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Abstract 

 

Present analysis is concerned with the problem of water waves 

progressing obliquely towards a rigid curved wall, in deep water. 

Considering the effect of surface tension at the free surface, the 

problem under consideration is attacked for solution by a standard 

Perturbation technique along with the application of Havelock’s 

expansion [1] of water wave potential. The first order corrections to 

the velocity potential and reflection coefficient are obtained in terms 

of integral involving the shape function. These corrections are 

explicitly calculated by assuming two particular shapes of the curved 

wall. 

Keywords: linear theory, curved wall, velocity potential, perturbation theory, 

irrotational flow. 
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1. Introduction 

The purpose of the present investigation is to find an analytical solution for the water 

wave potential of obliquely incident water waves progressing towards a curved wall, 

in deep water in presence of surface tension. As there is no mechanism to absorb the 

incoming energy in the inviscid fluid system, so total reflection of waves by the wall 

is assumed. The interaction of surface waves involving a vertical wall and few of its’ 

generalizations in the presence of surface tension have attracted the attention of many 
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scientists and studied extensively (cf. [2]-[6]). However, the problems involving a 

curved wall have not received much care. The first problem in this field was 

considered by Shaw (cf.[7]) where he employed a technique based on perturbation 

theory that involves the solution of a singular integral equation to obtain the first 

order corrections to the reflection and transmission co-efficients associated with a 

surface piercing nearly vertical barrier in deep water. Mandal and Kar (cf.[8]) studied 

the problem of reflection of water waves by a nearly vertical wall and they used 

simplified perturbation technique. Since then, attempts have been made to study this 

class of water wave problems by applying different mathematical methods (cf.[9]-

[12]). 

Reflection of wave from beaches has an immense importance for understanding the 

near shore zone and for improving coastal structure design. The level of energy flux 

dissipation which occurs on a beach depends on the magnitude of the wave reflection 

from the beach. Thus, in an ancillary approach, wave reflection influences many 

coastal processes such as run-up which, in turn, determines coastal design criteria 

such as the height of a sea wall or flood protection dune. A curved wall is perhaps the 

simplest model of this type of beach. 

If the wall is perfectly vertical, its effect on the source is equivalent to another source 

situated at the image point of the original source with respect to the vertical wall. 

However, due to the curved nature of the wall, there will be additional contributions. 

These contributions have been found, in this study, upto the first order term to the 

reflection coefficient and velocity potential by using a simple perturbation analysis 

followed by an appropriate Havelock’s expansion of water wave potential for deep 

water including surface tension effect. Considering two particular shapes of the 

curved wall, viz. 𝑓(𝑦) = 𝑦 exp(−𝜆𝑦) and  𝑓(𝑦) = 𝑎 sin𝜆𝑦, these corrections are also 

calculated. 

 

2. Mathematical Formulation of the Problem 

Consider the three-dimensional irrotational motion of an inviscid, incompressible 

liquid of density, under the action of gravity 𝑔  only. A rectangular cartesian co-

ordinate system is chosen so that  the y-axis is taken vertically downwards into the 

liquid and assume that the liquid is bounded on the left by the curved wall 𝑥 =

𝜀 𝑓(𝑦), 0 < 𝑦 < ∞, where 𝜀 is a small dimensionless positive quantity and 𝑓(𝑦) is 

bounded and continuous in 0 < 𝑦 < ∞ with 𝑓(0) = 0 so that 𝑦 = 0, 𝑥 > 0 is the 

undisturbed free surface. The origin is taken at a point on the line of intersection 
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where the curved wall and the free surface meet. Usual assumption of the linear 

theory ensures the existence of a velocity potential Φ(𝑥, 𝑦, 𝑧, 𝑡), which represents 

progressive waves moving towards the shore line (i.e., the z-axis) such that the wave 

crests at large distance from the shore tend to straight line which make an arbitrary 

angle 𝜃 with the z-axis.  

Assuming the motion to be of simple harmonic in time with circular 

frequency 𝜎 and of small amplitude, the velocity potential of the liquid can be 

described by 

Φ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒[𝜙(𝑥, 𝑦)exp{−𝑖(𝜎𝑡 + 𝜔𝑧)}]                               

where 𝜔 = 𝛼0𝑠𝑖𝑛𝜃, 𝛼0 is defined later. 

Using linear theory, the time independent potential function  𝜙(𝑥, 𝑦) satisfies the 

following boundary value problem (BVP): 

Two dimensional modified Helmholtz’s equation: 

     (∇2 − 𝜔2) 𝜙 = 0   in the flow domain,           (2.1) 

where ∇2 is the two-dimensional Laplacian. 

