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Abstract 

In this work, we present a weak Galerkin (WG) finite element 

scheme for grad-div elliptic problems with stabilizers. Optimal orders 

of convergence are established for the WG approximations in discrete 

energy norm. The WG method as applied to grad-div problem uses 

discrete weak divergence with appropriately defined stabilizations that 

enforce a weak continuity of the approximating functions. A numerical 

test is presented to demonstrate the effectiveness of the proposed 

method. 

Keywords: 𝐇(div; Ω)-elliptic problems, weak Galerkin finite element method, weak 

divergence, polygonal mesh. 

2020 AMS Classifications: 35J47, 65N15, 65N30. 

1. Introduction 

In this work, we consider a grad-div elliptic problem of the form 
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−∇(𝛼∇ ⋅ 𝐮) + 𝛽𝐮  = 𝐟 in Ω                                                                                                   (1.1)
𝐮 ⋅ 𝐧  = 0 on ∂Ω                                                                                              (1.2)

 

where Ω ⊂ ℝ2 is a convex polygonal domain with boundary ∂Ω and 𝐧 stands for outward 

unit normal vector to the boundary ∂Ω. Further, we assume that 𝛼 and 𝛽 are uniformly 

positive coefficients in 𝐿∞(Ω), and 𝐟: Ω ⊂ ℝ2 → [𝐿2(Ω)]2 is the given source 

function. The above system of equations is also known as 𝐇(div; Ω)-elliptic 

problems. 

The significance of 𝐇(div; Ω)-elliptic problems have caused robust research into coherent 

numerical schemes. Numerical approximations for 𝐇(div; Ω) elliptic problems have been 

studied extensively in existing literature (cf. [2, 3,6,7,8,10,12] to name a few). Recently, 

the newly introduced weak Galerkin finite element method (WG-FEM) (cf. [13]) has 

attracted much attention in the field of numerical partial differential equations. The WG 

finite element approximations are derived from weak formulations of the problems by 

replacing the involved differential operators by its weak forms and adding parameter free 

stabilizers. In fact, WG formulation is a natural extension of conforming finite element 

formulation when nonconforming elements are used. The concept of weak derivatives 

makes WG a widely applicable numerical technique for a large variety of PDEs arising 

from the mathematical modeling of practical problems in science and engineering. We refer 

to [13,14] for full scale study of theory and algorithm of WG-FEMs. Present work deals 

with the convergence analysis of stabilizer based WG-FEM for 𝐇(div; Ω)-elliptic problems 

on the WG finite element space ([𝒫𝑘(𝑇0)]2, [𝒫𝑘−1(∂𝑇)]2, 𝒫𝑘−1(𝑇)), where 𝑘 ≥ 1 is the 

degree of polynomials in the interior of the element 𝑇. A comparative study on weak 

Galerkin finite element methods (WGFEMs) with the widely accepted discontinuous 

Galerkin finite element methods (DGFEMs) and the classical mixed finite element methods 

(MFEMs) can be found in [9]. 

In this paper, we will use standard notation for Sobolev spaces and norms (cf. [1]). For any 

domain 𝒟 ⊂ ℝ2 and integer 𝑙 ≥ 0, 𝐻𝑙(𝒟) denotes the standard Sobolev space of order 𝑙 

equipped with the norm ∥⋅∥𝑙,𝒟 and inner product (⋅,⋅)𝑙,𝒟. The space 𝐻0(𝒟) coincides with 

𝐿2(𝒰), for which the norm and the inner product are denoted by ∥⋅∥𝒟 and (⋅,⋅)𝒟, 

respectively. For our convenience, we remove the subscript 𝒟 in the norm and inner 
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product notation when 𝒟 = Ω. In addition, we stick to following usual vector valued 

Sobolev spaces (see, Chap. 1 in [5] or [11]) 

𝐇(div; Ω)  = {𝐯: 𝐯 ∈ [𝐿2(Ω)]2, ∇ ⋅ 𝐯 ∈ 𝐿2(Ω)},
𝐇𝟎(div; Ω)  = {𝐯 ∈ 𝐇(div; Ω), 𝐯 ⋅ 𝐧 = 0 on ∂Ω},

𝐇𝟏(div; Ω)  = {𝐯 ∈ 𝐇𝟏(Ω), ∇ ⋅ 𝐯 ∈ 𝐻1(Ω)},

 

where 𝐇1(Ω) = [𝐻1(Ω)]2. In general, 𝐇𝑙(𝒟) = [𝐻𝑙(𝒟)]2 denotes the vector valued 

Hilbertian Sobolev spaces. 

We end this section with the variational formulation of (1.1) - (1.2): Find 𝐮 ∈ 𝐇𝟎(div; Ω) 

such that 

                    ∫  
Ω

𝛼div 𝐮 ⋅ div 𝐯𝑑𝑥 + ∫  
Ω

𝛽𝐮 ⋅ 𝐯𝑑𝑥 = ∫  
Ω

𝐟 ⋅ 𝐯𝑑𝑥 ∀𝐯 ∈ 𝐇𝟎(div; Ω).       (1.3) 

Existence and uniqueness of the solution of (1.3) is ensured by the Lax-Milgram Lemma 

[4]. 

