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Abstract 

The purpose of this study is to present a numerical investigation of 

the effects of variable viscosity and thermal conductivity on an 

unsteady laminar free convective MHD micropolar fluid flow along 

with the combined effects of chemical reaction and heat 

generation/absorption over a vertical cone. The dimensionless 

governing partial differential equations are solved by finite 

differential scheme. The velocity, microrotation, temperature and 

concentration profiles have been studied for temperature dependent 

viscosity, thermal conductivity and for other important parameters 

involved in the problem as well as the skin friction coefficients, 

Nusselt number and Sherwood number are discussed. Finally the 

results obtained are shown graphically and in tabulated form and 

analyzed in detail. 

Keywords: Micropolar fluid, viscosity, thermal conductivity, finite difference.  

Introduction 

Free convective boundary layer flow of a MHD micropolar fluid have been 

studied widely by many researchers due to its large scale of applications in the field 

of technology. Heat and mass transfer over a vertical cone with convective flow has 

mailto:1smitasahu219@gmail.com
mailto:gchazarika@gmail.com


 
 

SMITA SAHU and G.C. HAZARIKA 

 

2 
 

various technological applications such as designing of nuclear waste disposal, 

nuclear reactor cooling systems, geothermal reservoirs etc. [1].  

                In the recent years, micropolar fluids have been investigated by several 

researchers due to its industrial and engineering applications like colloids and 

polymeric suspensions, cervical flows, clean engine lubricants, thrust bearing 

technologies etc. The initial work of Eringen [2,3,4] in boundary layer theory of 

micropolar fluid was extended by Peddieson and McNitt [5]. Self-similar solution of 

two dimensional flow of a micropolar fluid on a semi-infinite plate was discussed by 

Ahmadi [6]. Hazarika et al. [7] studied the effects of variable viscosity and thermal 

conductivity on steady magnetohydrodynamic flow of a micropolar fluid through a 

specially characterized horizontal channel. The effects of variable viscosity and 

thermal conductivity on flow and heat transfer of a stretching surface of rotating 

micropolar fluid with suction and blowing was analyzed by Borthakur et al. [8]. 

Sulochana et al. [9] reported the numerical investigation of magnetohydrodynamic 

(MHD) radiative flow over a rotating cone in the presence of Soret and chemical 

reaction and concluded that the variable porosity parameter enhances the heat and 

mass transfer rate. Hering et al. [10] studied the problem of laminar natural 

convection from a non-isothermal cone. Himasekhar et al. [11] analyzed the 

buoyancy-induced flow and temperature fields around a vertical rotating cone. An 

analysis to study the flow and heat transfer characteristics for the case of laminar 

mixed convection along a vertical circular cone was reported by Kumari et al. [12]. 

Wang [13] investigated the boundary layer flow and heat transfer on rotating cones, 

disks and axisymmetric bodies with concentrated heat sources. The problem of 

unsteady mixed convection flow from a rotating vertical cone was studied by Takhar 

et al. [14]. Raju et al. [15] analyzed the non-Newtonian MHD flow over a cone with 

thermal radiation and chemical reaction. 

  Magnetohydrodynamic free convective flow over a non-isothermal vertical 

cone with Joule heating and viscous dissipation was investigated by Palani et al. [16] 

and found that velocity diminished with the magnetic field and temperature is 

maximum near the cone surface and tends to zero asymptotically.  

 Heat and mass transfer on the MHD flow of an unsteady micropolar fluid along a 

vertical stretching sheet in the presence of induced magnetic field was studied by 

Sahu et al. [17] and solved the problem numerically by Runge- Kutta fourth order 

shooting technique. Pullepu et al.  [18] discussed the numerical solutions of free 

connective flow from a vertical cone with mass transfer under the influence of 

chemical reaction and heat generation /absorption in the presence of UWT/UWC and 

solved it by stable finite difference scheme.  

               The purpose of this paper is to study the numerical investigation of the the 

effects of temperature dependent viscosity and thermal conductivity on an unsteady 

free convective flow of a MHD micropolar fluid over a vertical cone with heat and 

mass transfer.  
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Viscosity and thermal conductivity are assumed to be the inverse linear functions of 

temperature following Lai and Kulacki [19]. The governing partial differential 

equations of motion are solved numerically by finite difference scheme. 

1. Mathematical Formulation 

  

 

 

 

 

 

 

 

 

 

Fig.1: Physical model and co-ordinate system 

We consider an axi-symetric unsteady laminar free connective flow of an 

electrically conducting, viscous incompressible micropolar fluid past a vertical cone. 