Free surface condition: 

              𝐾𝜙 + 𝜙𝑦 + 𝑀𝜙𝑦𝑦𝑦 = 0  𝑜𝑛      𝑦 = 0, 𝑥 > 0 ,                                       (2.2) 

where 𝐾 =
𝜎2

𝑔
 is the wave number and 𝑀 =

𝜏

𝜌𝑔
, 𝜏 is the coefficient of surface tension. 

Rigid body condition: 

               𝜙𝑛 = 0    on  𝑥 = 𝜀𝑓(𝑦), 𝑦 > 0,                                                          (2.3) 

where 𝑛 denotes the outward drawn normal to the surface of the curved wall. 

Sea-bed condition: 

     ∇𝜙 → 0 as 𝑦 → ∞.              (2.4) 

In addition to the above conditions, 𝜙(𝑥, 𝑦) is also required to satisfy the requirement 

that 

                   𝜙 → 𝜙𝑖𝑛𝑐(𝑥, 𝑦) + 𝑅𝜙𝑖𝑛𝑐(−𝑥, 𝑦)   𝑎𝑠   𝑥 → ∞                    (2.5) 

where a train of surface waves represented by 𝜙𝑖𝑛𝑐(𝑥, 𝑦) = exp(−𝛼0𝑦 − 𝑖𝜂𝑥) is 

incident from positive infinity on the curved wall, 𝑅 is the reflection coefficient, 𝜂 =

𝛼0 cos 𝜃 and 𝛼0 is the unique real root (cf.[9]) of the cubic equation 𝑥(1 + 𝑀𝑥2) −

𝐾 = 0. 
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Since we have assumed that the parameter 𝜀 is very small, thus neglecting 𝑂(𝜀2) 

terms, the boundary condition (2.3) on the curved wall can be expressed, in 

approximate form, on 𝑥 = 0 as (cf.[10]) 

                               𝜙𝑥(0, 𝑦) − 𝜀
𝑑

𝑑𝑦
{𝑓(𝑦)𝜙𝑦(0, 𝑦)} = 0  for 𝑦 > 0.                   (2.6)   

3. Solution of the Problem 

The form of the boundary condition (2.6) suggests that we may assume the following 

perturbational expansion, in terms of the small parameter 𝜀, for the unknown function 

𝜙(𝑥, 𝑦) and 𝑅 respectively as 

                          
𝜙(𝑥, 𝑦, 𝜀) = 𝜙0(𝑥, 𝑦) + 𝜀𝜙1(𝑥, 𝑦) + 𝑂(𝜀2)

 𝑅(𝜀) = 𝑅0 + 𝜀𝑅1 + 𝑂(𝜀2)              
} .                                  (3.1) 

Our intention is to evaluate 𝜙0 , 𝑅0 and 𝜙1 , 𝑅1as we are interested in finding only 

upto the first order corrections to the velocity potential and reflection coefficient. 

Substituting the expansion (3.1) into equations (2.1), (2.2), (2.4), (2.5) and (2.6) and 

equating coefficients of 𝜀0 and 𝜀 from both sides, we find that the functions 𝜙0(𝑥, 𝑦) 

and 𝜙1(𝑥, 𝑦) must be the solution of the following two independent BVPs: 

BVP-I: The function 𝜙0(𝑥, 𝑦) satisfying: 

                            (∇2 − 𝜔2)𝜙0 = 0 in the flow domain, 

   𝐾𝜙0 + 𝜙0𝑦
+ 𝑀𝜙0𝑦𝑦𝑦

= 0 on   𝑦 = 0, 𝑥 > 0,          

   𝜙0𝑥
= 0   on  𝑥 = 0, 𝑦 > 0,                    

                             ∇𝜙0 → 0  as    𝑦 → ∞, 

                                 𝜙0 → 𝜙𝑖𝑛𝑐(𝑥, 𝑦) + 𝑅0𝜙𝑖𝑛𝑐(−𝑥, 𝑦)  as 𝑥 → ∞. 

Certainly          𝜙0 = 𝜙𝑖𝑛𝑐(𝑥, 𝑦) + 𝜙𝑖𝑛𝑐(−𝑥, 𝑦)              (3.2) 

so that              𝑅0 = 1. 