2. Weak Galerkin Spaces and Schemes 

This section deals with the weak Galerkin finite element discretization for the problem 

(1.1) - (1.2) and introduces the definition of the weak divergence operator. 

Consider a partition 𝒯ℎ of the domain Ω consisting of polygons and satisfying a set 

of conditions specified in [14]. Denote by ℰℎ the set of all edges in 𝒯ℎ and let ℰℎ
0 = ℰℎ ∖

∂Ω be the set of all interior edges. For every element 𝑇 ∈ 𝒯ℎ, we denote by |𝑇| the measure 

of 𝑇 and by ℎ𝑇 its diameter, and mesh size ℎ = max𝑇∈𝒯ℎ
 ℎ𝑇. 

Let 𝑇 be any polygonal domain with interior 𝑇0 and boundary ∂𝑇. A weak function 

on the region 𝑇 refers to a pair of vector valued functions 𝐯 = {𝐯0, 𝐯𝑏} such that 𝐯0 ∈

[𝐿2(𝑇)]2 and 𝐯𝑏 ⋅ 𝜼 ∈ 𝐿2(∂𝑇), where 𝜼 is the unit outward normal direction to ∂𝑇. We now 

introduce following weak Galerkin space 

    ∑ℎ   = {𝝈ℎ = {𝝈0, 𝝈𝑏}: {𝝈0, 𝝈𝑏}|𝑇 ∈ [𝒫𝑘(𝑇0)]2 × [𝒫𝑘−1(𝑒)]2, 𝑒 ⊂ ∂𝑇, 𝑇 ∈ 𝒯ℎ}     (2.1) 
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For the well-possed weak Galerkin approximation, we would like to emphasize that there 

is only a single value 𝝈𝑏 defined on each edge 𝑒 ∈ ℰℎ (cf. [14, 15]). Accordingly, we define 

following discrete weak Galerkin space 

𝐕ℎ = {𝝈ℎ = {𝝈0, 𝝈𝑏} ∈ ∑  

ℎ

  : [𝝈𝑏]𝑒 = 𝟎∀𝑒 ∈ ℰℎ
0}. 

Here, [⋅]𝑒 denotes the jump across an interior edge 𝑒 ∈ ℰℎ
0. Subsequently, we define 

𝐕ℎ
0 = {𝝈ℎ = {𝝈0, 𝝈𝑏} ∈ 𝐕ℎ: 𝝈𝑏 ⋅ 𝐧 = 0 on ∂Ω} 

Next, we proceed to define the discrete weak divergence operator. For any 𝐯ℎ =

{𝐯0, 𝐯𝑏} ∈ ∑ℎ  , the discrete weak divergence operator, denoted by ∇𝑤 ⋅ 𝐯ℎ, defined as the 

unique polynomial ∇𝑤 ⋅ 𝐯ℎ ∈ 𝒫𝑘−1(𝑇) that satisfies the following equation 

                      (∇𝑤 ⋅ 𝐯ℎ, 𝜑)𝑇 = − ∫  
𝑇

𝐯0 ⋅ (∇𝜑)𝑑𝑇 + ∫  
∂𝑇

𝐯𝑏 ⋅ 𝜼𝜑𝑑𝑠 ∀𝜑 ∈ 𝒫𝑘−1(𝑇).     (2.2) 

For each element 𝑇 ∈ 𝒯ℎ, denote by 𝐐0
𝑘 the usual 𝐿2 projection operator from [𝐿2(𝑇)]2 onto 

[𝒫𝑘(𝑇)]2. For each edge 𝑒 ∈ ℰℎ, denote by 𝐐𝑏
𝑗
 the 𝐿2 projection operator from [𝐿2(𝑒)]2 

onto [𝒫𝑗(𝑒)]
2
. For 𝐮 ∈ 𝐇1(div; Ω), we shall combine 𝐐0

𝑘 with 𝐐𝑏
𝑗
 by writing 𝐐ℎ𝐮 =

{𝐐0
𝑘𝐮, 𝐐𝑏

𝑗
𝐮}. Apart 𝐐ℎ projection, let ℚℎ

𝑟  be the usual 𝐿2 projection operator from 𝐿2(𝑇) 

onto 𝒫𝑟(𝑇), 𝑟 ≥ 0. For both projection operators, the following identity holds (cf. [15]) 

                                      ℚℎ
𝑘−1(∇ ⋅ 𝐯) = ∇𝑤 ⋅ (𝐐ℎ𝐯)∀𝐯 ∈ 𝐇1(div; Ω),                        (2.3) 

where 𝐐ℎ𝐯 = {𝐐0
𝑘𝐯, 𝐐𝑏

𝑘−1𝐯}. 

