On Approximation of a function $\mathbf{f} \mathbf{\epsilon} \mathbf{W}\left(L_{p}, \xi(t)\right)$ Class by $(\mathbf{C}, \mathbf{1})$ [$\left.\mathbf{F}, \mathrm{d}_{\mathrm{n}}\right]$ Means of its Fourier Series

H. L. RATHORE ${ }^{1}$ and U. K. SHRIVASTAVA ${ }^{2}$
${ }^{l}$ Department of Mathematics,Govt. College Pendra, Bilaspur, (C.G.)495119, India.
${ }^{2}$ Department of Mathematics,Govt. E. R. Rao Science PG College, Bilaspur (C.G.)- 495001, India.
Email : 'hemlalrathore@gmail.com, ${ }^{2}$ profumesh18@yahoo.co.in

Received on: 24/12/2022
Accepted on: 07/04/2023

Abstract

The $\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ matrix method were introduced by Jakimovsky as generalization both the Euler E_{r} method and Stirling-Karamata-Lototsky method. Where d_{n} be a fixed sequence of positive number and the class $\mathrm{W}\left(L_{p},(\xi(t))\right.$ equal to $\operatorname{Lip}(\xi(t), p)$ for $\beta=0$ and since $\left[F, d_{n}\right]$ method includes (E, q) method then using Cesặro mean and $\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ mean associate with infinite series. In this paper, firstly we have improved a theorem of Nigam under weaker conditions and then we have defined $(\mathrm{C}, 1)\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ mean.

Keywords: (C, 1) mean, Fourier series, W ($\mathrm{L}_{\mathrm{p}}, \xi(\mathrm{t})$) class, Lebesgue integral (C, 1) $\left[F, d_{n}\right]$ summability, $\left[F, d_{n}\right]$ mean.

2010 AMS classification: 42B05, 42B08

1. Introduction

The summability method $\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right.$] was pronounced by Jakimovsky [4]. Further extended on approximation of f belong to many classes also $\mathrm{W}\left(L_{p}, \xi(\mathrm{t})\right)$ by Cesặro
mean, Nörlund mean has been discussed by investigator like respectively Alexits [1], Chandra [2], Sahney and Geol [18], Khan [6], Quereshi [17], Deepmala et al. [3], Mishra et al. ([11],[12],[13],[14]), Shrivastava, verma and yadav [21] studied the "Approximation of function of a class Lip (α, p) by $\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ mean". Shrivastava and Rathore [20] extended this result using on "Approximation of a function of class W ($L_{P},(\xi(t))$ by $\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ mean of Fourier series". Further has been also studied about product summability on approximation has been obtained by several researchers like Lal and Singh [8] and Lal and Kushwaha [7]. Recently Nigam [16] have determined on approximation of a function belonging to $\mathrm{W}\left(L_{r}, \xi(t)\right)$ by (C, 1) (E, q) product summability. But till now no work done to extend the result on approximation of $\mathrm{f} \epsilon$ $\mathrm{W}\left(L_{p}, \xi(t)\right)$ with $(\mathrm{C}, 1)\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ mean has been proved.

2. Definition and Notation

Let $f(x)$ be a periodic function and Lebesgue integrable on $[-\pi, \pi]$.Then the Fourier series of $f(x)$ is given by

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\phi(x)=\frac{1}{2}\{f(x+t)+f(x-t)-2 f(x)\} . \tag{2.2}
\end{equation*}
$$

Let $d_{1}, d_{2}-----d_{n}$, be a fixed sequence of positive number and x be a real number. The element P_{nk} of $\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ matrix are defined by the relations

$$
\begin{equation*}
\prod_{j=1}^{n} \frac{x+d_{j}}{1+d_{j}}=\sum_{k=0}^{\infty} P_{n k} x^{k} \tag{2.3}
\end{equation*}
$$

And

$$
\begin{equation*}
P_{00}=1 . \tag{2.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
\sigma_{x}(\mathrm{f} ; \mathrm{x})=\sum_{k-0}^{\infty} P_{n k} S_{k}(\mathrm{f} ; \mathrm{x}) \tag{2.5}
\end{equation*}
$$

Denote the $\left[F . d_{n}\right]$ mean of $f \in L[-\pi, \pi]$ at x, where $S_{k}(f ; x)$ is the $k^{\text {th }}$ partial sum of (2.1).The $\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ method were introduced by Jakimovsky [4] as generalization of both the Euler E_{r} method and Stirling-Karamata-Lototsky method. When $\mathrm{d}_{\mathrm{n}}=\frac{(n-1)}{c}$, $\mathrm{n}=1,2,3-----\mathrm{c}$, a positive integer the $\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ matrix reduces to the matrix