The effects of chemical reaction, heat generation/absorption and viscous dissipation 

are taken into account. It is assumed that there exists first order chemical reaction 

between the fluid and the species concentration. The cone surface and the 

surrounding fluid which is at rest are assumed to be of same temperature and 

concentration. We consider the co-ordinate system such that x-axis measures the 

distance along the surface of the cone from the apex (x=0) and y-axis measures the 

distance normally outwards. Let u and v be the velocity components along x 

(tangential) and y (radial) direction respectively. Also, let r is the radial distance from 

the surface element to the axis of symmetry and α is the semi-vertical angle of the 

cone. A uniform applied magnetic field of strength B0 is acting parallel to the y-axis. 

The magnetic Reynolds numbers are assumed to be small enough so that induced 

magnetic field is negligible. Under the above assumptions, the physical model of the 

above problem can be given as: 
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Continuity Equation: 
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where u and v are the components of velocity along x and y- directions respectively, t′ 

denotes the time factor,  ρ is the fluid density, μ
 
is the coefficient of dynamic 

viscosity, k is the vortex viscosity, g is the acceleration due to gravity, β and βc are 

the coefficients of thermal and concentration expansion respectively,  is the 

electrical conductivity, N′ is the microrotation  component, j is the micro-inertia 

density, γ is the spin gradient viscosity, T′ is the temperature of the fluid , λ is the 

thermal conductivity , 𝑐𝑝 is the specific heat at the constant pressure, C′ is the 

concentration of the fluid within the boundary layer, T′∞ is the temperature of the 

fluid far away from the surface of the cone, C′∞ is the is the concentration of the fluid 

far away from the surface of the cone,  Q0(x) is the heat generation (>0) or absorption 

(<0) coefficient, k1 is the chemical reaction parameter and Dm is molecular 

diffusivity. 

The boundary conditions are given as: 
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0 : 0,y u= = 0, 0, ,w wv N T T C C    = = = =  

: 0,y u→ → 0, ,N T T C C 
    → → →      (6) 

where wT   and wC  are wall temperature and concentration respectively and T
  and 

C
  are the temperature and concentration of the fluid at infinity respectively. 

The non-dimensional variables are defined as:  
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where L is the characteristic length.  Also Gr , Gr*, Pr, S, Q, M, K, B, G, Ec, Sc and 

Kr denote thermal Grasof number, mass Grasof number, Prandtl number, buoyancy 

ratio parameter, heat generation/absorption parameter, magnetic parameter, coupling 

constant parameter, material constant, microrotation parameter, Eckert number, 

Schmidt number and chemical reaction parameter respectively. 

Following Lai and Kulacki [19] , let us assume that, 
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where  is the viscosity at infinity,  and T
 are constants,

rT  is transformed 

reference temperature ,  and  are  constants  based on thermal property of the fluid. 

Similarly,  is the thermal conductivity at the infinity,  and cT  are constants and 

their values depend on the reference state and thermal properties of the fluid. 

Using (7), viscosity and thermal conductivity can be expressed as,     
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 Equations (1-5) can be written in non-dimensional form by using Eq. (7) and Eq. (9) 

as follows: 
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The corresponding non-dimensional boundary conditions are: 

0, 0, 0,U V N= = = 1, 1 = =   at  0Y =  

0, 0, 0, 0U N  → → → →   as  Y →      (16) 

The important physical quantities Skin friction coefficient, Nusselt number and 

Sherwood number in non-dimensional form are given as: 
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The ordinary finite difference method is defined as follows: 
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Therefore, the equations (11-15) can be expressed in finite difference method using 

(16) as follows: 
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2. Results And Discussion 

The non-linear partial differential equations (11-15) with boundary condition (16) 

are solved numerically by finite difference method which is based on Gauss Seidal 

iterative method. To solve the problem, the transformed non- dimensional equations 

given by (11-15) are again expressed in finite difference equations using Eq. (17) as 

the equations (18-22). The numerical values of different parameters are taken as 𝜃c = 

2, 𝜃r =2, S=10, M=.1, Pr=.7, Ec=.001, Q=1, K=.1, G=2, B=2, Sc=.2, Kr=.1 unless 
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otherwise stated. The purpose of this study is to bring out the effects of variable 

viscosity and thermal conductivity on the governing flow with the combination of the 

other flow parameters. The numerical computations have been carried out by 

developing codes for MATLAB and results are presented graphically to get a physical 

acuity of the problem for the dimensionless velocity profiles, microrotation profiles, 

temperature profiles and concentration profiles with the variation of different 

parameters in figures (2-17). 