Now, we recall following crucial approximation properties for local projections 

𝐐0
𝑘 and ℚℎ

𝑟 . For details, we refer to ([14,15]). 

Lemma 2.1. Let 𝒯ℎ be a finite element partition of Ω satisfying the shape 
regularity assumption as specified in [14]. Then, we have 
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 ∑  

𝑇∈𝒯ℎ

  ∥∥𝐰 − 𝐐0
𝑘𝐰∥∥𝑇

2
≤ 𝐶ℎ2(𝑠+1) ∥ 𝐰 ∥𝑠+1

2 ,  0 ≤ 𝑠 ≤ 𝑘,

 ∑  

𝑇∈𝒯ℎ

  ∥∥∇(𝐰 − 𝐐0
𝑘𝐰)∥∥𝑇

2
≤ 𝐶ℎ2𝑠 ∥ 𝐰 ∥𝑠+1

2 ,  0 ≤ 𝑠 ≤ 𝑘,

 ∑  

𝑇∈𝒯ℎ

  {∥∥𝑧 − ℚℎ
𝑟 𝑧∥∥𝑇

2
+ ℎ𝑇

2 ∥∥∇(𝑧 − ℚℎ
𝑟 𝑧)∥∥𝑇

2
} ≤ 𝐶ℎ2(𝑠+1) ∥ 𝑧 ∥𝑠+1

2 ,  0 ≤ 𝑠 ≤ 𝑟.

 

Let 𝑇 be an element with 𝑒 as an edge. For any function 𝜑 ∈ 𝐻1(𝑇), the 

following trace inequality holds true (see, [14] for details) 

                                      ∥ 𝜑 ∥𝑒
2≤ 𝐶(ℎ𝑇

−1 ∥ 𝜑 ∥𝑇
2 + ℎ𝑇 ∥ ∇𝜑 ∥𝑇

2 ).                   (2.4) 

For any piecewise polynomial 𝜑 of degree 𝑝 on 𝒯ℎ, there exists constant 𝐶 = 𝐶(𝑝) such 

that (cf. [14]) 

                                ∥ ∇𝜑 ∥𝑇≤ 𝐶(𝑝)ℎ𝑇
−1 ∥ 𝜑 ∥𝑇  ∀𝑇 ∈ 𝒯ℎ                                (2.5) 

3. Error Analysis for the WG-FEM with Stabilizer 

Here, we propose a WG-FEM with stabilizer for the problem (1.1)-(1.2) based on the local 

weak Galerkin space (𝒫𝑘
2, 𝒫𝑘−1

2 , 𝒫𝑘−1). 

Now, we introduce a bilinear map 𝒜1: 𝐕ℎ × 𝐕ℎ → ℝ to be used in this section as follows  

𝒜1(𝐮ℎ, 𝐯ℎ) = (𝛼∇𝑤 ⋅ 𝐮ℎ , ∇𝑤 ⋅ 𝐯ℎ) + (𝛽𝐮0, 𝐯0) + 𝒮(𝐮ℎ , 𝐯ℎ),         (3.1) 

where ∇𝑤. is the discrete weak divergence operator as defined in (2.2) and the stabilizer 

𝒮: 𝐕ℎ × 𝐕ℎ → ℝ is defined as 

                               𝒮(𝐮ℎ , 𝐯ℎ) = ∑  𝑇∈𝒯ℎ
ℎ𝑇

−1⟨𝐐𝑏
𝑘−1𝐮0 − 𝐮𝑏 , 𝐐𝑏

𝑘−1𝐯0 − 𝐯𝑏⟩
∂𝑇

.           (3.2) 

Here, ⟨⋅,⋅⟩∂𝑇 denotes the 𝐿2 inner product on ∂𝑇 and we write 
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⟨⋅,⋅⟩∂𝑇 = ∑  

𝑒⊂∂𝑇

⟨⋅,⋅⟩𝑒 

where ⟨⋅,⋅⟩𝑒 denotes the 𝐿2 inner product on 𝑒 ∈ ℰℎ. 

Then, it is easy to verify that the weak finite element space 𝐕ℎ
0 is a normed linear 

space with respect to following triple-bar norm given by 

                    
∥∥𝐯ℎ∥∥1

2 ∶= ∑  𝑇∈𝒯ℎ
  ∥∥
∥𝛼

1

2∇𝑤 ⋅ 𝐯ℎ∥∥
∥

𝑇

2

+ ∥∥
∥𝛽

1

2𝐯0∥∥
∥

𝑇

2

+ ∑  𝑇∈𝒯ℎ
 ℎ𝑇

−1∥∥𝐐𝑏
𝑘−1𝐯0 − 𝐯𝑏∥∥∂𝑇

2

 = 𝒜1(𝐯ℎ, 𝐯ℎ),  𝐯ℎ = {𝐯0, 𝐯𝑏} ∈ 𝐕ℎ
0.                                                  (3.3)

  

Weak Galerkin Algorithm 1 (WGALG-1). A numerical approximation for (1.1)-(1.2) 

can be obtained by seeking 𝐮ℎ = {𝐮0, 𝐮𝑏} ∈ 𝐕ℎ
0 such that 

                      𝒜1(𝐮ℎ , 𝐯ℎ) = (𝐟, 𝐯0)∀𝐯ℎ = {𝐯0, 𝐯𝑏} ∈ 𝐕ℎ
0.                                            (3.4) 

The well-posedness for the problem (3.4) follows from the fact that 𝐕ℎ
0 is a normed linear 

space with respect to the triple-bar norm. 