Means

corresponding to the Stirling-Karamata-Lototsky method defined by Karamata [5]. The Euler $\mathrm{E}_{\mathrm{r}}(0<\mathrm{r}<1)$ are obtained with $\mathrm{d}_{\mathrm{n}}=\frac{(1-r)}{r}, \mathrm{n}=1,2,3---$ Lorch and Newman [9] studied the Lebesgue constant for this method. Several fundamental properties of [$\mathrm{F}, \mathrm{d}_{\mathrm{n}}$] matrix have been discussed in Meir [10] and Miracle [15]

$$
\begin{equation*}
\mathrm{S}_{\mathrm{n}}=2 \sum_{k=1}^{n} \frac{d_{k}}{\left(1+d_{k}\right)^{2}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{U}_{\mathrm{n}}=1+2 \sum_{k=1}^{n} \frac{1}{\left(1+d_{k}\right)} \tag{2.7}
\end{equation*}
$$

The [F, d_{n}] matrix is regular by Jakimovsky [4] if $U_{n} \rightarrow \infty$ as $n \rightarrow \infty$ we shall consider only regular matrices and indeed assume that for large n then d_{n} is bounded away from zero.

$$
\begin{aligned}
& \text { The } \frac{d_{n}}{\left(1+d_{n}\right)^{2}} \text { is also bounded and } \mathrm{S}_{\mathrm{n}} \rightarrow \infty \text { as } \mathrm{n} \rightarrow \infty \\
& \mathrm{n}+1=\left[\mathrm{U}_{\mathrm{n}}\right] \text { be the integral part of } \mathrm{U}_{\mathrm{n}}
\end{aligned}
$$

The $(\mathrm{C}, 1)$ method is defined the series $\sum_{k=0}^{\infty} u_{k}$ is summable to S with $\mathrm{n}^{\text {th }}$ partial sum is given by

$$
\text { If } \quad(\mathrm{C}, 1)=\frac{1}{(n+1)} \sum_{k=1}^{n} S_{k} \quad \rightarrow \mathrm{~S} \text { as } \mathrm{n} \rightarrow \infty
$$

The $(C, 1)$ and $\left[F, d_{n}\right]$ mean is defines product $(C, 1)\left[F, d_{n}\right]$ of the partial sum S_{n} of $\sum_{k=0}^{\infty} u_{k}$.

$$
\begin{equation*}
\text { Then } \quad\left(\mathrm{C}^{1}, F\right)_{n}^{d_{n}}=\frac{1}{(n+1)} \sum_{k=0}^{n} F_{k}^{d_{n}} \rightarrow \mathrm{~S} \text { as } \mathrm{n} \rightarrow \infty \tag{2.9}
\end{equation*}
$$

where $F_{n}^{d_{n}}$ denotes the $\left[F, d_{n}\right]$ transform of S_{n} then $\sum_{k=0}^{\infty} u_{k}$ is summable $(C, 1)\left[F, d_{n}\right]$ transform to S .

If $\mathrm{f} \in \operatorname{Lip} \alpha$

$$
|f(x+t)-f(x)|=\mathrm{O}\left(|t|^{\alpha}\right), \quad \text { for } 0<\alpha \leq 1
$$

Similarly $\operatorname{Lip} \alpha$ subset of $\operatorname{Lip}(\alpha, \mathrm{p})$ subset of $\operatorname{Lip}(\xi(\mathrm{t}), \mathrm{p})$ and the function $\xi(t)$ is positive increasing and $\mathrm{f} \in \mathrm{W}\left(L_{P},(\xi(t))\right.$ then

$$
\left(\int_{0}^{2 \pi}\left|\{f(x+t)-f(x)\} \sin ^{\beta} x\right|^{P} d x\right)^{1 / P}=\mathrm{O}(\xi(t)), \quad \beta \geq 0
$$

The $\mathrm{W}\left(L_{P},(\xi(t))\right.$ equal to $\operatorname{Lip}(\xi(t), p)$ for $\beta=0$. Let the degree of approximation $E_{n}(f)$ be given by

$$
\begin{equation*}
E_{n}(f)=\min \left\|f-T_{n}\right\|_{p},(\text { Zygmund [22] }) \tag{2.10}
\end{equation*}
$$

where $\mathrm{T}_{\mathrm{n}}(\mathrm{x})$ is a trigonometric polynomial of degree n .
3. Some Theorems: G. Alexits [1] proved the following theorem.

Theorem A- If $\mathrm{f} \in \operatorname{Lip} \alpha, 0<\alpha \leq 1$ be a periodic function then the degree of approximation of the (C, δ) means of its Fourier series for $0<\alpha<\delta \leq 1$ is given by

$$
\begin{equation*}
\max _{0 \leq x \leq 2 \pi}\left|f(x)-\sigma_{n}^{\delta}(x)\right|=O\left(\frac{1}{n^{\alpha}}\right) \tag{3.1}
\end{equation*}
$$

and for $0<\alpha \leq \delta \leq 1$ is given by

$$
\begin{equation*}
\max _{0 \leq x \leq 2 \pi}\left|f(x)-\sigma_{n}^{\delta}(x)\right|=O\left(\frac{\log n}{n^{\alpha}}\right), \tag{3.2}
\end{equation*}
$$

where σ_{n}^{δ} are the partial sums of (2.1) its mean (C, δ).
H. K. Nigam [16] obtained, on degree of approximation of a function $f \in$ $W\left(L_{r}, \xi(t)\right)$ class by $(\mathrm{C}, 1)(\mathrm{E}, \mathrm{q})$ product summability mean of Fourier series is given by