 
Fig.2: Velocity for     Fig.3: Velocity for       Fig.4: Velocity for    Fig.5: Velocity for 

           various r             various c                            
various  M

                
various K 

Figures 2-5 display the effects of various parameters on velocity profiles. Fig.2 

depicts the effect of viscosity variation parameter r on velocity profiles which shows 

that r retards momentum boundary layer thickness significantly. Due to the 

enhancement in the magnitude of 𝜃r , there is an increase in the value of (Tw - T∞) that 

reduces the interaction time between the neighboring molecules and the 

intermolecular forces between the fluid and subsequently, causes an  increase in the 

fluid viscosity which leads to the fluid moving slower. From the fig.3, it is observed 

that velocity drops with the increase of thermal conductivity parameter c . 

Physically, due to the increase of thermal conduction within the boundary layer, the 

heat transposition from region of higher temperature to the region of lower 

temperature increases, so velocity profiles reduce within the boundary layer. The 

effects of magnetic parameter M on velocity profiles can be seen in fig.4 which 

shows that velocity decreases with the increasing values of magnetic parameter. The 

presence of magnetic field induces a resistive force called Lorentz force, which 

opposes the velocity field and hence the result. From the fig.5, it is noticed that 

velocity enhances with the increase of coupling constant parameter K. This is because 

coupling constant parameter is the ratio of vortex viscosity to the dynamic viscosity. 

Since velocity is inversely proportional to the dynamic viscosity, hence as K 

increases momentum boundary layer thickness increases. 
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Fig.6: Microrotation Fig.7: Microrotation  Fig.8: Microrotation Fig.9: Microrotation  

          for various r .           for various c .          for various K           for various G 

The effects of various parameters on microrotation profiles have been represented by 

the figures 6-9. From the fig.6, it is found that microrotation profile enhances with the 

increase of viscosity variation parameter r  and it happens due to the elastic property 

of the micropolar fluid. A significant effect has been observed with the thermal 

conductivity parameter c on microrotation profiles in the fig.7 which shows that 

microrotation reduces with the increasing values of thermal conductivity parameter c

. From the fig.7, it has been found that microrotation profiles become larger for the 

increasing values of magnetic parameter M as M increases the Lorentz force increases 

so that temperature of the fluid enhanced and molecules get released from their bonds 

holding them and rotation of the fluid elements increase. Microrotation profiles are 

found to be decreasing effectively for both coupling constant parameter K and 

microrotation parameter G that can be clearly observed from the figures 8 and 9 

respectively. 

             

Fig.10: Temperature for     Fig.11: Temperature for    Fig.12: Temperature for 

            various r                            various c                           various M 
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Figures 10-12 display the temperature distribution profiles against viscosity variation 

parameter 𝜃r , thermal conductivity variation parameter c and magnetic parameter M. 

Fig.10 yields temperature profiles increase with the increasing values of viscosity 

variation parameter 𝜃r. Physically, if viscosity enhances there is an increment of the 

total viscosity in fluid that makes the fluid more viscous and the convective currents 

becomes weak and hence temperature rises. From the fig.11, it is observed that 

thermal boundary layer as well as temperature reduces as the thermal conductivity 

variation parameter c  enhances. It is obvious because thermal conductivity variation 

parameter is assumed to be the inverse linear function of temperature. Fig.12 shows 

that temperature profiles becomes larger across the cone with the increasing values of 

magnetic parameter M. This happens because as M increases, Lorentz force increases 

and consequently temperature of the fluid increases. 

 
Fig.13: Concentration for    Fig.14: Concentration for          Fig.15: Concentration for 

              various r                         various c                           various M 

 

            
    Fig.16: Concentration for                       Fig.17: Concentration for 

                 various cS
                                              

various Kr  

Figures 13-17 indicate the effects of various parameters on species 

concentration profiles within the boundary layer. From the figures 13-15, it is 
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observed that species concentration profiles drop with the increasing values of 

viscosity variation parameter 𝜃r, thermal conductivity variation parameter c and 

magnetic parameter M respectively. Due to the rising of viscosity variation parameter 

𝜃r, thermal conductivity variation parameter c and magnetic parameter M, there is an 

increase in viscous force, convective force and Lorentz force, for which mass 

diffusivity within the boundary layer decreases and hence concentration is found to be 

reducing. Fig.16 shows that concentration profile decreases with the increasing values 

of Schmidt number cS . Since Schmidt number indicates the relative effectiveness of 

momentum and mass transport by diffusion in the velocity and species concentration 

boundary layers and hence concentration decreases as Schmidt number increases 

causing the decrease of concentration buoyancy effects. The effects of chemical 

reaction parameter rK can be observed from the fig.17. It is noticed that species 

concentration profiles significantly reduce with the enhancement of chemical reaction 

parameter rK . 