Before proceeding further, we derive following results for our later analysis. 

Lemma 3.1. For any 𝐯ℎ = {𝐯0, 𝐯𝑏} ∈ 𝐕ℎ, we have 

                                           ∑  𝑇∈𝒯ℎ
∥∥∇ ⋅ 𝐯0∥∥𝑇

2 ≤ 𝐶∥∥𝐯ℎ∥∥1
2
                                                (3.5) 

Proof. For 𝐯ℎ = {𝐯0, 𝐯𝑏} ∈ 𝐕ℎ, using the integration by parts and weak divergence 

operator, we obtain 

(∇ ⋅ 𝐯0, ∇ ⋅ 𝐯0)𝑇 =  −(𝐯0, ∇(∇ ⋅ 𝐯0))
𝑇

+ ⟨𝐯0 ⋅ 𝜼, ∇ ⋅ 𝐯0⟩∂𝑇

=  −(𝐯0, ∇(∇ ⋅ 𝐯0))
𝑇

+ ⟨𝐯𝑏 ⋅ 𝜼, ∇ ⋅ 𝐯0⟩∂𝑇

 +⟨(𝐯0 − 𝐯𝑏) ⋅ 𝜼, ∇ ⋅ 𝐯0⟩∂𝑇

= (∇𝑤 ⋅ 𝐯ℎ, ∇ ⋅ 𝐯0)𝑇 + ⟨𝐐𝑏
𝑘−1𝐯0 − 𝐯𝑏 , (∇ ⋅ 𝐯0)𝜼⟩

∂𝑇
.
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Then, trace inequality (2.4) and inverse estimate (2.5) yields 

∥∥∇ ⋅ 𝐯0∥∥𝑇
2 ≤ 𝐶 (∥∥∇𝑤 ⋅ 𝐯ℎ∥∥𝑇∥∥∇ ⋅ 𝐯0∥∥𝑇

+ ℎ𝑇
−1/2

∥∥𝐐𝑏
𝑘−1𝐯0 − 𝐯𝑏∥∥∂𝑇∥∥∇ ⋅ 𝐯0∥∥𝑇

), 

which leads to Lemma 3.1. 

Lemma 3.2. For any 𝐯ℎ = {𝐯0, 𝐯𝑏} ∈ 𝐕ℎ, we have 

                               ∥∥𝐯0 − 𝐐𝑏
𝑘−1𝐯0∥∥

2
≤ 𝐶ℎ∥∥𝐯0∥∥1,𝑇

2 ,  𝑇 ∈ 𝒯ℎ .                                      (3.6) 

Proof. For any 𝐯ℎ = {𝐯0, 𝐯𝑏} ∈ 𝐕ℎ, we have 

∥∥𝐯0 − 𝐐𝑏
𝑘−1𝐯0∥∥  ≤ ∥∥𝐯0 − 𝐐0

𝑘−1𝐯0∥∥∂𝑇
+ ∥∥𝐐0

𝑘−1𝐯0 − 𝐐𝑏
𝑘−1𝐯0∥∥∂𝑇

 ≤ 𝐶(∥∥𝐯0 − 𝐐0
𝑘−1𝐯0∥∥∂𝑇

+ ∥∥𝐐0
𝑘−1𝐯0 − 𝐯0∥∥∂𝑇

)

 ≤ 𝐶∥∥𝐐0
𝑘−1𝐯0 − 𝐯0∥∥∂𝑇

.

 

Now, by using the trace inequality (2.4) and Lemma 2.1, we obtain 

∥∥𝐐0
𝑘−1𝐯0 − 𝐯0∥∥∂𝑇

2
 ≤ 𝐶 (ℎ𝑇

−1∥∥𝐐0
𝑘−1𝐯0 − 𝐯0∥∥𝑇

2
+ ℎ𝑇∥∥∇(𝐐0

𝑘−1𝐯0 − 𝐯0)∥∥𝑇

2
)

 ≤ 𝐶ℎ𝑇∥∥𝐯0∥∥1,𝑇
2 ≤ 𝐶ℎ𝑇(∥∥𝐯0∥∥𝑇

2 + ∥∥∇ ⋅ 𝐯0∥∥𝑇
2 ).

 

This completes the rest of the proof. 