Means

Theorem B: If f is a 2π - periodic function and Lebesgue integrable on $[0,2 \pi]$ and belongs to $\mathrm{W}\left(L_{r}, \xi(t)\right)$ class, then its degree of approximation is given by

$$
\begin{equation*}
\left\|C_{n}^{1} E_{n}^{q}-f\right\|_{r}=\mathrm{O}\left[(n+1)^{\beta+1 / r} \xi\left(\frac{1}{n+1}\right)\right] \tag{3.3}
\end{equation*}
$$

provided $\xi(\mathrm{t})$ satisfies the following conditions :

$$
\begin{equation*}
\left\{\frac{\xi(t)}{t}\right\} \text { be a decreasing sequence. } \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{t|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right\}^{r} d t\right]^{1 / r}=\mathrm{O}\left(\frac{1}{n+1}\right) \tag{3.5}
\end{equation*}
$$

and $\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\xi(t)}{t^{-\delta} \sin \beta t}\right\}^{r} d t\right]^{1 / r}=\mathrm{O}\left\{(n+1)^{\delta}\right\}$,
where δ is an arbitrary number such that $s(1-\delta)-1>0, \frac{1}{r}+\frac{1}{s}=1$ condition (3.5) and (3.6) hold uniformly in x and $C_{n}^{1} E_{n}^{q}$ is $(\mathrm{C}, 1)(\mathrm{E}, \mathrm{q})$ means of the Fourier series (2.1).

4. Main theorem

In this direction, further extended our theorem on approximation of a $f \in$ $W\left(L_{p}, \xi(t)\right)$ by $(\mathrm{C}, 1)\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ mean of its Fourier series, has been proved.

Theorem: If $f: R \rightarrow R$ is periodic function and integrable on $[0,2 \pi]$ and belonging to $W\left(L_{p}, \xi(t)\right)$ class associate with the approximation of f by $(\mathrm{C}, 1)\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ summability means of its Fourier series (2.1) satisfies.

$$
\begin{equation*}
\left|\left(\mathrm{C}^{1}, F\right)_{n}^{d_{n}}-\mathrm{f}(\mathrm{x})\right|_{\mathrm{p}}=\mathrm{O}\left\{(n+1)^{\beta+1 / p} \xi\left(\frac{1}{(n+1)}\right)\right\}, \tag{4.1}
\end{equation*}
$$

provided $\xi(t)$ satisfies the following conditions:

$$
\begin{align*}
& \left\{\frac{\xi(t)}{t}\right\} \text { be a decreasing sequence, } \tag{4.2}\\
& {\left[\int_{0}^{\frac{\pi}{n+1}}\left\{\frac{t|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right\}^{p} d t\right]^{1 / p}=\mathrm{O}\left(\frac{1}{n+1}\right)} \tag{4.3}\\
& {\left[\int_{\frac{\pi}{n+1}}^{\pi}\left\{\frac{\xi(t)}{t^{-\delta} \sin ^{\beta} t}\right\}^{p} d t\right]^{1 / p}=\mathrm{O}\left\{(n+1)^{\delta}\right\}} \tag{4.4}
\end{align*}
$$

where δ is an arbitrary number such that $q(1-\delta)-1>0, \frac{1}{p}+\frac{1}{q}=1$, condition (4.3) $\operatorname{and}(4.4)$ hold uniformly in $\mathrm{x} \operatorname{and}\left(\mathrm{C}^{1}, F\right)_{n}^{d_{n}}$ is $(\mathrm{C}, 1)\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ means of Fourier series (2.1).
5. Lemmas: Following lemmas are required for the proof of our theorem:

Lemma 1.

$$
\begin{equation*}
\prod_{k=1}^{n} \frac{\exp (i t)+d_{k}}{1+d_{k}}=\exp \left\{\left(U_{n}-1\right) i t / 2-S_{n} t^{2} / 4\right\}+\mathrm{O}\left(S_{n} t^{3}\right) \tag{5.1}
\end{equation*}
$$

This is due to Lorch and Newman [9]
Lemma 2. $\quad \mathrm{K}_{\mathrm{n}}(\mathrm{t})=\frac{1}{(n+1) \pi} \sum_{k=0}^{n}\left[\frac{\sin \left(\frac{U_{n} t}{2}\right) \exp \left(\frac{-s_{n} t^{2}}{4}\right)}{\operatorname{sint} / 2}\right]$

$$
=\mathrm{O}(\mathrm{n}+1) \text { for } 0 \leq \mathrm{t} \leq \frac{\pi}{(n+1)}
$$