Table:1 

M  r  fc  Nu  Sh  

.1 

2 0.008601 0.779323 -0.003889 

3 0.036559 0.691197 -0.013994 

4 0.085899 0.640424 -0.030126 

.2 

2 0.006521 0.784429 -0.003822 

3 0.025748 0.731424 -0.013680 

4 0.058054 0.703857 -0.029361 

.3 

2 0.005394 0.783883 -0.003779 

3 0.020475 0.746517 -0.013487 

4 0.045225 0.728225 -0.028899 
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Table: 2 

M  c  fc  Nu  Sh  

.1 

2 0.008601 0.779323 -0.003889 

3 0.008361 0.643754 -0.003884 

4 0.008265 0.594212 -0.003883 

.2 

2 0.006521 0.784429 -0.003822 

3 0.006372 0.648787 -0.003817 

4 0.006312 0.599392 -0.003816 

.3 

2 0.005394 0.783883 -0.003779 

3 0.005288 0.647608 -0.003775 

4 0.005245 0.598021 -0.003773 

 

Table: 3 

rK  
cS  fc  Nu  Sh  

9 

.21 0.005394 0.783886 -0.003278 

.22 0.005394 0.783885 -0.003519 

.23 0.005394 0.783884 -0.003766 

10 

.21 0.005394 0.783884 -0.003473 

.22 0.005394 0.783883 -0.003729 

.23 0.005394 0.783883 -0.003991 

11 

.21 0.005394 0.783883 -0.003657 

.22 0.005394 0.783882 -0.003927 

.23 0.005394 0.783881 -0.004204 

 

Tables 1-3 display the computed numerical values of skin friction coefficient 
fc , 

Nusselt number Nu  and Sherwood number Sh  for different values of viscosity 

variation parameter 𝜃r, thermal conductivity variation parameter c , magnetic 

parameter M, Schmidt number cS  and chemical reaction parameter rK .  

            From the tables, it is noticed that skin friction coefficient 
fc reduces 

with the increasing values of thermal conductivity variation parameter c , magnetic 
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parameter M; but reverse result is gained for viscosity variation parameter 𝜃r. The 

values of Nusselt number Nu are found to be decreasing only with respect to 

viscosity variation parameter 𝜃r  and for all the other values, it is enhancing as shown 

in the tables. For the increasing values of viscosity variation parameter 𝜃r, Schmidt 

number cS  and chemical reaction parameter rK , the values of Sherwood number Sh

are decreasing significantly; but opposite behavior is observed with thermal 

conductivity variation parameter c  and magnetic parameter M. 

3. Conclusion 

In this study, a mathematical model has been presented for an unsteady free 

convective MHD flow of a micropolar fluid over a vertical cone with variable 

viscosity and thermal conductivity. A parametric analysis is performed to illustrate 

the influence of variable viscosity and thermal conductivity and other thermo physical 

parameters on the velocity, microrotation, temperature and concentration profiles and 

the following observations has been made: 

(i) The fluid velocity decreases with the viscosity variation parameter 𝜃r, thermal 

conductivity variation parameter c and magnetic parameter M ; but enhances 

with coupling constant parameter K. 

(ii) Microrotation increases with the increasing values of viscosity variation 

parameter 𝜃r   and magnetic parameter M; but reverse result is obtained for 

thermal conductivity variation parameter c , coupling constant parameter K 

and microrotation parameter G. 

(iii) Temperature is obtained to be enhancing with respect to viscosity variation 

parameter 𝜃r and magnetic parameter M whereas it decreases with thermal 

conductivity variation parameter c . 

(iv) Species concentration becomes smaller for the larger values of viscosity 

variation parameter 𝜃r , thermal conductivity variation parameter c , Schmidt 

number cS and chemical reaction parameter rK . 

(v) Skin friction coefficient 
fc reduces with the increasing values of thermal 

conductivity variation parameter c and magnetic parameter M. 

(vi) Nusselt number Nu is found to be decreasing with respect to viscosity 

variation parameter 𝜃r . 

(vii) The values of Sherwood number Sh are decreasing significantly for the 

increasing values of viscosity variation parameter 𝜃r, Schmidt number cS  and 

chemical reaction parameter rK . 
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