Now, we turn our analysis towards the error estimates. For this purpose, we write 

𝐮 − 𝐮ℎ = (𝐮 − 𝐐ℎ𝐮) + (𝐐ℎ𝐮 − 𝐮ℎ), 

where 𝐐ℎ𝐮 = {𝐐0
𝑘𝐮, 𝐐𝑏

𝑘−1𝐮}. For simplicity, we introduce following notation 

                      𝐞ℎ: = (𝐐ℎ𝐮 − 𝐮ℎ) = {𝐐0
𝑘𝐮 − 𝐮0, 𝐐𝑏

𝑘−1𝐮 − 𝐮𝑏}.                                           (3.7) 

Then, we derive following crucial error equation for 𝐞ℎ. 
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Lemma 3.3. Let 𝐞ℎ be the error function given by (3.7). Then, for each 𝐯ℎ = {𝐯0, 𝐯𝑏} ∈

𝐕ℎ
0, we obtain 

                        𝒜1(𝐞ℎ, 𝐯ℎ) = 𝑅1(𝐮, 𝐯ℎ) + 𝑅2(𝐮, 𝐯ℎ) + 𝒮(𝐐ℎ𝐮, 𝐯ℎ),                          (3.8) 

where bilinear maps 𝑅1(⋅,⋅) and 𝑅2(⋅,⋅) are given by 

𝑅1(𝐮, 𝐯ℎ) = ∑  

𝑇∈𝒯ℎ

  ⟨(𝛼∇ ⋅ 𝐮 − ℚℎ
𝑘−1(𝛼∇ ⋅ 𝐮))𝜼, 𝐯0 − 𝐯𝑏⟩

∂𝑇
,                                     (3.9)

𝑅2(𝐮, 𝐯ℎ) = ∑  

𝑇∈𝒯ℎ

  (𝛼ℚℎ
𝑘−1(∇ ⋅ 𝐮) − ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮), ∇𝑤 ⋅ 𝐯ℎ)
𝑇

.                               (3.10) 
 

Proof. For 𝐯ℎ = {𝐯0, 𝐯𝑏} ∈ 𝐕ℎ
0, testing equation (1.1) by 𝐯0, we arrive at 

              − ∑  𝑇∈𝒯ℎ
(∇(𝛼∇ ⋅ 𝐮), 𝐯0)𝑇 + (𝐐0

𝑘(𝛽𝐮), 𝐯0) = (𝐟, 𝐯0)                                     (3.11) 

Then, apply integration by parts to obtain 

                           

(𝐟, 𝐯0) = (𝛽𝐐0
𝑘𝐮, 𝐯0) + ∑  𝑇∈𝒯ℎ

  (𝛼∇ ⋅ 𝐮, ∇ ⋅ 𝐯0)𝑇

 − ∑  𝑇∈𝒯ℎ
  ⟨𝐯0 − 𝐯𝑏, (𝛼∇ ⋅ 𝐮)𝜼⟩∂𝑇 .                                                 (3.12)

 

Here, we have assumed that 𝛽 is piecewise constant and the fact that 

∑  

𝑇∈𝒯ℎ

⟨(𝛼∇ ⋅ 𝐮)𝜼, 𝐯𝑏⟩∂𝑇 = 0 

Now, using the definition (2.2) for 𝐯ℎ with 𝑙 = 𝑘 − 1, we obtain 
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(ℚℎ
𝑘−1(𝛼∇ ⋅ 𝐮), ∇𝑤 ⋅ 𝐯ℎ)

𝑇

 = − (𝐯0, ∇(ℚℎ
𝑘−1(𝛼∇ ⋅ 𝐮)))

𝑇
+ ⟨𝐯𝑏, ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮)𝜼⟩
∂𝑇

 = (∇ ⋅ 𝐯0, ℚℎ
𝑘−1(𝛼∇ ⋅ 𝐮))

𝑇
− ⟨(ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮))𝜼, 𝐯0⟩
∂𝑇

 +⟨ℚℎ
𝑘−1(𝛼∇ ⋅ 𝐮)𝜼, 𝐯𝑏⟩

∂𝑇

 = (∇ ⋅ 𝐯0, ℚℎ
𝑘−1(𝛼∇ ⋅ 𝐮))

𝑇
− ⟨(ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮))𝜼, 𝐯0 − 𝐯𝑏⟩
∂𝑇

   = (∇ ⋅ 𝐯0, 𝛼∇ ⋅ 𝐮)𝑇 − ⟨(ℚℎ
𝑘−1(𝛼∇ ⋅ 𝐮))𝜼, 𝐯0 − 𝐯𝑏⟩

∂𝑇
.                           (3.13)    

 

Then, combine (3.13) and (3.12) to obtain 

                             

(𝐟, 𝐯0) = (𝛽𝐐0
𝑘𝐮, 𝐯0) + (ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮), ∇𝑤 ⋅ 𝐯ℎ)

