |yg| are the eigen
values of BA(G). The maximum and minimum eigenvalues of BA(G) are |y,| and
lyg| respectively.

From theorem, 2.3 we have the inequality,
2 2
TP, a? ¥R, b — (BE aih)” <2 (MyMy — mymy)?

On assuming a; = 1, b; = |y;|, M\M, = |y4| and mym, = |yg|, we get the above
above inequality as

2 B2
L1 PEL il = (B 1 nil)” < Ual = lvs?
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From Lemma A(ii), we get

BZ
B2S — (Epa(G))* < T(lhl — lys?

2

B
(Epa(G)) = \/ZBS - T(|V1| — lysD?

Theorem 3.91f G be a graph with B blocks, then

Epa(G) = 2BS — u(B)(ly1] = lys )2

Proof. Let G be a graph with blocks B and |yq| = |y2| = |y3| =...= |yg| be the
eigenvalues of BA(G). The maximum and minimum eigen values of BA(G) are |y4|
and |yg| respectively.

From theorem 2.4, we have
|BYE, aib; — S8, a;XF bi| < u(BY(P —a)(Q — b)

On assuming a; = b; = |y;|, P =0Q = |y1| and a = b = |yg|, we get the above
inequality as

2
BZE, il? = (T2, il)’| < uBYral = e D(val = lvsD)
From Lemma A(ii), we get

|B2S — (Epa(G))?] < u(B)(y1l — lys))?

Epa(G) 2 y/2BS — u(B)(Iy1| = lvsD)?
Theorem 3.10If G be a graph with B blocks, then

25 + Bly1llysl

Epa(G) =
B4 lyal + lysl

Proof. Let G be a graph with B blocks and |y;| = |y2]| = |y3] =...= |yg]| are the
eigenvalues of BA(G). The maximum and minimum eigenvalues of BA(G) are |y4|
and |yg| respectively.
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From theorem 2.5, we have
Lib}+TRYL, af < (r+ R)(ZiB=1 aibi)

On assuming b; = |y;|, a; =1, r = |yg| and R = |y;|, then the above inequality
becomes

1 vil? + lysllyal 2, 12 < (sl + I D(EE: 1+ 1ril)
From Lemma A(ii), we get

25+ (lvellvaiDB) = (lvsl + lv1DEpa(G)

2§ + Bly1llysl

Epa(G) =
B4 lyal + lysl

3.3 Bounds for the eigenvalues and energy of block adjacency matrix of graphs
with mutually adjacent blocks

3.3.1 Bounds for the largest eigenvalue of BA(G)
The following lemma is used in the proofs of theorems.

Lemma B. The eigenvalues of BA(G) satisfy the following results only if
trace[BA(G)] = 0.

XL, 7:i=0
(i) X2, y? = trace(BA(G))?

= (B —1)XE, 1(Since, diagonal elements (B —
1) occurs B times)

=B(B—1)=D
whereD =B —1

Theorem 3.111f G be a graph with B blocks, then

DB -1
= /%
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Proof. Let G be a graph G with B blocks and y4,¥2,v3,-..,Yg are the eigenvalues of
BA(G). The largest eigenvalue is y; and its bound is computed using theorem 2.1

2

(ZiB=1 aibi) S (le‘9=1 aiz)(zfﬂ bzz)

Leta; = 1and b; = y;, Vi = 2,3,..., B, then the inequality becomes,
2

(EE, W) < (B, 12)(BE: v (10)

From Lemma B(i),
?:1 Yi=0
i+Zi vi=0
(2, 7)) = (-r)? (11)

And from Lemma B(ii),

?:1 (Vi)2 =D
) +X%, G)*=D
2, (7)? =D — (r)? (12)

Substituting (11) and (12) in (10), we get
(—y)?<B-1DO-rD)

yi<DB-1)—-yi{(B-1)

’D B—-1
V1= %

Theorem 3.12If G be a graph with B blocks, then

VD < Eg,(G) <VBD
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Proof. Let G be a graph with B blocks and y4,v2,73,...,Y5 are the eigenvalues
BA(G).
From theorem 2.1, we have
2
(2113:1 aibi) = (ZiB=1 aiz)(z?:1 bzz)
On assuming a; = 1 and b; = |y;|, i = 1,2,..., B, the above inequality becomes
2
(Zile 1x |Vi|) < (Zile 12)(2?:1 |Vi|2)
2
(EZ1 lvil)” < BEL nil?)
On simplifying and by using Lemma B(ii), we get
Epa(G) <VBD (13)
. 2
Since, (X, vil)” = X84 Ivil?
By using Lemma B(ii), we get
Ega(G) =D (14)
From equation (13) and (14), we get
VD < Eg,(G) <VBD

3.3.2Lower bounds for the block adjacency energy Eg4(G)
Theorem 3.13If G be a graph with B blocks, then

2,/ BDly1llysl

Ega(G) = :
Ba lyal + lval

Proof. Let G be a graph with B blocks and |yq| = |y2| = |y3]| =...= |yg]| are the

eigenvalues of BA(G). The maximum and minimum eigenvalues of BA(G) are |y4]
and |yg| are respectively.