BVP-II: The function 𝜙1(𝑥, 𝑦) satisfies: 

                        (∇2 − 𝜔2)𝜙1 = 0  in the flow domain,  

                    𝐾𝜙1 + 𝜙1𝑦 + 𝑀𝜙1𝑦𝑦𝑦 = 0 on   𝑦 = 0, 𝑥 > 0,       

                    𝜙1𝑥 =
𝑑

𝑑𝑦
{𝑓(𝑦)𝜙0𝑦}   on  𝑥 = 0, 𝑦 > 0,                               (3.3) 

                            ∇𝜙1 → 0  as  𝑦 → ∞, 
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                            𝜙1 → 𝑅1𝜙𝑖𝑛𝑐(−𝑥, 𝑦)  as  𝑥 → ∞. 

𝜙1 and 𝑅1 are the first order corrections to the velocity potential and reflection 

coefficient respectively in BVP-II which are to be determined. 

Assume that  

 

                    
𝑑

𝑑𝑦
{𝑓(𝑦)𝜙0𝑦} = 𝑔(𝑦)  on  𝑥 = 0, 𝑦 > 0,                                (3.4) 

so that from (3.3) we have    𝜙1𝑥 = 𝑔(𝑦)  on  𝑥 = 0, 𝑦 > 0.                               (3.5) 

We employ the Havelock’s [1] expansion of water wave potential to solve 

for 𝜙1(𝑥, 𝑦). 

Thus 𝜙1(𝑥, 𝑦) can be expanded as 

𝜙1(𝑥, 𝑦) = 𝑅1exp(−𝛼0𝑦 + 𝑖𝜂𝑥) + ∫
∞

𝑜

ℎ(𝑘){𝑘(1 − 𝑀𝑘2) cos 𝑘𝑦 − 𝐾 sin 𝑘𝑦}          

                      ×  exp{−(𝑘2 + 𝜔2)
1

2𝑥}𝑑𝑘, 𝑥 > 0 .                                                       (3.6) 

Using the condition (3.5) we have 

    𝑔(𝑦) = 𝑖𝜂𝑅1exp(−𝛼0𝑦) − ∫
∞

𝑜

(𝑘2 + 𝜔2)
1

2ℎ(𝑘){𝑘(1 − 𝑀𝑘2) cos 𝑘𝑦 − 𝐾 sin 𝑘𝑦}    

         ×  exp{−(𝑘2 + 𝜔2)
1

2𝑥}𝑑𝑘, 𝑦 > 0.                                                              

Hence Havelock’s inversion theorem gives 

  
𝑖𝑅1 cos 𝜃

2
= ∫

∞

0

𝑔(𝑦)exp(−𝛼0𝑦)𝑑𝑦                                                                          (3.7) 

and 

      ℎ(𝑘) =
−2

𝜋{𝑘2(1 − 𝑀𝑘2)2 + 𝐾2}(𝑘2 + 𝜔2)
1

2

                                                             

           × ∫
∞

𝑜

𝑔(𝑦){𝑘(1 − 𝑀𝑘2) cos 𝑘𝑦 − 𝐾 sin 𝑘𝑦} 𝑑𝑦.                         (3.8) 

Thus 𝑔(𝑦) can be found via (3.4) if  𝑓(𝑦) is known and hence  𝑅1 and  ℎ(𝑘) can be 

obtained from (3.7) and (3.8). Therefore the general expression for 𝜙1 , the first order 

correction to the velocity potential can be determined when the effect of surface 

tension is taken into consideration. 
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4. Particular Shapes of the Curved Wall 

 

Let us consider two particular shapes for the curved wall viz. (i) 𝑓(𝑦) = 𝑎 sin𝜆𝑦 and 

(ii) 𝑓(𝑦) = 𝑦 exp(−𝜆𝑦), as considered by Chakrabarti [11]. 

CASE - I: 𝑓(𝑦) = 𝑎 sin𝜆𝑦. 

In this case we obtain (see Appendix A): 

        𝑔(𝑦) = 2𝑎𝛼0(𝛼0sin𝜆𝑦 − 𝜆 cos 𝜆𝑦) exp(−𝛼0𝑦)                                     (4.1) 

so that 

          𝑅1 =
4𝑖𝑎𝜆𝛼0

2

(4𝛼0
2 + 𝜆2) cos 𝜃

                                                                              (4.2) 

and 

ℎ(𝑘) =
2𝑎𝑘𝛼0

𝜋{𝑘2(1 − 𝑀𝑘2)2 + 𝐾2}(𝑘2 + 𝜔2)
1

2

[𝐾 {
𝜆 + 𝑘

(𝜆 + 𝑘)2 + 𝛼0
2

+
𝜆 − 𝑘

(𝜆 − 𝑘)2 + 𝛼0
2}   

      + 𝑘𝛼0(1 − 𝑀𝑘2) {
1

(𝜆 − 𝑘)2 + 𝛼0
2

−
1

(𝜆 + 𝑘)2 + 𝛼0
2}]                            (4.3) 

CASE - II: 𝑓(𝑦) = 𝑦 exp(−𝜆𝑦). 