 − ∑  𝑇∈𝒯ℎ
  ⟨(𝛼∇ ⋅ 𝐮 − ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮))𝜼, 𝐯0 − 𝐯𝑏⟩
∂𝑇

= (𝛽𝐐0
𝑘𝐮, 𝐯0) + (𝛼ℚℎ

𝑘−1(∇ ⋅ 𝐮), ∇𝑤 ⋅ 𝐯ℎ)

 −(𝛼ℚℎ
𝑘−1(∇ ⋅ 𝐮) − ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮), ∇𝑤 ⋅ 𝐯ℎ)

 − ∑  𝑇∈𝒯ℎ
  ⟨(𝛼∇ ⋅ 𝐮 − ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮))𝜼, 𝐯0 − 𝐯𝑏⟩
∂𝑇

= (𝛽𝐐0
𝑘𝐮, 𝐯0) + (𝛼∇𝑤 ⋅ (𝐐ℎ𝐮), ∇𝑤 ⋅ 𝐯ℎ)

 −𝑅1(𝐮, 𝐯ℎ) − 𝑅2(𝐮, 𝐯ℎ).                                                            (3.14)

 

In the last equality, we have used identity (2.3). 

Next, by adding 𝒮(𝐐ℎ𝐮, 𝐯ℎ) both sides to (3.14), we obtain 

             𝒜1(𝐐ℎ𝐮, 𝐯ℎ) = (𝐟, 𝐯0) + 𝑅1(𝐮, 𝐯ℎ) + 𝑅2(𝐮, 𝐯ℎ) + 𝒮(𝐐ℎ𝐮, 𝐯ℎ).                         (3.15) 

Finally, subtracting (3.4) from (3.15) leads to desire result. 

Next result deals with the bounds for the terms in error equation (3.8). 

Lemma 3.4. Let 𝐮 ∈ [𝐻𝑘+1(Ω)]2. Then, for any 𝐯ℎ = {𝐯0, 𝐯𝑏} ∈ 𝐕ℎ
0, we obtain 
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|𝑅1(𝐮, 𝐯ℎ)|  ≤ 𝐶(∥ 𝛼 ∥𝑘,∞)ℎ𝑘 ∥ 𝐮 ∥𝑘+1 ∥∥𝐯ℎ∥∥1,                                                            (3.16)

|𝑅2(𝐮, 𝐯ℎ)|  ≤ 𝐶(∥ 𝛼 ∥1,∞)ℎ𝑘+1 ∥ 𝐮 ∥𝑘+1 ∥∥𝐯ℎ∥∥1,                                                        (3.17)

|𝒮(𝐐ℎ𝐮, 𝐯ℎ)|  ≤ 𝐶ℎ𝑘 ∥ 𝐮 ∥𝑘+1 ∥∥𝐯ℎ∥∥1.                                                                                (3.18)

 

Proof. For the estimate (3.16), we first note that 

                  

𝑅1(𝐮, 𝐯ℎ) =  ∑  𝑇∈𝒯ℎ
  ⟨(𝛼(∇ ⋅ 𝐮) − ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮))𝜼, 𝐯0 − 𝐯𝑏⟩
∂𝑇

=  ∑  𝑇∈𝒯ℎ
  ⟨(𝛼(∇ ⋅ 𝐮) − ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮))𝜼, 𝐯0 − 𝐐𝑏
𝑘−1𝐯0⟩

∂𝑇

 + ∑  𝑇∈𝒯ℎ
  ⟨(𝛼(∇ ⋅ 𝐮) − ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮))𝜼, 𝐐𝑏
𝑘−1𝐯0 − 𝐯𝑏⟩

∂𝑇

: = 𝑅1,1 + 𝑅1,2.                                                                                                 (3.19)

 

For 𝑅1,1, we use the Cauchy-Schwarz inequality, Lemmas 3.1-3.2 and then trace inequality 

(2.4) along with Lemma 2.1 to obtain 

                       

|𝑅1,1| = |∑  𝑇∈𝒯ℎ
  ⟨(𝛼(∇ ⋅ 𝐮) − ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮))𝜼, 𝐯0 − 𝐐𝑏
𝑘−1𝐯0⟩

∂𝑇
|

≤ 𝐶 ∑  𝑇∈𝒯ℎ
 ℎ𝑇

1

2 ∥∥𝛼(∇ ⋅ 𝐮) − ℚℎ
𝑘−1(𝛼∇ ⋅ 𝐮)∥∥∂𝑇

(∥∥𝐯0∥∥𝑇
+ ∥∥∇ ⋅ 𝐯0∥∥𝑇)

≤ 𝐶 (∑  𝑇∈𝒯ℎ
 ℎ𝑇∥∥𝛼(∇ ⋅ 𝐮) − ℚℎ

𝑘−1(𝛼∇ ⋅ 𝐮)∥∥∂𝑇

2
)

1

2

 × (∑  𝑇∈𝒯ℎ
  (∥∥𝐯0∥∥𝑇

2 + ∥∥∇ ⋅ 𝐯0∥∥𝑇
2 ))