Proof- Apply $\sin n t \leq n \sin t$ for $0 \leq t \leq \frac{\pi}{n+1}$
Then

$$
\begin{align*}
\mathrm{K}_{\mathrm{n}}(\mathrm{t})=\frac{1}{(n+1) \pi} & \sum_{k=0}^{n} \exp \left(\frac{-S_{n} t^{2}}{4}\right) \frac{U_{n} \operatorname{sint} / 2}{\operatorname{sint} / 2} \\
& =\mathrm{O}\left(\mathrm{U}_{\mathrm{n}}\right) \frac{1}{(n+1) \pi} \sum_{k=0}^{n} 1 \\
& =\mathrm{O}(\mathrm{n}+1) . \tag{5.2}
\end{align*}
$$

Lemma 3. $\quad \mathrm{K}_{\mathrm{n}}(\mathrm{t})=\frac{1}{(n+1) \pi} \sum_{k=0}^{n}\left[\frac{\sin \left(\frac{U_{n} t}{2}\right) \exp \left(\frac{-s_{n} t^{2}}{4}\right)}{\operatorname{sint} / 2}\right]$. Then $\mathrm{K}_{\mathrm{n}}(\mathrm{t})=\mathrm{O}\left(\frac{1}{t}\right)$

On Approximation of a function f $\in \mathbf{W}\left(L_{p}, \xi(t)\right)$ Class by $(\mathbf{C}, 1)\left[F, d_{n}\right]$

Means

Proof- Using $\sin \frac{t}{2} \geq\left(\frac{t}{\pi}\right)$ and $\left|\sin \frac{U_{n} t}{2}\right| \leq 1$ for $\frac{\pi}{n+1} \leq t \leq \pi$

$$
\begin{align*}
\mathrm{K}_{\mathrm{n}}(\mathrm{t})= & \frac{1}{(n+1) \pi} \sum_{k=0}^{n} \exp \left(\frac{-S_{n} t^{2}}{4}\right) \frac{1}{t_{/ \pi}} \\
& =\mathrm{O}\left(\frac{1}{t}\right) \tag{5.3}
\end{align*}
$$

Lemma 4. $\mathrm{K}_{\mathrm{n}}(\mathrm{t})=\frac{1}{(n+1) \pi} \sum_{k=0}^{n} \frac{O\left(S_{n} t^{3}\right)}{\sin \frac{t}{2}}$

$$
=\mathrm{O}(\mathrm{n}+1)
$$

Proof- Using $\left|\sin \frac{t}{2}\right| \leq \frac{t}{2}$ for $0 \leq \mathrm{t} \leq \frac{\pi}{n+1}$

Then

$$
\begin{align*}
\mathrm{K}_{\mathrm{n}}(\mathrm{t})= & \frac{1}{(n+1) \pi} \sum_{k=0}^{n} \frac{o\left(S_{n} t^{3}\right)}{\sin \frac{t}{2}} \\
& =\frac{o\left(S_{n}\right)}{(n+1) \pi} \sum_{k=0}^{n} \frac{t^{3}}{t_{/ 2}} \\
& =\frac{o\left(S_{n}\right)}{(n+1) \pi} \frac{n(n+1)(2 n+1)}{6} \\
& =\mathrm{O}(\mathrm{n}+1) \tag{5.4}
\end{align*}
$$

Lemma 5. $\quad \mathrm{K}_{\mathrm{n}}(\mathrm{t})=\frac{1}{(n+1) \pi} \sum_{k=0}^{n} \frac{o\left(S_{n} t^{3}\right)}{\sin \frac{t}{2}}$

$$
=\mathrm{O}(\mathrm{n}+1)
$$

Proof - Using $\sin \frac{t}{2} \geq \frac{t}{\pi}$ for $\frac{\pi}{(n+1)} \leq t \leq \pi$

Then

$$
\begin{align*}
\mathrm{K}_{\mathrm{n}}(\mathrm{t})= & \frac{1}{(n+1) \pi} \sum_{k=0}^{n} \frac{o\left(S_{n} t^{3}\right)}{\sin \frac{t}{2}} \\
& =\frac{o\left(S_{n}\right)}{(n+1) \pi} \sum_{k=0}^{n} \frac{t^{3}}{t_{/ \pi}} \\
& =\mathrm{O}(\mathrm{n}+1) \tag{5.5}
\end{align*}
$$

6. Proof of the main theorem-

H. L. RATHORE and U. K. SHRIVASTAVA

Titchmarsh [19] and the $\mathrm{k}^{\text {th }}$ partial sum $\mathrm{S}_{\mathrm{k}}(\mathrm{f} ; \mathrm{x})$ of Fourier series (2.1) is given by

$$
\begin{equation*}
\mathrm{S}_{\mathrm{k}}(\mathrm{f} ; \mathrm{x})-\mathrm{f}(\mathrm{x}) \quad=\frac{1}{\pi} \int_{0}^{\pi} \frac{1}{\sin t / 2} \phi(t) \sin \left(k+\frac{1}{2}\right) t d t \tag{6.1}
\end{equation*}
$$