In this case we find (see Appendix B) 

  𝑔(𝑦) = 2𝛼0{(𝜆 + 𝛼0)𝑦 − 1}exp{−(𝜆 + 𝛼0)𝑦}                                                  (4.4) 

so that  

𝑅1 =
4𝑖𝛼0

2

(𝜆 + 2𝛼0)2 cos 𝜃
                                                                                       (4.5) 

and 

    ℎ(𝑘) =
4𝑘𝛼0[2𝑘2(1 − 𝑀𝑘2)(𝜆 + 𝛼0) + 𝐾(𝜆 + 𝛼0)2 − 𝐾𝑘2]

𝜋(𝑘2 + 𝜔2)
1

2{𝑘2(1 − 𝑀𝑘2)2 + 𝐾2}{(𝜆 + 𝛼0)2 + 𝑘2}2
       (4.6)  

 

5.  Conclusions 

A straight forward perturbation technique along with the application of Havelock’s 

expansion is employed to find the first order corrections to the reflection coefficient 
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and velocity potential for the reflection of a three dimensional surface water wave 

train by a curved wall in the presence of surface tension at the free surface. Analytical 

expressions for these corrections  𝑅1 and  𝜙1 are also calculated by assuming two 

particular shape of the curved wall. In the absence of surface tension effect, 

corresponding results can also be derived simply by putting 𝜏 = 0. The major 

advantage of the analysis described here is that the corrections for the corresponding 

two dimensional problem can be recovered by the substitution of 𝜃 = 0. The problem 

discussed in the present paper seems to have some applications in coastal design 

criteria and to derive the solution of the problem considered here, total reflection of 

waves by the curved wall is assumed since there is no mechanism to absorb (or 

dissipate) the incoming energy in the inviscid fluid. Thus the reflection of waves is a 

physically possible phenomenon in any non-dissipating system. 

Appendix A 

Noting (3.2), we find 

𝜙0(0, 𝑦) = 2 𝑒𝑥𝑝(−𝛼0𝑦).        (A.1) 

Thus for 𝑓(𝑦) = 𝑎 sin𝜆𝑦 , we obtain, using (𝐴. 1) into (3.4) 

𝑔(𝑦) = 2𝑎
𝑑

𝑑𝑦
{sin𝜆𝑦

𝜕

𝜕𝑦
𝑒𝑥𝑝(−𝛼0𝑦)}    

= 2𝑎𝛼0(𝛼0 sin𝜆𝑦 − 𝜆 cos𝜆𝑦)𝑒𝑥𝑝(−𝛼0𝑦).    (A.2) 

Applying (A.2) in (3.7) we get 

𝑖𝑅1 cos 𝜃

2
= 2𝑎𝛼0 ∫

∞

0

(𝛼0sin𝜆𝑦 − 𝜆 cos𝜆𝑦) 𝑒𝑥𝑝(−2𝛼0𝑦)𝑑𝑦,    

              = −
2𝑎𝜆𝛼0

2

(4𝛼0
2 + 𝜆2)

 .                                                                                   

Hence (4.2) gives the simplified form of 𝑅1. 

To find ℎ(𝑘), we have to calculate the integral 



 
 

PARTHA AGASTI  

 

8 
 

       ∫
∞

𝑜

𝑔(𝑦){𝑘(1 − 𝑀𝑘2) cos 𝑘𝑦 − 𝐾 sin 𝑘𝑦} 𝑑𝑦 = 𝐽 (𝑠𝑎𝑦),                     (𝐴. 3) 

where 𝑔(𝑦) is given by (𝐴. 2). 

