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Abstract

In this study, we use comparison mapping for contractive conditions
in cone metric spaces to demonstrate the existence of a solution to
mixed type integral equations. We use examples to show how our
findings can be put to use.
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1. Introduction

Fractional The French mathematician Frechet [15] originally described and
investigated an abstract metric space in 1906. Numerous researchers [6, 8, 10, 18, 19,
20] have expanded the definition of metric space to include cone, semi, and quasi
metric spaces, as well as generalized contraction mappings with applications.

One of the most vital areas of mathematics is fixed point theory, with numerous
applications in several aspects of physical science as well as various domains of
mathematics. The Banach contraction principle has a large number of generalizations
like Ciric contraction, S-contraction, Chatterjee contraction, weak contractions
principle etc. These contractions proved many results in analysis and play a key part
in determining the existence and uniqueness of the findings in analysis and many
other areas of mathematics.
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Branciari [3] derived results in a fixed point theory for a single mapping in 2002. The
authors [1, 2, 9, 11, 12, 16] used integral type equations to demonstrate several fixed
point theorems.

2. Preliminaries
Definition 2.1 [7, 13, 14] Assume that B is a real Banach space and consider a subset
C of B is referred to as a cone if satisfy:

1. C # {0}, nonempty and closed
2. a,beERY a,pEC =>aa+bpEC
3. aeCand—a€eC=>a=0.

A partial order relation < on a cone C define as a < g ifand only if 8 —a € C. If
there is a positive number a > 0 such that

O<agB=lal<alpl,

for all a, B € B, then cone C is known as normal and the least positive value which
holds the above inequality is known as normal constant of cone C.

Definition 2.2 [7, 13, 14] Consider B be a Banach space and X be a nonempty subset
of B, then a mapping d: X X X — B is known as cone and (X, d) is known as cone
metric space if satisfies:

(i) d(a,B)=0andd(a,p)=0ifandonlyif a = B;
(it) d(a,B) = d(B, @);
(i) d(a, B) < d(a,v) +d (v, B)

foralla, B,y € X.

Example 2.1 [13, 17] Consider the supremum norm on the the Banach space B =
C([0,1], Z), which are all the continuous functions from [0, 1] into Z, such that

I @ llo= sup{ll a(s) Il:s € [0, (]}

Assume C={(a,B):a,f=0}cB=R? and d({,) =N { =&,k 1 { =& lle),
for every ¢,é € B. Then (B, d) is a cone metric space on the supremum norm.
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Definition 2.3 [17] Consider a function ¥: X — X on an ordered space X is sid to be
comparison function if it implies a < 8, (@) < ¥ (F), Y(@) < a and limy, |
Y™ (a) = 0, forevery a, B € X.

Example 2.2 [17] Let C = {(a,B) € B:a, B = 0}, where B = R?, then a mapping
¥:B — B defined as ¥ (a, f) = (aa, aB) is a comparison function for a € (0,1). If
Y., ¥, are two comparison functions over R, then ¥(a, 8) = (V1 (a), ¥, (B)) is also
a comparison function over B.

Lemma 2.1 [17] Given that normal constant 3 on a normal cone C. Let f: X — X be a
function on a complete cone metric space (X, d) as follows

d(f(a), f()) = ¥(d(a, B)),

forall a, B € X. If it is exists as a comparison function ¥: C — C, then f has a unique
fixed point.

The aim of the current research is to generalized the findings of Pachpatte [4, 5] and
numerous other articles by investigating the existence and unigueness of solutions to
the integrodifferential equations using fixed point theory on the cone metric spaces.

3. Main Results
Theorem 3.1 Assume the integrodifferential equations on a complete cone metric
space (X, d) as follows

u(s) = £() + [ ¢(s,tu®)de + [, E(s,tu®)dt, sef0,,  (31)

u'(s) = f(s) + fos (s, t,u(®))dt + fol (s, tu(®))de, u(0) =uy, (3.2)

where f:[0,1] = Z, {,&:[0,1] X [0,1] X Z — Z are continuous functions and Z is a
Banach space on the norm |. |l, provided u, € Z, If the following criteria are met by
integrodifferential equations:

(C,) A comparison function ¥: Rt - R* and continuous functions g, q,: [0, ] X
[0,1] » R™ are exists, such that

(<G, t,p) = 4(s,t,q) LB I E(s,t,p) —{(s,t,q) 1) < q1(s, )P (d(p, 7)),
(s, tp) =S, t@) LB NS, t,p) = $(s,t,@) 1) < q2(s5, )V (d (P, 9)),
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forevery s, t € [0,l] and p,q € Z.

l L rl
(Q)mmLm&@+%@mﬂ=LLLM@ﬁ+%@mﬂﬂSL

s€e[0,l]

Then the unique solution of integrodifferential equations (3.1) and (3.2) are exists on
[0,1].