1

2

≤ 𝐶(∥ 𝛼 ∥𝑘,∞)ℎ𝑘 ∥ 𝐮 ∥𝑘+1 ∥∥𝐯ℎ∥∥1.                                                              (3.20)

 

Similar arguments yield 
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|𝑅1,2| = | ∑  

𝑇∈𝒯ℎ

  ⟨(𝛼(∇ ⋅ 𝐮) − ℚℎ
𝑘−1(𝛼∇ ⋅ 𝐮))𝜼, 𝐐𝑏

𝑘−1𝐯0 − 𝐯𝑏⟩
∂𝑇

|

≤ 𝐶 ∑  

𝑇∈𝒯ℎ

  ∥∥𝛼(∇ ⋅ 𝐮) − ℚℎ
𝑘−1(𝛼∇ ⋅ 𝐮)∥∥∂𝑇∥∥𝐐𝑏

𝑘−1𝐯0 − 𝐯𝑏∥∥∂𝑇

≤ 𝐶 ( ∑  

𝑇∈𝒯ℎ

 ℎ𝑇∥∥𝛼(∇ ⋅ 𝐮) − ℚℎ
𝑘−1(𝛼∇ ⋅ 𝐮)∥∥∂𝑇

2
)

1
2

 × ( ∑  

𝑇∈𝒯ℎ

 ℎ𝑇
−1∥∥𝐐𝑏

𝑘−1𝐯0 − 𝐯𝑏∥∥∂𝑇

2
)

1
2

≤ 𝐶(∥ 𝛼 ∥𝑘,∞)ℎ𝑘 ∥ 𝐮 ∥𝑘+1 ∥∥𝐯ℎ∥∥1.                                                       (3.21)

 

Then, estimate (3.16) follows from (3.19)-(3.21). 

It follows from Lemma 2.1 that 

         

|𝑅2(𝐮, 𝐯ℎ)|  = |(𝛼ℚℎ
𝑘−1(∇ ⋅ 𝐮) − 𝛼∇ ⋅ 𝐮, ∇𝑤 ⋅ 𝐯ℎ)|

 ≤ |(ℚℎ
𝑘−1(∇ ⋅ 𝐮) − ∇ ⋅ 𝐮, (𝛼 − 𝛼‾)∇𝑤 ⋅ 𝐯ℎ)|

 ≤ 𝐶(∥ 𝛼 ∥1,∞)ℎ|(ℚℎ
𝑘−1(∇ ⋅ 𝐮) − ∇ ⋅ 𝐮, ∇𝑤 ⋅ 𝐯ℎ)|

 ≤ 𝐶(∥ 𝛼 ∥1,∞)ℎ𝑘+1 ∥ 𝐮 ∥𝑘+1 ∥∥𝐯ℎ∥∥1.                                              (3.22)

 

Here, 𝛼‾ denotes the average of 𝛼 and on each element 𝑇 ∈ 𝒯ℎ, following inequality holds 

true (see, [14]). 

                                            ∥ 𝛼‾ − 𝛼 ∥𝐿∞(𝑇)≤ 𝐶ℎ ∥ ∇𝛼 ∥𝐿∞(𝑇).                                                (3.23) 

To estimate the stabilizer term, we use (3.2), inequality (2.4) and Lemma 2.1 to arrive at 
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|𝒮(𝐐ℎ𝐮, 𝐯ℎ)| = | ∑  

𝑇∈𝒯ℎ

 ℎ𝑇
−1⟨𝐐𝑏

𝑘−1(𝐐0
𝑘𝐮) − 𝐐𝑏

𝑘−1𝐮, 𝐐𝑏
𝑘−1𝐯0 − 𝐯𝑏⟩

∂𝑇
|

= | ∑  

𝑇∈𝒯ℎ

 ℎ𝑇
−1⟨𝐐𝑏

𝑘−1(𝐐0
𝑘𝐮 − 𝐮), 𝐐𝑏

𝑘−1𝐯0 − 𝐯𝑏⟩
∂𝑇

|

= | ∑  

𝑇∈𝒯ℎ

 ℎ𝑇
−1⟨𝐐0

𝑘𝐮 − 𝐮, 𝐐𝑏
𝑘−1𝐯0 − 𝐯𝑏⟩

∂𝑇
|

≤  ∑  

𝑇∈𝒯ℎ

 ℎ𝑇
−1∥∥𝐐0

𝑘𝐮 − 𝐮∥∥∂𝑇∥∥𝐐𝑏
𝑘−1𝐯0 − 𝐯𝑏∥∥∂𝑇

≤ ( ∑  

𝑇∈𝑇ℎ

  (ℎ𝑇
−2∥∥𝐐0

𝑘𝐮 − 𝐮∥∥𝑇

2
+ ∥∥∇(𝐐0

𝑘𝐮 − 𝐮)∥∥𝑇

2
))

1
2

 × ( ∑  

𝑇∈𝒯ℎ

 ℎ𝑇
−1∥∥𝐐𝑏

𝑘−1𝐯0 − 𝐯𝑏∥∥∂𝑇

2
)

1
2

≤ 𝐶ℎ𝑘 ∥ 𝐮 ∥𝑘+1 ∥∥𝐯ℎ∥∥1.