Applying (𝐴. 2) into (𝐴. 3), we find 

            𝐽 = 2𝑎𝛼0{𝐾𝐽1 − 𝑘(1 − 𝑀𝑘2)𝐽2},                                                              (𝐴. 4) 

where 

𝐽1 = ∫
∞

0

sin 𝑘𝑦
𝑑

𝑑𝑦
{𝑒𝑥𝑝(−𝛼0𝑦) sin𝜆𝑦}𝑑𝑦  

= −
𝑘

2
∫

∞

0

𝑒𝑥𝑝(−𝛼0𝑦){sin(𝜆 + 𝑘)𝑦 + sin(𝜆 − 𝑘)𝑦} 𝑑𝑦       

                      = −
𝑘

2
{

𝜆 + 𝑘

𝛼0
2 + (𝜆 + 𝑘)2

+
𝜆 − 𝑘

𝛼0
2 + (𝜆 − 𝑘)2}                                            (𝐴. 5) 

and 

𝐽2 = ∫
∞

0

cos 𝑘𝑦
𝑑

𝑑𝑦
{𝑒𝑥𝑝(−𝛼0𝑦) sin𝜆𝑦}𝑑𝑦                                                

=
𝑘

2
∫

∞

0

𝑒𝑥𝑝(−𝛼0𝑦){cos(𝜆 − 𝑘)𝑦 − cos(𝜆 + 𝑘)𝑦} 𝑑𝑦   

                          =
𝑘

2
{

𝛼0

𝛼0
2 + (𝜆 − 𝑘)2

−
𝛼0

𝛼0
2 + (𝜆 + 𝑘)2}.                                          (𝐴. 6) 

Utilizing (𝐴. 5) and (𝐴. 6) into (𝐴. 4), the integral given by (𝐴. 3) can be determined, 

and hence from (3.8), ℎ(𝑘) can be found which is given by (4.3). 

Appendix B 

Assuming 𝑓(𝑦) = 𝑦 exp(−𝜆𝑦), and exploiting (𝐴1.1) into (3.4), we find 

𝑔(𝑦) = 2
𝑑

𝑑𝑦
{𝑦 exp(−𝜆𝑦)

𝜕

𝜕𝑦
𝑒𝑥𝑝(−𝛼0𝑦)}                                         
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                        = 2𝛼0{(𝜆 + 𝛼0)𝑦 − 1}exp{−(𝜆 + 𝛼0)𝑦}                                    (𝐵. 1) 

Using (𝐵. 1) into (3.7), we get 

𝑖𝑅1 cos 𝜃

2
= 2𝛼0 ∫

∞

0

{(𝜆 + 𝛼0)𝑦 − 1}exp{−(𝜆 + 2𝛼0)𝑦}dy = −
2𝛼0

2

(𝜆 + 2𝛼0)2
   

Therefore 𝑅1 can be determined and is given by (4.5). 

To evaluate ℎ(𝑘), we have to calculate the integral given by (𝐴. 3) where 𝑔(𝑦) is 

given in (𝐵. 1). 

Exploiting (𝐵. 1) into (𝐴. 3), we obtain 

                        𝐽 = −2𝛼0(𝐽3 − 𝐽4 − 𝐽5 + 𝐽6),                                                                 (𝐵. 2) 

where  

  𝐽3 = 𝑘(1 − 𝑀𝑘2) ∫
∞

0

cos 𝑘𝑦 exp{−(𝜆 + 𝛼0)𝑦}dy               

                              =
𝑘(1 − 𝑀𝑘2)(𝜆 + 𝛼0)

(𝜆 + 𝛼0)2 + 𝑘2
                                                                     (B. 3) 

𝐽4 = 𝑘(1 − 𝑀𝑘2)(𝜆 + 𝛼0) ∫
∞

0

𝑦 cos 𝑘𝑦 exp{−(𝜆 + 𝛼0)𝑦}dy              

            =
𝑘(1 − 𝑀𝑘2)(𝜆 + 𝛼0){(𝜆 + 𝛼0)2 − 𝑘2}

{(𝜆 + 𝛼0)2 + 𝑘2}2
                                              (B. 4) 

        𝐽5 = 𝐾 ∫
∞

0

sin 𝑘𝑦 exp{−(𝜆 + 𝛼0)𝑦}dy =
𝐾𝑘

(𝜆 + 𝛼0)2 + 𝑘2
                 (B. 5) 

 𝐽6 = 𝐾(𝜆 + 𝛼0) ∫
∞

0

𝑦 sin 𝑘𝑦 exp{−(𝜆 + 𝛼0)𝑦}dy                                     

             =
2𝐾𝑘(𝜆 + 𝛼0)2

{(𝜆 + 𝛼0)2 + 𝑘2}2
                                                                               (B. 6) 
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Introducing (B. 3) − (B. 6) into (B. 2) we get the integral (A. 3) and thus we finally 

obtain the expression for ℎ(𝑘) given by (4.6). 

Acknowledgement: I am thankful to the unknown reviewer for constructive as well 

as creative suggestions. 
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