Proof : Consider the operatorI': B - B is

Tu(s) = £(s) + [ (s, tu®)dt + [ £(s,tu®)de, s€[0,. (33)

By conditions C; and C,, we have

(Il Tu(s) =Tv(s) I,B Il Tu(s) —T'v(s) 1)

< (0 f5 SCs tu)de + f E(s tu®)dt — f3 (st v(e)de — [, £(s,t,v(©)de |,
BIL S(s,tu®)de + [ £(s,tu@®)dt — f5 S(s,t,v())dt — [, &(s,t,v(e))d I)
< (s 14 tu®) =i tv®) I de+ fol I$(s,t,u(®)) —&(s, t,v(t) Il de,

By 14(s,t,u®) = (s, t,v()) Il de +Bfol IS, t,u®) —$(s,t,v(D) Il dt)
< (J; 136 tu®) =6, tv®) Ide, B 113(s,tu(®) — (s, t,v(D) Il db)
+(fy 1 EGs, u(D) = £(5,6,v(0) I dt, B J; £(s,t,u()) = £(s,t, v(0)) Il db)
fos G OPNu—=v e, B lu—vly)dt + fol GEOYMu—vie B llu—vle)dt

< L OPUU =2 o B Il u—v lo)dt+ [} g0 P U= o, | u—v l)dt
< [ @D+ a6 0P u—v e, B Il —v lle)dt
Wl u— vl Bl u=vllw) [ [q:(5,0) + g2 (s, )] dt

A

'“Ij(" u—v “oo;ﬁ ” u—v ”oo)J
This means that
d(Tu,T'v) <¥(d(u,v))

for every u,v € B. Now, the Lemma 2.1 has been applied, therefore the operator T
has a unique fixed point in B and hence a unique solution of equations (3.1) and
(3.2). Thus Theorem 3.1 has proved.
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Example 3.1 Consider the mappings ¢ and ¢ such that

stu?

=, s,te[01] ueC(01LR), (3.4)

{(s,t,u) = st + u?t, h(s,t,u) = (st)® +
and a metric d(u, v) described as

duv)=llu—viewallu—viy)

on C([0,1],R) and g = 0. Then C([0,1],R) is a complete cone metric space. We
choose two continuous functions q;(s,t), g5(s,t): [0,1] X [0,1] —» R™*, such that
qi(s,t) =t and g;(s,t) = st and a comparison function ¥*: R? - R? such that

Y*(u,v) = %(u, v). Now, we demonstrate that

(1¢Cs, tu@) = 4(s, t,v(E)I, BI{ (s, t,u(®)) — {(s,t, v(t)])

ut . vt N
—— S —_— —
2

Ust+ 2 st 2 plst +
= (Ist+—=—st——|,Bls
2 2

2
_ ut vt ut vt
= (55 Bl7=5D
t
= 5 (lu=v|Blu=-v))

t
< E(" U=V lwBllu—viw)
= V' (u—vlewB lu—vls),

Similarly, we can show that

(|¢(s, 6, u@®) = &(s, t,v(®)], BlE(s, t,u(®) — &(s, t,v(D)|) < @GP (

lu—vileBllu—vly),

Now, we obtain
1 1 1 1
J [qi(s,t) + q5(s, t)]dt = _[ [t+st]ldt==(14+5s)= sup {z(1+5s)}=1.
0 0 2 se[0,1] 2

fo Jo lai(s,t) +a3(s Dldeds = [ [} [t +stldeds = [} (1 +)ds <3< 1,

Thus fulfilled each requirement of Theorem 3.1, therefore the validity of solution of
the integrodifferential equations are existence and uniqueness.
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