The [$\mathrm{F}, \mathrm{d}_{\mathrm{n}}$] transform $F_{n}^{d_{n}}$ of $\mathrm{S}_{\mathrm{k}}(\mathrm{f} ; \mathrm{x})$ is given by

$$
\begin{equation*}
F_{n}^{d_{n}}-\mathrm{f}(\mathrm{x}) \quad=\frac{1}{\pi} \int_{0}^{\pi} \frac{\phi(t)}{\sin t / 2} \sum_{k=0}^{\infty} P_{n k} \sin \left(k+\frac{1}{2}\right) t d t \tag{6.2}
\end{equation*}
$$

The $(\mathrm{C}, 1)\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ transform of $\mathrm{S}_{\mathrm{k}}(\mathrm{f} ; \mathrm{x})$ by $\left(\mathrm{C}^{1}, F\right){ }_{n}^{d_{n}}$ then

$$
\begin{align*}
\left(\mathrm{C}^{1}, F\right)_{n}^{d_{n}}-\mathrm{f}(\mathrm{x}) & =\frac{1}{(n+1) \pi} \sum_{k=0}^{n} \int_{0}^{\pi} \frac{\phi(x)}{\sin \frac{t}{2}} \sum_{k=0}^{\infty} P_{n k} \sin \left(k+\frac{1}{2}\right) t d t \tag{6.3}\\
& =\frac{1}{(n+1) \pi} \sum_{k=0}^{n} \int_{0}^{\pi} \frac{\phi(x)}{\sin \frac{t}{2}} I_{m}\left\{\sum_{k=0}^{\infty} P_{n k} \exp \left(i\left(k+\frac{1}{2}\right)\right)\right\} d t \\
& =\frac{1}{(n+1) \pi} \sum_{k=0}^{n} \int_{0}^{\pi} \frac{\phi(x)}{\sin \frac{t}{2}} I_{m}\left\{\exp \left(\frac{i t}{2}\right) \sum_{k=0}^{\infty} P_{n k} \exp (i k t)\right\} d t \\
& =\frac{1}{(n+1) \pi} \sum_{k=0}^{n} \int_{0}^{\pi} \frac{\phi(x)}{\sin \frac{t}{2}} I_{m}\left\{\exp \left(\frac{i t}{2}\right) \prod_{k=1}^{n} \frac{\exp (i t)+d_{k}}{1+d_{k}}\right\} d t
\end{align*}
$$

$$
\begin{align*}
& \left|\left(\mathrm{C}^{1}, F\right)_{n}^{d_{n}}-\mathrm{f}(\mathrm{x})\right| \\
& = \tag{6.4}\\
& =\left\lvert\, \frac{1}{(n+1) \pi} \sum_{k=0}^{n} \int_{0}^{\pi} \frac{\phi(x)}{\sin _{\frac{t}{2}}^{t}} I_{m}\left\{\exp \left(\frac{i t}{2}\right) \prod_{k=1}^{n} \frac{\exp (i t)+d_{k}}{1+d_{k}}\right\} d t\right. \\
& \quad \leq \frac{1}{(n+1) \pi} \sum_{k=0}^{n} \int_{0}^{\pi} \frac{|\phi(x)|}{\left|\sin \frac{t}{2}\right|} I_{m}\left\{\exp \left(\frac{i t}{2}\right) \prod_{k=1}^{n} \frac{\exp (i t)+d_{k}}{1+d_{k}}\right\} d t \\
& = \\
& =\frac{1}{(n+1) \pi} \sum_{k=0}^{n} \int_{0}^{\pi} \frac{\phi(x)}{\sin \frac{t}{2}}\left\{I_{m}\left\{\exp \left(\frac{i t}{2}\right)\left\{\exp \left\{\frac{\left(U_{n}-1\right) i t}{2}-\frac{s_{n} t^{2}}{4}\right\}\right\}+\mathrm{O}\left(S_{n} t^{3}\right)\right\} d t\right. \\
& = \\
& \leq \left\lvert\, \frac{1}{(n+1) \pi} \sum_{k=0}^{n} \int_{0}^{\pi} \frac{\phi(x)}{\sin \frac{t}{2}}\left\{\sin \left(\frac{\mathrm{U}_{\mathrm{n}} \mathrm{t}}{2}\right) \exp \left(\frac{-\mathrm{S}_{\mathrm{n}} \mathrm{t}^{2}}{4}\right)+\mathrm{O}\left(S_{n} t^{3}\right)\right\}\right. \tag{6.5}\\
& \left.\leq=0 \int_{0}^{\pi} \frac{\phi(x)}{\sin \frac{t}{2}} \sin \left(\frac{\mathrm{U}_{\mathrm{n}} \mathrm{t}}{2}\right) \exp \left(\frac{-\mathrm{S}_{\mathrm{n}} \mathrm{t}^{2}}{4}\right) d t \right\rvert\, \\
& \quad+\left|\frac{1}{(n+1) \pi} \sum_{k=0}^{n} \int_{0}^{\pi} \frac{\phi(x)}{\sin \frac{t}{2}}\left\{\mathrm{O}\left(S_{n} t^{3}\right)\right\}\right| \\
& =\left|\mathrm{I}_{1}\right|+\left|\mathrm{I}_{2}\right|
\end{align*}
$$