From theorem 2.2, we have

2
B 2 VB 2 1 |MiM; mymp B 2
i=1 @i Xiz1 bi < 4< p— /_M1M2> (B, aiby)
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On assuming a; = 1, b; = |y;|, MM, = |y;| and mym, = |yg| we get

2
£y 1258, Il <2+ [220) (s, coann)’

From Lemma B(ii), we get

1 + |yp))?
gp < L{Ural+lvsD)
4 Inallyel

4BD|y4|lysl
(vl + lysD?

2,/ DBy1llysl

[val + |vEl

] (Epa(G))?
(Epa(G))* 2

Epa(G) =

Theorem 3.14If G be a graph with B blocks, then

B2
Esa(6) = JBD - (nl =y

Proof. Let G be a graph with blocks B and |y1| = |y2| = |yz|...= |yg| are the eigen
values of BA(G). The maximum and minimum eigenvalues of BA(G) are |y;| and
|yg| are respectively.

From theorem 2.3 we have,
B a?YB  p?— (Z’? .b.)z < B_Z(M M., — )2
i=1 i Lij=1 D i=1 Aib;) = 2 1Ml —mim,;

Onassuming a; = 1, b; = |y;|, M{M, = |y;| and mym, = |y, |, the above inequality
becomes

2 _ B2
e PXE l? = (ks 1+ al)” < 5 (Ul = lvsD?

From Lemma B(ii) and definition of block adjacency energy, we get

BD — (Ega(6))? < = (Iral = yal)?
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2

B
(Epa(G)) = \]BD - T(|V1| = lygD?

Theorem 3.15If G be a graph with B blocks, then

Epa(G) = /BD — u(B)(ly1| — lys)?

Proof. Let G be a graph with blocks B and |y;| = |y2| = |y3] =...= |yg]| are the
eigenvalues of BA(G). The maximum and minimum eigen values of BA(G) are |y4|
and |yg| respectively.

From theorem 2.4, we have
|BYE, aib; — SE, a;3F bi| < u(BY(P —a)(Q — b)

On assuming a; = b; = |y;|, P = Q = |y1| and a = b = |yg|, the above inequality
becomes

2
BZE, nil? = (22, nil)’| < uBYral = e D (val = lvsD)
From Lemma B(ii), we get

IBD — (Epa(G))?] < u(B)(lyal — lys])?

Epa(G) = /BD — u(B) (1] — lvs)?

Theorem 3.16If G be a graph with B blocks, then

D + Bly1llysl

Epa(G) =
B4 lyal + lysl

Proof. Let a graph G with B blocks and |yq| = |y2| = |y3| =...= |yg| are the
eigenvalues of BA(G). The maximum and minimum eigenvalues of BA(G) are |y4|
and |yg| respectively.

From the theorem 2.5, we have
Pabf+TRYL, af < (r+ R)(ZiB=1 aibi)

On assuming b; = |y;|, a; = 1, v = |yg| and R = |y, |, the inequality becomes

101



Keerthi G. Mirajkar, Anuradha V. Deshpande and Bhagyashri R. Doddamani

L1 il? +1ysllval 21 12 < (vsl + Iy D(EL 1# nil)

From Lemma B(ii), we get

D+ (lygllviDB) = (lvsl + [v1D)Epa(G)

D + Bly,llysl

Epa(G) =
B4 lyal + Vsl

4. Conclusion

In this paper a novel approach is made to introduce and define block
adjacency matrix. The results exhibit the insight into the establishment of energy and
spectra of Helm graph, Barbell graph and graph with mutually adjacent blocks. Hence
it is inferred that the block adjacency energy of graph with mutual adjacent blocks is
same as energy of complete graph K,, and is the highest one among all the graphs
with blocks. The result obtained for Barbell graph holds for all the graphs with blocks
which are isomorphic to path graph P5. In continuation, the bounds for eigenvalues
and energy for block adjacency matrix are obtained for the same class of graphs.
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