 

This completes the proof of Lemma 3.4.  

Theorem 3.1. Let 𝐮 ∈ [𝐻𝑘+1(Ω)]2 be the exact solution for (1.1)-(1.2) and 𝐮ℎ ∈ 𝐕ℎ
0 be the 

weak Galerkin finite element solution of (3.4). Then, there exists a constant 𝐶 such that 

                                        ∥∥𝐐ℎ𝐮 − 𝐮ℎ∥∥1 ≤ 𝐶ℎ𝑘 ∥ 𝐮 ∥𝑘+1.                                                         (3.24) 

Proof. By letting 𝐯ℎ = 𝐞ℎ in the error equation (3.8), we have 

                                  ∥∥𝐞ℎ∥∥1
2 ≤ |𝑅1(𝐮, 𝐞ℎ)| + |𝑅2(𝐮, 𝐞ℎ)| + |𝒮(𝐐ℎ𝐮, 𝐞ℎ)|.                   (3.25) 

Here, 𝐞ℎ is as defined in (3.7). Then the desired estimate (3.24) follows immediately from 

Lemma 3.4 and above estimate (3.25). 
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4. Numerical Section 

In this section, we have tested various numerical examples for the 𝐇(div; Ω) elliptic 

problem (1.1)-(1.2) in Ω, where Ω ⊂ ℝ2. All computations are carried out using the 

MATLAB software. 

For a given finite number of successive iterations (indexed by 𝑖 ), let 𝑒𝑖 be the error 

corresponding to suitable norm on the 𝑖-th iteration, and ℎ𝑖 is corresponding mesh size. 

Then expected order of convergence (EOC) can be defined by 

EOC (𝑒𝑖) =
log (

𝑒𝑖+1
𝑒𝑖

)

log (
ℎ𝑖+1

ℎ𝑖
)

, 

and the order of the convergence is defined as lim𝑖→∞  EOC (𝑒𝑖). 

Example 4.1. Convergence test for 𝐇(div; Ω)-elliptic problem on mixed mesh: Consider 

the problem (1.1)-(1.2) in Ω = [0,1] × [0,1]. The exact solution is set as 

𝐮 = (𝑢1, 𝑢2) = (sin (𝑥 + 𝑦) + cos (𝑥 + 𝑦), exp (𝑥)cos (𝜋𝑦)). 

The right-hand side 𝐟 can be evaluated from the exact solution 𝐮 and the coefficients 𝛼 =

𝑥2 + 𝑦2 + 1 and 𝛽 = 𝑥𝑦 + 3. Mixed meshes are used in this example, 
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Figure 4.1: Initial mixed mesh. 

which is depicted in Figure 4.1. The errors, for the proposed weak Galerkin algorithm, with 

respect to discrete 𝐻1 norm are reported in Table 4.1. WG solutions are shown in Figures 

4.2-4.3 for 𝑘 = 2  and k=3 with ℎ = 1/64.  

Table 4.1: Errors and convergence profile for WG solution in Example 4.1. 

𝑘 ℎ 
1

4
 

1

8
 

1

16
 

1

32
 

1

64
 Order 

1 ∥∥𝐞ℎ∥∥1 
2.4616e
+ 00 

1.3531e
+ 00 

7.0642e
− 01 

3.5875e
− 01 

1.8027e
− 01 

1 

2 ∥∥𝐞ℎ∥∥1 
6.6600e
− 01 

1.7546e
− 01 

4.4610e
− 02 

1.1220e
− 02 

2.8120e
− 03 

2 

3 ∥∥𝐞ℎ∥∥1 
1.1062e
− 01 

1.4333e
− 02 

1.8097e
− 03 

2.2689e
− 04 

2.8390e
− 05 

3 
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Figure 4.2: (Test Example 4.1,   k=2) Component-wise surface plots of WG solution 𝐮ℎ 

for WGALG-1. Plot for the first-component of 𝐮ℎ (left) and plot for second component of 

𝐮ℎ (right). 

 

Figure 4.3: (Test Example 4.1, k=3) Component-wise surface plots of WG solution 𝐮ℎ for 

WGALG-1. Plot for the first-component of 𝐮ℎ (left) and plot for second component of 𝐮ℎ 

(right). 

4. Conclusion 

In this paper, we have developed a weak Galerkin scheme for solving the grad-div elliptic 

problems. Convergence analysis has been carried out on the local weak Galerkin space 

(𝒫𝑘
2, 𝒫𝑘−1

2 , 𝒫𝑘−1). Optimal order of convergence is established for the WG approximation 

in 𝐻1-like norm. 
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