On Approximation of a function $\mathbf{f} \mathbf{\epsilon}\left(L_{p}, \xi(t)\right)$ Class by $(\mathbf{C}, 1)\left[F, \mathbf{d}_{n}\right]$
 Means

Then

$$
\left|\mathrm{I}_{1}\right|=\frac{1}{(n+1) \pi} \sum_{k=0}^{n} \int_{0}^{\pi} \frac{|\phi(x)|}{\sin \frac{t}{2}} \sin \left(\frac{\mathrm{U}_{\mathrm{n}} \mathrm{t}}{2}\right) \exp \left(\frac{-\mathrm{S}_{\mathrm{n}} \mathrm{t}^{2}}{4}\right) d t .
$$

Applying Lemma 2

$$
\begin{align*}
\left|\mathrm{I}_{1}\right|= & \int_{0}^{\pi}|\phi(x)| K_{n}(x) \mathrm{dt} \\
& =\left[\int_{0}^{\frac{\pi}{n+1}}+\int_{\frac{\pi}{n+1}}^{\pi} \cdot\right]|\phi(x)| K_{n}(x) \mathrm{dt} \\
& =\mathrm{I}_{1.1}+\mathrm{I}_{1.2} \tag{6.6}
\end{align*}
$$

Now $\mathrm{I}_{1.1}=\int_{0}^{\frac{\pi}{n+1}}|\phi(x)| K_{n}(x) \mathrm{dt}$
Applying Hölder's inequality

$$
\begin{align*}
& =\left[\int_{0}^{\frac{\pi}{n+1}}\left\{\frac{t|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right\}^{p} d t\right]^{1 / p}\left[\int_{0}^{\frac{\pi}{n+1}}\left\{\frac{K_{n}(t) \xi(t)}{t \sin ^{\beta} t}\right\}^{q} d t\right]^{1 / q} \\
& =\mathrm{O}\left(\frac{1}{(n+1)}\right) \cdot \mathrm{O}(\mathrm{n}+1)\left[\int_{0}^{\frac{\pi}{n+1}}\left\{\frac{\xi(t)}{t^{\beta+1}}\right\}^{q} d t\right]^{1 / q} \\
& =\xi\left(\frac{1}{(n+1)}\right)\left[\int_{0}^{\left.\frac{\pi}{n+1}\left\{t^{-(\beta+1)}\right\}^{q} d t\right]^{1 / q}}\right. \\
& =\xi\left(\frac{1}{(n+1)}\right)\left[\int_{0}^{\frac{\pi}{n+1}} t^{-(\beta+1) q} d t\right]^{1 / q} \\
& =\mathrm{O}(n+1)^{\beta+1 / p} \xi\left(\frac{1}{(n+1)}\right) \tag{6.7}
\end{align*}
$$

Then $\mathrm{I}_{1.2}=\int_{\frac{\pi}{n+1}}^{\pi} .|\phi(x)| K_{n}(x) \mathrm{dt}$.
Applying Hölder's inequality

$$
\begin{aligned}
& =\left[\int_{\frac{\pi}{n+1}}^{\pi}\left\{\frac{t^{-\delta}|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right\}^{p} d t\right]^{1 / p}\left[\int_{\frac{\pi}{n+1}}^{\pi}\left\{\frac{K_{n}(t) \xi(t)}{t^{-\delta} \sin ^{\beta} t}\right\}^{q} d t\right]^{1 / q} \\
& =\mathrm{O}(n+1)^{\delta} \quad\left[\int_{\frac{\pi}{n+1}}^{\pi}\left\{\frac{\xi(t)}{t^{-\delta} t \sin ^{\beta} t}\right\}^{q} d t\right]^{1 / q}
\end{aligned}
$$

$$
\begin{align*}
& =\mathrm{O}(n+1)^{\delta} \quad \xi\left(\frac{1}{(n+1)}\right)\left[\int_{\frac{\pi}{n+1}}^{\pi}\left\{\frac{\xi(t)}{t^{\beta+1-^{\delta}}}\right\}^{q} d t\right]^{1 / q} \\
& =\mathrm{O}(n+1)^{\delta} \quad \xi\left(\frac{1}{(n+1)}\right)\left[\int_{1 / \pi}^{n+1 / \pi}\left\{\frac{\xi(1 / y)}{y^{-\beta-1+\delta}}\right\}^{q} \frac{d y}{y^{2}}\right]^{1 / q} \because t=\frac{1}{y} \\
& =\mathrm{O}(n+1)^{\beta+1 / p} \xi\left(\frac{1}{(n+1)}\right) \tag{6.8}
\end{align*}
$$

Now

$$
\begin{align*}
\left|\mathrm{I}_{2}\right| & =\left[\int_{0}^{\frac{\pi}{n+1}}+\int_{\frac{\pi}{n+1}}^{\pi} \cdot\right]|\phi(x)| K_{n}(x) \mathrm{dt} \\
& =\mathrm{I}_{2.1}+\mathrm{I}_{2.2} \tag{6.9}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\mathrm{I}_{2.1}=\mathrm{O}(n+1)^{\beta+1 / p} \xi\left(\frac{1}{(n+1)}\right) \tag{6.10}
\end{equation*}
$$

Now

$$
\mathrm{I}_{2.2}=\int_{\frac{\pi}{n+1}}^{\pi} \cdot|\phi(x)| K_{n}(x) \mathrm{dt}
$$

Applying Hölder's inequality

$$
\begin{align*}
& =\left[\int_{\frac{\pi}{n+1}}^{\pi}\left\{\frac{t^{-\delta}|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right\}^{p} d t\right]^{1 / p}\left[\int_{\frac{\pi}{n+1}}^{\pi}\left\{\frac{K_{n}(t) \xi(t)}{t^{-\delta} \sin ^{\beta} t}\right\}^{q} d t\right]^{1 / q} \\
& =\mathrm{O}(n+1)^{\delta} \cdot \mathrm{O}(\mathrm{n}+1)\left[\int_{\frac{\pi}{n+1}}^{\pi}\left\{\frac{\xi(t)}{t^{-\delta} \sin \beta}\right\}^{q} d t\right]^{1 / q} \\
& =\mathrm{O}(n+1)^{\delta+1} \quad \xi\left(\frac{1}{(n+1)}\right)\left[t^{(\delta-\beta)+1 / q}\right] \pi / n+1 \\
& =\mathrm{O}(n+1)^{\beta+1 / p} \quad \xi\left(\frac{1}{(n+1)}\right) \tag{6.11}
\end{align*}
$$

Thus combining (6.5) to (6.11) we set

$$
\left|\left(\mathrm{C}^{1}, F\right)_{n}^{d_{n}}-\mathrm{f}(\mathrm{x})\right|=\mathrm{O}\left\{(n+1)^{\beta+1 / p} \xi\left(\frac{1}{(n+1)}\right)\right\}
$$

On Approximation of a function $f \in \mathbf{W}\left(L_{p}, \xi(t)\right)$ Class by $(\mathbf{C}, 1)\left[F, \mathbf{d}_{n}\right]$
 Means

$$
\left\|\left(\mathrm{C}^{1}, F\right)_{n}^{d_{n}}-\mathrm{f}(\mathrm{x})\right\|_{\mathrm{p}}=\left\{\int_{0}^{2 \pi} O\left\{(n+1)^{\beta+1 / p} \xi\left(\frac{1}{(n+1)}\right)\right\}^{p} d x\right\}^{1 / p}
$$

This completes the proof of the main theorem.

Application: Following corollaries can be derived from our main theorem:
Corollary1. If $\beta=0$, and $\xi(t)=t^{\alpha}$, then the degree of approximation of a function $f \in \operatorname{Lip}(\alpha, p), 0<\alpha \leq 1 \quad$ is given by

$$
\left\|\left(\mathrm{C}^{1}, F\right)_{n}^{d_{n}}-\mathrm{f}(\mathrm{x})\right\|_{\mathrm{p}}=\mathrm{O}\left\{\frac{1}{(n+1)^{\alpha-1 / p}}\right\}
$$

Corollary2. If $p \rightarrow \infty$ and condition from corollaries 1 .

$$
\left\|\left(\mathrm{C}^{1}, F\right)_{n}^{d_{n}}-\mathrm{f}(\mathrm{x})\right\|_{\infty}=\mathrm{O}\left\{\frac{1}{(n+1)^{\alpha}}\right\}
$$

7. Conclusion

We would like to mention that the matrix $\left[F, d_{n}\right]$ mean and under weaker condition Lip (α, p) given by Shrivastava, Verma and yadav [21] was generalized in 1997. Further our result in generalizing and newer method of summability like $\mathrm{F}(\mathrm{a}, \mathrm{q})$, (f, $\left.d_{n}\right)(e, c)$ and Nörlund mean to summable infinite series. Our result in above mentioned special cases as well.

Acknowledgement- We are thankful to the reviewer and editor for constructive as well as creative suggestions.

References

[1] Alexits, G., (1961), "Convergence problems of orthogonal series" pergamon press, London.
[2] Chandra, P., (1975), "On the degree of approximation of functions belonging to Lipschitz class", Nanta Math, 8, 88-91.
[3] Deepmala, Mishra, L. N., and Mishra, V. N., (2014), "Trigonometric Approximation of Signals (Functions) belonging to the \$W (L_r, \xi(t)), (r lgeq 1)-\$ class by (E, q) ($\mathrm{q}>0$)-means of the conjugate series of its Fourier series", GJMS Special Issue for Recent Advances in Mathematical Sciences and Applications-13, Global Journal of Mathematical Sciences, 2(2), 61-69.
[4] Jakimovsky, A., (1959), "A generalization of Lototsky method of summability", Michigan Math. J., 6, 277-290.
[5] Karamata, J., (1935), "Theorems sur la sommabilite exponentielle et d'autres sommabilities s'y" Rattachant, Mathematica (Cluj.) 9, 164-178.
[6] Khan, H. H., (1974), "On degree of approximation of function belonging to the class Lip (α, p)", "Indian J. pure Appl. Math, 5(2), 132-136
[7] Lal, S., and J. K. Kushwaha,, (2009). "Degree of approximation of Lipschitz function by (C, 1)(E, q)means of its Fourier series", International Math. Forum, 4(43), 2101-2107.
[8] Lal, S., and Singh, P. N., (2002), "On approximation of $\operatorname{Lip}(\xi(t), p)$ function $\operatorname{by}(\mathrm{C}, 1)(\mathrm{E}, 1)$ means of its Fourier series". Indian J.Pure Appl. Math. 33(9), September 1443-1449
[9] Lorch, L., and Newman, D. J., (1962) "On the [F, d d_{n}] summation of Fourier series", Comm. Pure Appl. Math., 15,109-118.
[10] Meir, A., (1962), "On the [F, $\left.\mathrm{d}_{n}\right]$ - transformation of A. Jakimovsky", Bull. Res. Council of Israel 10 F (1962), 165-187.
[11] Mishra, L.N., Mishra, V. N., Khatri, K., and Deepmala, (2014), "On The Trigonometric approximation of signals belonging to generalized weighted Lipschitz $\$ W\left(L^{\wedge} \mathrm{r}, ~\right.$ xi (t)) ($\mathrm{r} \backslash \mathrm{geq} 1$)-\$ class by matrix $\$\left(\mathrm{C}^{\wedge} 1 . \mathrm{N} _\mathrm{p}\right) \$$ Operator of conjugate series of its Fourier series", Applied Mathematics and Computation, 237, 252-263.
[12] Mishra, L.N., Raiz, M., Rathour, L., Mishra, V. N.,(2022), "Tauberian theorems for weighted means of double sequences in intuitionistic fuzzy normed spaces", Yugoslav Journal of Operations Research,32(3),377-388. DOI:https://doi.org/10.2298/YJOR210915005M.

Means

[13] Mishra, V.N., and Mishra, L.N., (2012), "Trigonometric Approximation of Signals (Functions) in Lp- norm", International Journal of Contemporary Mathematical Sciences, 7(19), 909-918.
[14] Mishra, V.N., Khatri, K., and Mishra, L.N., (2013), "Using Linear Operators to Approximate Signals of Lip (α, p), ($\mathrm{p} \geq 1$)-Class", Filomat, 27:2, 353-363, DOI 10.2298/FIL1302353M
[15] Miracle, C. L., (1963), "Some regular [F, d ${ }_{n}$] matrices with complex element'", Canadian J. Math. 15, 503-525.
[16] Nigam, H. K., (2011), "The degree of approximation of a function belonging to $\mathrm{W}\left(L_{r}, \xi(t)\right)$ class by (C, 1) (E, q) means". Tamkang Journal of Mathematics, 42 (1), 31 - 37.
[17] Quereshi, K., (1982), "On the degree of approximation of a function belonging to $\mathrm{W}\left(\mathrm{L}_{\mathrm{p}}, \xi(\mathrm{t})\right)$ class". Indian J. Pure and Appl. Math, 13(4), 471 - 475.
[18] Sahney, B. N. and Goel, D. S., (1973), "On the degree of continuous function", Ranchi University Math. Jour. 4, $50-53$.
[19] Titchmarsh, E.C., (1939), "The theory of function", Oxford University Press, 402-403.
[20] Shrivastava, U.K. and Rathore, C. J., (2008), "Approximation of a function belonging to $\mathrm{W}\left(L_{P},(\xi(t))\right.$ class by $\left[\mathrm{F}, \mathrm{d}_{\mathrm{n}}\right]$ mean of Fourier series" by Thesis.
[21] Shrivastava U. K., Verma, S. K., and R. S. Yadav, (1997), "Approximation of function of class Lip (α, p) by [$\mathrm{F}, \mathrm{d}_{\mathrm{n}}$] means". Indian J. Pure Appl. Math, 28(2), 211-224.
[22] Zygmund, A., (1959), "Trigonometric Series", 2 ${ }^{\text {nd }}$ rev. ed., Vol. 1, Cambridge University Press.

